Dietary Data in the Malmö Offspring Study–Reproducibility, Method Comparison and Validation against Objective Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Study Sample
2.3. Dietary Data
2.4. Anthropometric Measurements
2.5. Other Variables
2.6. Liquid Chromatography–Mass Spectrometry Analysis
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics and Reported Intakes from the Different Dietary Assessments
3.2. Comparison of Intakes Obtained from 4DFR and SFFQ
3.3. Reproducibility of Intakes Obtained from 4DFR
3.4. Reproducibility of Intakes Obtained from SFFQ
3.5. Validation of Fatty Fish Intake
3.6. Validation of Citrus Intake
3.7. Validation of Total Fruit and Vegetable Intake
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kipnis, V.; Freedman, L.S. Impact of exposure measurement error in nutritional epidemiology. J. Natl. Cancer Inst. 2008, 100, 1658–1659. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.; Lenart, E. Nutritional Epidemiology, 3rd ed.; Oxford University Press: New York, NY, USA, 2013; pp. 96–141. [Google Scholar]
- Elmstahl, S.; Gullberg, B.; Riboli, E.; Saracci, R.; Lindgarde, F. The Malmo Food Study: The reproducibility of a novel diet history method and an extensive food frequency questionnaire. Eur. J. Clin. Nutr. 1996, 50, 134–142. [Google Scholar] [PubMed]
- Elmstahl, S.; Riboli, E.; Lindgarde, F.; Gullberg, B.; Saracci, R. The Malmo Food Study: The relative validity of a modified diet history method and an extensive food frequency questionnaire for measuring food intake. Eur. J. Clin. Nutr. 1996, 50, 143–151. [Google Scholar]
- Hellstrand, S.; Sonestedt, E.; Ericson, U.; Gullberg, B.; Wirfalt, E.; Hedblad, B.; Orho-Melander, M. Intake levels of dietary long-chain PUFAs modify the association between genetic variation in FADS and LDL-C. J. Lipid Res. 2012, 53, 1183–1189. [Google Scholar] [CrossRef] [Green Version]
- Riboli, E.; Elmstahl, S.; Saracci, R.; Gullberg, B.; Lindgarde, F. The Malmo Food Study: Validity of two dietary assessment methods for measuring nutrient intake. Int. J. Epidemiol. 1997, 26, 161–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gormley, I.C.; Bai, Y.; Brennan, L. Combining biomarker and self-reported dietary intake data: A review of the state of the art and an exposition of concepts. Stat. Methods Med. Res. 2020, 29, 617–635. [Google Scholar] [CrossRef] [PubMed]
- Lassale, C.; Castetbon, K.; Laporte, F.; Deschamps, V.; Vernay, M.; Camilleri, G.M.; Faure, P.; Hercberg, S.; Galan, P.; Kesse-Guyot, E. Correlations between Fruit, Vegetables, Fish, Vitamins, and Fatty Acids Estimated by Web-Based Nonconsecutive Dietary Records and Respective Biomarkers of Nutritional Status. J. Acad. Nutr. Diet. 2016, 116, 427–438.e425. [Google Scholar] [CrossRef] [PubMed]
