Multi-Nutrient Fortified Dairy-Based Drink Reduces Anaemia without Observed Adverse Effects on Gut Microbiota in Anaemic Malnourished Nigerian Toddlers: A Randomised Dose–Response Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Ethics
2.3. Study Products
2.4. Blood Sampling and Sample Preparation
2.5. Biochemical Parameters
2.6. Faecal Samples and Microbiota Analysis
2.7. Urine Samples and Iodine Analysis
2.8. Sample Size Calculation
2.9. Statistical Analysis
2.10. Evaluation of Biochemical and Related Parameters
2.11. Evaluation of Faecal Microbiota
3. Results
3.1. Baseline Characteristics
3.2. Anaemia Prevalence and Hb
3.3. Iron Deficiency and Iron-Deficiency Anaemia
3.4. Faecal Microbiota
4. Discussion
4.1. Anaemia Prevalence Reduction
4.2. ID and IDA Not the Most Important Causes of Anaemia
4.3. Effect of Multi-Nutrient Fortified Dairy-Based Drink on Gut Microbiota
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kassebaum, N.J.; Jasrasaria, R.; Naghavi, M.; Wulf, S.K.; Johns, N.; Lozano, R.; Regan, M.; Weatherall, D.; Chou, D.P.; Eisele, T.P.; et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 2014, 123, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.; Pfeiffer, C.M.; Georgieff, M.K.; Brittenham, G.; Fairweather-Tait, S.; Hurrell, R.F.; McArdle, H.J.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)-Iron review. J. Nutr. 2018, 148, 1001S–1067S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petry, N.; Olofin, I.; Hurrell, R.F.; Boy, E.; Wirth, J.P.; Moursi, M.; Angel, M.D.; Rohner, F. The proportion of anemia associated with iron deficiency in low, medium, and high human development index countries: A systematic analysis of national surveys. Nutrients 2016, 8, 693. [Google Scholar] [CrossRef]
- Subramaniam, G.; Girish, M. Iron Deficiency Anemia in Children. Indian J. Pediatr. 2015, 82, 558–564. [Google Scholar] [CrossRef] [PubMed]
- WHO. Nutritional Anaemias: Tools for Effective Prevention; WHO: Geneva, Switzerland, 2017; ISBN 9789241513067. [Google Scholar]
- DeLoughery, T.G. Iron Deficiency Anemia. Med. Clin. N. Am. 2017, 101, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Camaschella, C. New insights into iron deficiency and iron deficiency anemia. Blood Rev. 2017, 31, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Drakesmith, H.; Porto, G.; de Sousa, M. Iron and the immune system. In Iron Physiology and Pathophysiology in Humans; Humana Press: Totowa, NJ, USA, 2012. [Google Scholar]
- Bezkorovainy, A. Biochemistry of Non-Haem Iron; Plenum Press: New York, NY, USA, 1980. [Google Scholar]
- Marx, J.J.M. Iron absorption and its regulation, a review. Haematologica 1979, 64, 479–494. [Google Scholar]
- Bjorn-Rasmussen, E. Iron absorption: Present knowledge and controversies. Lancet 1983, 23, 914–917. [Google Scholar] [CrossRef]
- Raiten, D.J.; Talbot, J.M.; Waters, J.H. Assessment of Nutrient Requirements for Infant Formulas. J. Nutr. 1998, 128, 2059–2293. [Google Scholar]
- Uijterschout, L.; Domellöf, M.; Abbink, M.; Berglund, S.K.; Van Veen, I.; Vos, P.; Rövekamp, L.; Boersma, B.; Hudig, C.; Vos, R.; et al. Iron deficiency in the first 6 months of age in infants born between 32 and 37 weeks of gestational age. Eur. J. Clin. Nutr. 2015, 69, 598–602. [Google Scholar] [CrossRef] [Green Version]
- Northrop-Clewes, C.A. Interpreting indicators of iron status during an acute phase response—Lessons from malaria and human immunodeficiency virus. Ann. Clin. Biochem. 2008, 45, 18–32. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guideline: Use of Multiple Micronutrient Powders for Point-of-Use Fortification of Foods Consumed by Infants and Young Children Aged 6–23 Months and Children Aged 2–12 Years; World Health Organization: Geneva, Switzerland, 2016; ISBN 9789241549943. [Google Scholar]