- Hanhineva, K.; Lankinen, M.A.; Pedret, A.; Schwab, U.; Kolehmainen, M.; Paananen, J.; de Mello, V.; Sola, R.; Lehtonen, M.; Poutanen, K.; et al. Nontargeted metabolite profiling discriminates diet-specific biomarkers for consumption of whole grains, fatty fish, and bilberries in a randomized controlled trial. J. Nutr. 2015, 145, 7–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Gibson, R.A.; Callahan, D.; Guo, X.F.; Li, D.; Sinclair, A.J. Pure omega 3 polyunsaturated fatty acids (EPA, DPA or DHA) are associated with increased plasma levels of 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) in a short-term study in women. Food Funct. 2020, 11, 2058–2066. [Google Scholar] [CrossRef] [PubMed]
- Spiteller, G. Furan fatty acids: Occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids 2005, 40, 755–771. [Google Scholar] [CrossRef]
- Baldrick, F.R.; Woodside, J.V.; Elborn, J.S.; Young, I.S.; McKinley, M.C. Biomarkers of fruit and vegetable intake in human intervention studies: A systematic review. Crit. Rev. Food Sci. Nutr. 2011, 51, 795–815. [Google Scholar] [CrossRef]
- Duthie, S.J.; Duthie, G.G.; Russell, W.R.; Kyle, J.A.M.; Macdiarmid, J.I.; Rungapamestry, V.; Stephen, S.; Megias-Baeza, C.; Kaniewska, J.J.; Shaw, L.; et al. Effect of increasing fruit and vegetable intake by dietary intervention on nutritional biomarkers and attitudes to dietary change: A randomised trial. Eur. J. Nutr. 2018, 57, 1855–1872. [Google Scholar] [CrossRef] [Green Version]
- Acar, E.; Gurdeniz, G.; Khakimov, B.; Savorani, F.; Korndal, S.K.; Larsen, T.M.; Engelsen, S.B.; Astrup, A.; Dragsted, L.O. Biomarkers of Individual Foods, and Separation of Diets Using Untargeted LC-MS-based Plasma Metabolomics in a Randomized Controlled Trial. Mol. Nutr. Food Res. 2019, 63, e1800215. [Google Scholar] [CrossRef] [Green Version]
- Heinzmann, S.S.; Brown, I.J.; Chan, Q.; Bictash, M.; Dumas, M.E.; Kochhar, S.; Stamler, J.; Holmes, E.; Elliott, P.; Nicholson, J.K. Metabolic profiling strategy for discovery of nutritional biomarkers: Proline betaine as a marker of citrus consumption. Am. J. Clin. Nutr. 2010, 92, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Brunkwall, L.; Jonsson, D.; Ericson, U.; Hellstrand, S.; Kennback, C.; Ostling, G.; Jujic, A.; Melander, O.; Engstrom, G.; Nilsson, J.; et al. The Malmo Offspring Study (MOS): Design, methods and first results. Eur. J. Epidemiol. 2021, 36, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Manjer, J.; Carlsson, S.; Elmstahl, S.; Gullberg, B.; Janzon, L.; Lindstrom, M.; Mattisson, I.; Berglund, G. The Malmo Diet and Cancer Study: Representativity, cancer incidence and mortality in participants and non-participants. Eur. J. Cancer Prev. 2001, 10, 489–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirfalt, E.; Hedblad, B.; Gullberg, B.; Mattisson, I.; Andren, C.; Rosander, U.; Janzon, L.; Berglund, G. Food patterns and components of the metabolic syndrome in men and women: A cross-sectional study within the Malmo Diet and Cancer cohort. Am. J. Epidemiol. 2001, 154, 1150–1159. [Google Scholar] [CrossRef] [Green Version]
- Nybacka, S.; Wirfält, E.; Lindroos, A.; Larsson, I.; Ericson, U.; Warensjö Lemming, E. Comparison of a web-based food record tool and a food-frequency questionnaire and objective validation using the doubly labelled water technique in a Swedish middle-aged population. J. Nutr. Sci. 2016, 5, E39. [Google Scholar] [CrossRef] [Green Version]
- Ottosson, F.; Brunkwall, L.; Ericson, U.; Nilsson, P.M.; Almgren, P.; Fernandez, C.; Melander, O.; Orho-Melander, M. Connection Between BMI-Related Plasma Metabolite Profile and Gut Microbiota. J. Clin. Endocrinol. Metab. 2018, 103, 1491–1501. [Google Scholar] [CrossRef] [Green Version]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef] [PubMed]
- Margetts, B.M.; Nelson, M. Design and Concepts in Nutritional Epidemiology, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA; Tokyo, Japan, 1997. [Google Scholar]
- O’Doherty Jensen, K.; Holm, L. Preferences, quantities and concerns: Socio-cultural perspectives on the gendered consumption of foods. Eur. J. Clin. Nutr. 1999, 53, 351–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedman, L.S.; Kipnis, V.; Schatzkin, A.; Tasevska, N.; Potischman, N. Can we use biomarkers in combination with self-reports to strengthen the analysis of nutritional epidemiologic studies? Epidemiol. Perspect. Innov. 2010, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swinscow, T. Statistics at Square One, 9th ed.; BMJ Publishing Group: London, UK, 1997. [Google Scholar]
- Shrestha, A.; Koju, R.P.; Beresford, S.A.A.; Chan, K.C.G.; Connell, F.A.; Karmacharya, B.M.; Shrestha, P.; Fitzpatrick, A.L. Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for Nepalese diet. Int. J. Food Sci. Nutr. 2017, 68, 605–612. [Google Scholar] [CrossRef]
- Troeschel, A.N.; Hartman, T.J.; Flanders, W.D.; Wang, Y.; Hodge, R.A.; McCullough, L.E.; Mitchell, D.C.; Sampson, L.; Patel, A.V.; McCullough, M.L. The American Cancer Society Cancer Prevention Study-3 FFQ Has Reasonable Validity and Reproducibility for Food Groups and a Diet Quality Score. J. Nutr. 2020, 150, 1566–1578. [Google Scholar] [CrossRef] [PubMed]
- Bar, N.; Korem, T.; Weissbrod, O.; Zeevi, D.; Rothschild, D.; Leviatan, S.; Kosower, N.; Lotan-Pompan, M.; Weinberger, A.; Le Roy, C.I.; et al. A reference map of potential determinants for the human serum metabolome. Nature 2020, 588, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Crispim, S.P.; Geelen, A.; Souverein, O.W.; Hulshof, P.J.; Ruprich, J.; Dofkova, M.; Huybrechts, I.; De Keyzer, W.; Lillegaard, I.T.; Andersen, L.F.; et al. Biomarker-based evaluation of two 24-h recalls for comparing usual fish, fruit and vegetable intakes across European centers in the EFCOVAL Study. Eur. J. Clin. Nutr. 2011, 65 (Suppl. S1), S38–S47. [Google Scholar] [CrossRef] [Green Version]