- Suchdev, P.S.; Jefferds, M.E.D.; Ota, E.; da Silva Lopes, K.; De-Regil, L.M. Home fortification of foods with multiple micronutrient powders for health and nutrition in children under two years of age. Cochrane Database Syst. Rev. 2020, 2020, CD008959. [Google Scholar] [CrossRef]
- Dallman, P.R.; Looker, A.C.; Johnson, C.L.; Carroll, M. Influence of Age on Laboratory Criteria for the Diagnosis of Iron Deficiency Anaemia and Iron Deficiency in Infants and Children. Hallberg, L., Asp, N.G., Eds.; Iron Nutrition in Health and Disease; John Libbey and Co. Ltd.: London, UK, 1996; pp. 65–74. [Google Scholar]
- Glinz, D.; Wegmüller, R.; Ouattara, M.; Diakité, V.G.; Aaron, G.J.; Hofer, L.; Zimmermann, M.B.; Adiossan, L.G.; Utzinger, J.; N’Goran, E.K.; et al. Iron fortified complementary foods containing a mixture of sodium iron EDTA with either ferrous fumarate or ferric pyrophosphate reduce iron deficiency anemia in 12- to 36-month-old children in a malaria endemic setting: A secondary analysis of a cluster-randomized controlled trial. Nutrients 2017, 9, 759. [Google Scholar] [CrossRef] [Green Version]
- Lovell, A.L.; Davies, P.S.W.; Hill, R.J.; Milne, T.; Matsuyama, M.; Jiang, Y.; Chen, R.X.; Wouldes, T.A.; Heath, A.L.M.; Grant, C.C.; et al. Compared with Cow Milk, a Growing-Up Milk Increases Vitamin D and Iron Status in Healthy Children at 2 Years of Age: The Growing-Up Milk-Lite (GUMLi) Randomized Controlled Trial. J. Nutr. 2018, 148, 1570–1579. [Google Scholar] [CrossRef]
- Hojsak, I.; Bronsky, J.; Campoy, C.; Domellöf, M.; Embleton, N.; Fidler Mis, N.; Hulst, J.; Indrio, F.; Lapillonne, A.; Mølgaard, C.; et al. Young Child Formula. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 177–185. [Google Scholar] [CrossRef]
- Jaeggi, T.; Kortman, G.A.M.; Moretti, D.; Chassard, C.; Holding, P.; Dostal, A.; Boekhorst, J.; Timmerman, H.M.; Swinkels, D.W.; Tjalsma, H.; et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 2015, 64, 731–742. [Google Scholar] [CrossRef]
- Paganini, D.; Zimmermann, M.B. The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children: A review. Am. J. Clin. Nutr. 2017, 106, 1688S–1693S. [Google Scholar] [CrossRef] [Green Version]
- Lönnerdal, B. Excess iron intake as a factor in growth, infections, and development of infants and young children. Am. J. Clin. Nutr. 2017, 106, 1681S–1687S. [Google Scholar] [CrossRef]
- Das, N.K.; Schwartz, A.J.; Barthel, G.; Inohara, N.; Liu, Q.; Sankar, A.; Hill, D.R.; Ma, X.; Lamberg, O.; Schnizlein, M.K.; et al. Microbial Metabolite Signaling Is Required for Systemic Iron Homeostasis. Cell Metab. 2020, 31, 115–130. [Google Scholar] [CrossRef]
- Penders, J.; Thijs, C.; Vink, C.; Stelma, F.F.; Snijders, B.; Kummeling, I.; Van Den Brandt, P.A.; Stobberingh, E.E. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006, 118, 511–521. [Google Scholar] [CrossRef] [Green Version]
- Blössner, M.; Siyam, A.; Borghi, E.; Onyango, A.; de Onis, M. WHO AnthroPlus for Personal Computers Manual Software for Assessing Growth of the World’s Children and Adolescents Let’s Move it Baby; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- WHO. Guideline on Use of Ferrittin Concentrations to Assess Ion Status in Individuals and Populations; WHO: Geneva, Switzerland, 2020; ISBN 9789240000124. [Google Scholar]