- Guertin, K.A.; Moore, S.C.; Sampson, J.N.; Huang, W.Y.; Xiao, Q.; Stolzenberg-Solomon, R.Z.; Sinha, R.; Cross, A.J. Metabolomics in nutritional epidemiology: Identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am. J. Clin. Nutr. 2014, 100, 208–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, M.C.; Van Kappel, A.L.; Ocke, M.C.; Van ‘t Veer, P.; Boshuizen, H.C.; Riboli, E.; Bueno-de-Mesquita, H.B. Plasma carotenoid levels in Dutch men and women, and the relation with vegetable and fruit consumption. Eur. J. Clin. Nutr. 2004, 58, 1386–1395. [Google Scholar] [CrossRef] [Green Version]
- Resnicow, K.; Odom, E.; Wang, T.; Dudley, W.N.; Mitchell, D.; Vaughan, R.; Jackson, A.; Baranowski, T. Validation of three food frequency questionnaires and 24-hour recalls with serum carotenoid levels in a sample of African-American adults. Am. J. Epidemiol. 2000, 152, 1072–1080. [Google Scholar] [CrossRef] [PubMed]
- Nybacka, S.; Lindroos, A.K.; Wirfält, E.; Leanderson, P.; Landberg, R.; Ericson, U.; Larsson, I.; Lemming Warensjö, E.; Bergström, G.; Hedblad, B.; et al. Carotenoids and alkylresorcinols as objective biomarkers of diet quality when assessing the validity of a web-based food record tool and a food frequency questionnaire in a middle-aged population. BMC Nutr. 2016, 2, 53. [Google Scholar] [CrossRef] [Green Version]
- Mazzilli, K.M.; McClain, K.M.; Lipworth, L.; Playdon, M.C.; Sampson, J.N.; Clish, C.B.; Gerszten, R.E.; Freedman, N.D.; Moore, S.C. Identification of 102 Correlations between Serum Metabolites and Habitual Diet in a Metabolomics Study of the Prostate, Lung, Colorectal, and Ovarian Cancer Trial. J. Nutr. 2020, 150, 694–703. [Google Scholar] [CrossRef]
- Playdon, M.C.; Ziegler, R.G.; Sampson, J.N.; Stolzenberg-Solomon, R.; Thompson, H.J.; Irwin, M.L.; Mayne, S.T.; Hoover, R.N.; Moore, S.C. Nutritional metabolomics and breast cancer risk in a prospective study. Am. J. Clin. Nutr. 2017, 106, 637–649. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics a | Participants with Only Baseline Diet Data (n = 1421) | Participants with Repeated Diet Data (n = 180) | p Value b |
---|---|---|---|
Age (y) | 40.3 (39.6, 41.0) | 46.2 (44.2, 48.2) | <0.001 |
Sex (women n (%)) | 770 (54.2) | 115 (63.9) | 0.01 |
BMI (kg/m2) | 25.8 (25.6, 26.1) | 24.8 (24.1, 25.4) | 0.003 |
Systolic blood pressure (mmHg) | 116.5 (115.9, 117.2) | 114.9 (113.0, 116.7) | 0.09 |
Diastolic blood pressure (mmHg) | 71.7 (71.3, 72.1) | 70.5 (69.3, 71.7) | 0.07 |
Fasting glucose (mmol/L) | 5.5 (5.4, 5.5) | 5.4 (5.3, 5.6) | 0.33 |
Triglycerides (mmol/L) | 1.1 (1.1–1.2) | 1.0 (0.9–1.1) | 0.09 |
HDL-C (mmol/L) | 1.61 (1.59, 1.63) | 1.69 (1.63, 1.75) | 0.02 |
LDL-C (mmol/L) | 3.17 (3.12, 3.21) | 3.10 (2.97, 3.23) | 0.32 |
Total cholesterol (mmol/L) | 4.97 (4.91, 5.01) | 4.92 (4.78, 5.07) | 0.58 |
Total energy (kcal/d) | 2028 (1998, 2058) | 2070 (1984, 2155) | 0.37 |
Protein (E%) | 17.6 (17.4, 17.8) | 17.3 (16.7, 17.9) | 0.30 |
Carbohydrates (E%) | 45.1 (44.7, 45.5) | 45.1 (44.0, 46.2) | 0.97 |
Fat (E%) | 37.3 (36.9, 37.6) | 37.6 (36.5, 38.6) | 0.60 |
Saturated fat (E%) | 14.2 (14.0, 14.4) | 13.9 (13.4, 14.4) | 0.32 |
PUFA (E%) | 6.0 (5.9, 6.1) | 6.4 (6.1, 6.7) | 0.02 |
Fiber (g/1000kcal) | 9.7 (9.6, 9.9) | 9.9 (9.4, 10.3) | 0.59 |
Sucrose (E%) | 8.4 (8.2, 8.7) | 8.3 (7.6, 8.9) | 0.66 |
Alcohol (g/d) | 14.0 (13.1, 14.9) | 14.9 (12.3. 17.5) | 0.52 |
Red meat (g/d) | 87.1 (84.2, 89.0) | 85.0 (76.9, 93.1) | 0.63 |
Fruits and vegetables (g/d) | 264.8 (256.4, 273.1) | 257.0 (233.2, 280.8) | 0.55 |
Whole grain (g/d) | 35.2 (33.1, 37.3) | 35.4 (29.4, 41.3) | 0.96 |
Sugar-sweetened beverages (g/d) | 94.4 (86.2, 102.6) | 85.6 (62.4, 108.9) | 0.48 |
Physical activity (PAL) | 1.66 (1.66, 1.67) | 1.66 (1.64, 1.68) | 0.43 |
Smokers, ex or current (n (%)) | 500 (37.3) | 63 (35.4) | 0.62 |
Higher education, university degree (n (%)) | 517 (38.7) | 90 (51.1) | 0.01 |
Dietary Factor | ρ Baseline Measurements All (n = 1601) | ρ Baseline Measurements Women (n = 885) | ρ Baseline Measurements Men (n = 716) |
---|---|---|---|
Fruit and berries | 0.50 | 0.48 | 0.45 |
Citrus | 0.42 | 0.43 | 0.39 |
Berries | 0.34 | 0.33 | 0.30 |
Vegetables total | 0.35 | 0.35 | 0.35 |
Legumes | 0.26 | 0.30 | 0.21 |
Green leafy vegetables | 0.31 | 0.31 | 0.28 |
Cruciferous vegetables | 0.21 | 0.24 | 0.16 |
High-fiber soft bread total | 0.33 | 0.31 | 0.36 |
High-fiber crisp bread | 0.35 | 0.35 | 0.31 |
Low-fiber soft bread | 0.32 | 0.34 | 0.27 |
Fish total (including shellfish) | 0.33 | 0.31 | 0.35 |
Fatty fish | 0.26 | 0.28 | 0.26 |
Lean fish and shellfish | 0.26 | 0.25 | 0.29 |
Sugar-sweetened beverages | 0.42 | 0.39 | 0.44 |
Low-calorie beverages | 0.49 | 0.52 | 0.44 |
Dietary Intakes | ρ All n = 180 | ρ Women n = 115 | ρ Men n = 65 | ρ Eneradj a All n = 180 |
---|---|---|---|---|
Energy | 0.51 * | 0.57 * | 0.43 * | |
Carbohydrates (non fiber) | 0.60 * | 0.62 * | 0.53 * | 0.54 * |
Fat | 0.43 * | 0.45 * | 0.38 * | 0.40 * |
Saturated fat | 0.39 * | 0.44 * | 0.28 * | 0.34 * |
Monounsaturated fat | 0.44 * | 0.42 * | 0.42 * | 0.37 * |
Polyunsaturated fat | 0.29 * | 0.24 * | 0.37 * | 0.21 * |
Protein | 0.52 * | 0.47 * | 0.47 * | 0.51 * |
Fiber | 0.58 * | 0.68 * | 0.36 * | 0.58 * |
Sucrose | 0.41 * | 0.43 * | 0.36 * | 0.32 * |
Monosaccharides | 0.53 * | 0.58 * | 0.48 * | 0.50 * |
Disaccharides | 0.47 * | 0.50 * | 0.44 * | 0.41 * |