- Paganini, D.; Uyoga, M.A.; Kortman, G.A.M.; Cercamondi, C.I.; Moretti, D.; Barth-Jaeggi, T.; Schwab, C.; Boekhorst, J.; Timmerman, H.M.; Lacroix, C.; et al. Prebiotic galacto-oligosaccharides mitigate the adverse effects of iron fortification on the gut microbiome: A randomised controlled study in Kenyan infants. Gut 2017, 66, 1956–1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. VMNIS|Vitamin and Mineral Nutrition Information System Urinary Iodine Concentrations for Determining Iodine Status in Populations; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Sazawal, S.; Dhingra, U.; Dhingra, P.; Hiremath, G.; Sarkar, A.; Dutta, A.; Menon, V.P.; Black, R.E. Micronutrient fortified milk improves iron status, anemia and growth among children 1-4 years: A double masked, randomized, controlled trial. PLoS ONE 2010, 5, e12167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, J.A.; Shamah, T.; Villalpando, S.; Monterrubio, E. Effectiveness of a large-scale iron-fortified milk distribution program on anemia and iron deficiency in low-income young children in Mexico. Am. J. Clin. Nutr. 2010, 91, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, E.E. Consumption of cow’s milk as a cause of iron deficiency in infants and toddlers. Nutr. Rev. 2011, 69. [Google Scholar] [CrossRef] [PubMed]
- Reissmann, K.R. Protein metabolism and erythropoiesis. I. The anemia of protein deprivation. Blood 1964, 23, 137–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassebaum, N.J.; Fleming, T.D.; Flaxman, A.; Phillips, D.E.; Steiner, C.; Barber, R.M.; Hanson, S.W.; Moradi-Lakeh, M.; Coffeng, L.E.; Haagsma, J.; et al. The Global Burden of Anemia. Hematol. Oncol. Clin. N. Am. 2016, 30, 247–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thurnham, D.; McCabe, L.; Haldar, S.; Wieringa, F.; Clewes, C.; McCabe, G. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: A meta-analysis. Am. J. Clin. Nutr. 2010, 92, 546–555. [Google Scholar] [CrossRef] [Green Version]
- Rohner, F.; Zimmermann, M.B.; Amon, R.J.; Vounatsou, P.; Tschannen, A.B.; N’Goran, E.K.; Nindjin, C.; Cacou, M.C.; Té-Bonlé, M.D.; Aka, H.; et al. In a randomized controlled trial of iron fortification, anthelmintic treatment, and intermittent preventive treatment of malaria for anemia control in Ivorian children, only anthelmintic treatment shows modest benefit. J. Nutr. 2010, 140, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Wang, M. Iron Deficiency and Other Types of Anemia in Infants and Children. Am. Fam. Physician 2016, 93, 270–278. [Google Scholar]
- Bharti, B.; Bhart, S.; Khurana, S. Worm Infestation: Diagnosis, Treatment and Prevention. Indian J. Pediatr. 2018, 85, 1017–1024. [Google Scholar] [CrossRef]
- Sanya, R.; Nkurunungi, G.; Biraro, I.A.; Mpairwe, H.; Elliott, A.M. A life without worms. Trans. R. Soc. Trop. Med. Hyg. 2017, 111, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Loukas, A.; Hotez, P.J.; Diemert, D.; Yazdanbakhsh, M.; McCarthy, J.S.; Correa-Oliveira, R.; Croese, J.; Bethony, J.M. Hookworm infection. Nat. Rev. Dis. Prim. 2016, 2, 16088. [Google Scholar] [CrossRef]
- Thayer, W.M.; Clermont, A.; Walker, N. Effects of deworming on child and maternal health: A literature review and meta-analysis. BMC Public Health 2017, 17, 830. [Google Scholar] [CrossRef] [Green Version]
- White, N.J. Anaemia and malaria. Malar. J. 2018, 17, 371–388. [Google Scholar] [CrossRef] [Green Version]
- Lagos State Malaria Health of Malaria Control Program—Ministry of Health. Available online: http://health.lagosstate.gov.ng/malaria-control-program/ (accessed on 10 December 2020).
- Autino, B.; Noris, A.; Russo, R.; Castelli, F. Epidemiology of malaria in endemic areas. Mediterr. J. Hematol. Infect. Dis. 2012, 4. [Google Scholar] [CrossRef]
- Hurrell, R.; Ranum, P.; De Pee, S.; Biebinger, R.; Hulthen, L.; Johnson, Q.; Lynch, S. Revised recommendations for iron fortification of wheat flour and an evaluation of the expected impact of Current national wheat flour fortification programs. Food Nutr. Bull. 2010, 31. [Google Scholar] [CrossRef]
- Hurrell, R. Linking the bioavailability of iron compounds to the efficacy of iron-fortified foods. Int. J. Vitam. Nutr. Res. 2007, 77, 166–173. [Google Scholar] [CrossRef]
- Tondeur, M.C.; Schauer, C.S.; Christofides, A.L.; Asante, K.P.; Newton, S.; Serfass, R.E.; Zlotkin, S.H. Determination of iron absorption from intrinsically labeled microencapsulated ferrous fumarate (sprinkles) in infants with different iron and hematologic status by using a dual-stable-isotope method. Am. J. Clin. Nutr. 2004, 80, 1436–1444. [Google Scholar] [CrossRef]
- Andrews, S.C.; Robinson, A.K.; Rodríguez-Quiñones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 2003, 27, 215–237. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Chassard, C.; Rohner, F.; N’Goran, E.K.; Nindjin, C.; Dostal, A.; Utzinger, J.; Ghattas, H.; Lacroix, C.; Hurrell, R.F. The effects of iron fortification on the gut microbiota in African children: A randomized controlled trial in Côte d’Ivoire. Am. J. Clin. Nutr. 2010, 92, 1406–1415. [Google Scholar] [CrossRef]
- Zlotkin, S.; Newton, S.; Aimone, A.M.; Azindow, I.; Amenga-Etego, S.; Tchum, K.; Mahama, E.; Thorpe, K.E.; Owusu-Agyei, S. Effect of iron fortification on malaria incidence in infants and young children in Ghana: A randomized trial. JAMA J. Am. Med. Assoc. 2013, 310, 938–947. [Google Scholar] [CrossRef] [Green Version]
- Soofi, S.; Cousens, S.; Iqbal, S.P.; Akhund, T.; Khan, J.; Ahmed, I.; Zaidi, A.K.M.; Bhutta, Z.A. Effect of provision of daily zinc and iron with several micronutrients on growth and morbidity among young children in Pakistan: A cluster-randomised trial. Lancet 2013, 382, 29–40. [Google Scholar] [CrossRef]
Nutrient | Unit | Per 200 mL | Per 400 mL | Per 600 mL |
---|---|---|---|---|
Energy | kcal | 149 | 297 | 446 |
Protein | g | 5 | 11 | 16 |
Carbohydrates | g | 20 | 41 | 61 |
Sucrose | g | 2.9 | 5.8 | 8.7 |
Lactose | g | 7 | 14.5 | 21.7 |
Fat | g | 5 | 10 | 15 |
DHA | mg | 14 | 28 | 42 |
Calcium | mg | 188 | 376 | 564 |
Phosphorus | mg | 152 | 304 | 455 |
Potassium | mg | 244 | 488 | 733 |
Magnesium | mg | 17 | 33 | 50 |
Sodium | mg | 63 | 125 | 188 |
Iron | mg | 2.24 | 4.48 | 6.72 |
Copper | ug | 58 | 116 | 173 |
Zinc | mg | 1 | 2 | 3 |
Iodine | ug | 40 | 79 | 119 |
Selenium | ug | 3.6 | 7.3 | 11 |
Vitamin A | ug-RE | 128 | 255 | 383 |
Vitamin D3 | ug | 2 | 4 | 6 |
Vitamin E | mg | 3 | 5 | 8 |
Vitamin B1 | ug | 155 | 310 | 465 |
Vitamin B2 | ug | 158 | 317 | 475 |
Vitamin B6 | ug | 157 | 314 | 470 |
Folic acid | ug | 24 | 48 | 71 |
Vitamin B12 | ug | 0.4 | 0.8 | 1,2 |
Vitamin K1 | ug | 9.2 | 18.5 | 28 |
Biotin | ug | 5.3 | 10.6 | 16 |
Niacin | mg | 2.0 | 4.0 | 6 |
Pantothenic acid | mg | 0.7 | 1.3 | 2 |
Vitamin C | mg | 38 | 76 | 114 |
200 mL | 400 mL | 600 mL | p-Value | |
---|---|---|---|---|
n | 34 | 37 | 34 | |
Age (months) | 20.0, 8.5 | 20.0, 7.5 | 18.0, 8.5 | 0.48 ° |
Gender (boys/girls) (%) | 47.1/52.9 | 51.4/48.6 | 38.2/61.8 | 0.53 # |
Social class (upper/middle/lower) (%) | 0.0/21.2/78.8 | 2.8/19.4/77.8 | 0.0/17.6/82.3 | 0.57 # |
Religion (Muslim/Christian) (%) | 72.7/27.3 | 63.9/36.1 | 70.6/29.4 | 0.71 # |
Weight (kg) | 9.2, 2.3 | 8,9, 1.1 | 8.7, 1.8 | 0.42 ° |
Height (cm) | 78.9 ± 5.5 a | 78.2 ± 4.8 a,b | 75.8 ± 4.4 b | 0.03 * |
Weight for age Z-score | −1.78 ± 0.60 | −1.71 ± 0.55 | −1.78 ± 0.54 | 0.84 * |
Height for age Z-score | −1.60 ± 0.61 | −1.74 ± 0.53 | −1.96 ± 0.62 | 0.06 * |
Weight for height Z-score | −1.34 ± 0.77 | −1.15 ± 0.72 | −1.07 ± 0.72 | 0.30 * |
Hb (g/dL) | 10.4, 0.8 | 10.1, 1.7 | 10.0, 1.6 | 0.08 ° |
Ferritin (µg/L) | 37.6, 36.9 | 35.7, 46.9 | 38.2, 52.1 | 0.83 ° |
CRP (mg/L) | 1.7, 5.6 | 2.1, 7.2 | 2.1, 4.8 | 0.60 ° |
Inflammation prevalence (%) | 18.2 | 19.4 | 15.2 | 0.89 # |
Vitamin B12 deficiency (%) | 0.0 | 7.1 | 0.0 | 0.32 * |
Folate deficiency (%) | 9.1 | 8.0 | 21.1 | 0.40 * |
Iodine (µg/L) | 268.3, 405.7 | 327.6, 458.5 | 315.8, 467.5 | 0.99 ° |
200 mL | 400 mL | 600 mL | Treatment Effect p-Value | |
---|---|---|---|---|
Anaemia prevalence (%) | 47.1 a | 27.0 a,b | 17.6 b | 0.03 |
Hb (g/dL) | 11.2 ± 0.9 a,* | 11.6 ± 0.9 b,* | 11.7 ± 1.0 b,* | 0.005 |
Ferritin (µg/L) | 37.0, 19.3 | 34.7, 35.1 | 39.5, 28.4 | 0.84 |
200 mL | 400 mL | 600 mL | p-Value * | ||
---|---|---|---|---|---|
ID prevalence | pre | 20.0% | 11.1% | 6.1% | 0.25 |
post | 0% | 2.8% | 6.1% | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owolabi, A.J.; Senbanjo, I.O.; Oshikoya, K.A.; Boekhorst, J.; Eijlander, R.T.; Kortman, G.A.M.; Hageman, J.H.J.; Samuel, F.; Melse-Boonstra, A.; Schaafsma, A. Multi-Nutrient Fortified Dairy-Based Drink Reduces Anaemia without Observed Adverse Effects on Gut Microbiota in Anaemic Malnourished Nigerian Toddlers: A Randomised Dose–Response Study. Nutrients 2021, 13, 1566. https://doi.org/10.3390/nu13051566
Owolabi AJ, Senbanjo IO, Oshikoya KA, Boekhorst J, Eijlander RT, Kortman GAM, Hageman JHJ, Samuel F, Melse-Boonstra A, Schaafsma A. Multi-Nutrient Fortified Dairy-Based Drink Reduces Anaemia without Observed Adverse Effects on Gut Microbiota in Anaemic Malnourished Nigerian Toddlers: A Randomised Dose–Response Study. Nutrients. 2021; 13(5):1566. https://doi.org/10.3390/nu13051566
Chicago/Turabian StyleOwolabi, Adedotun J., Idowu O. Senbanjo, Kazeem A. Oshikoya, Jos Boekhorst, Robyn T. Eijlander, Guus A. M. Kortman, Jeske H. J. Hageman, Folake Samuel, Alida Melse-Boonstra, and Anne Schaafsma. 2021. "Multi-Nutrient Fortified Dairy-Based Drink Reduces Anaemia without Observed Adverse Effects on Gut Microbiota in Anaemic Malnourished Nigerian Toddlers: A Randomised Dose–Response Study" Nutrients 13, no. 5: 1566. https://doi.org/10.3390/nu13051566
APA StyleOwolabi, A. J., Senbanjo, I. O., Oshikoya, K. A., Boekhorst, J., Eijlander, R. T., Kortman, G. A. M., Hageman, J. H. J., Samuel, F., Melse-Boonstra, A., & Schaafsma, A. (2021). Multi-Nutrient Fortified Dairy-Based Drink Reduces Anaemia without Observed Adverse Effects on Gut Microbiota in Anaemic Malnourished Nigerian Toddlers: A Randomised Dose–Response Study. Nutrients, 13(5), 1566. https://doi.org/10.3390/nu13051566