Vitamin C | 0.49 * | 0.46 * | 0.47 * | 0.52 * |
Folate | 0.48 * | 0.54 * | 0.39 * | 0.50 * |
Retinol equivalent | 0.35 * | 0.36 * | 0.33 * | 0.34 * |
β-carotene | 0.38 * | 0.55 * | 0.05 | 0.41 * |
Vitamin D | 0.21 * | 0.17 | 0.28 * | 0.20 * |
Vitamin E | 0.36 * | 0.30 * | 0.48 * | 0.40 * |
Alcohol | 0.51 * | 0.52 * | 0.46 * | 0.47 * |
Iron | 0.48 * | 0.54 * | 0.33 * | 0.46 * |
Zink | 0.49 * | 0.43 * | 0.46 * | 0.31 * |
Magnesium | 0.55 * | 0.60 * | 0.46 * | 0.48 * |
Calcium | 0.43 * | 0.52 * | 0.29 * | 0.42 * |
Sodium | 0.49 * | 0.43 * | 0.44 * | 0.32 * |
Water (in beverages and food moisture) | 0.60 * | 0.62 * | 0.57 * | 0.48 * |
Whole grain | 0.37 * | 0.38 * | 0.34 * | 0.40 * |
Low-fiber Soft bread total | 0.36 * | 0.40 * | 0.25 * | 0.33 * |
High-fiber soft bread total | 0.36 * | 0.38 * | 0.41 * | 0.43 * |
High-fiber crisp bread | 0.32 * | 0.35 * | 0.34 * | 0.34 * |
Breakfast cereals/porridge | 0.51 * | 0.53 * | 0.50 * | 0.50 * |
Rice, pasta and other grains | 0.28 * | 0.20 * | 0.43 * | 0.22 * |
Nuts/seeds | 0.40 * | 0.47 * | 0.15 | 0.40 * |
Red meat, non processed | 0.33 * | 0.30 * | 0.26 * | 0.28 * |
Processed meat | 0.32 * | 0.31 * | 0.19 | 0.27 * |
Total red meat | 0.47 * | 0.42 * | 0.40 * | 0.43 * |
Poultry | 0.21 * | 0.24 * | 0.16 | 0.25 * |
Vegetarian products b | 0.43 * | 0.42 * | 0.51 * | 0.44 * |
Egg | 0.29 * | 0.31 * | 0.26 * | 0.30 * |
Total dairy | 0.45 * | 0.38 * | 0.56 * | 0.42 * |
Yoghurt/sour milk | 0.52 * | 0.54 * | 0.45 * | 0.54 * |
Milk, non fermented total | 0.47 * | 0.50 * | 0.44 * | 0.43 * |
Cheese | 0.29 * | 0.33 * | 0.21 * | 0.30 * |
Butter based spreads | 0.44 * | 0.52 * | 0.30 * | 0.45 * |
Oil-based spreads | 0.48 * | 0.49 * | 0.43 * | 0.48 * |
Fatty fish | 0.08 | 0.07 | 0.09 | 0.05 |
Lean fish and shellfish | 0.07 | 0.07 | 0.06 | 0.11 |
Fish total | 0.15 * | 0.15 | 0.16 | 0.22 * |
Vegetables total | 0.47 * | 0.53 * | 0.28 * | 0.51 * |
Legumes | 0.23 * | 0.26 * | 0.16 | 0.23 * |
Root vegetables | 0.27 * | 0.41 * | 0.06 | 0.27 * |
Green leafy vegetables | 0.30 * | 0.34 * | 0.21 | 0.32 * |
Cruciferous vegetables | 0.21 * | 0.22 * | 0.15 | 0.20 * |
Potatoes | 0.37 * | 0.34 * | 0.38 * | 0.36 * |
Fruit and berries, total | 0.51 * | 0.46 * | 0.38 * | 0.38 * |
Citrus | 0.39 * | 0.29 * | 0.27 * | 0.32 * |
Berries | 0.29 * | 0.31 * | 0.16 | 0.30 * |
Sweets/pastry/desserts | 0.32 * | 0.19 * | 0.48 * | 0.32 * |
Jam, sugar and honey | 0.21 * | 0.24 * | 0.14 | 0.20 * |
Salty snacks | 0.31 * | 0.24 * | 0.44 * | 0.31 * |
Food replacement products | 0.44 * | 0.41 * | 0.49 * | 0.43 * |
Sugar-sweetened beverages | 0.43 * | 0.33 * | 0.53 * | 0.42 * |
Low-calorie beverages | 0.47 * | 0.31 * | 0.67 * | 0.46 * |
Juice | 0.34 * | 0.32 * | 0.34 * | 0.32 * |
Tea | 0.69 * | 0.67 * | 0.72 * | 0.70 * |
Coffee | 0.79 * | 0.81 * | 0.75 * | 0.79 * |
Water (tap and bottled) | 0.63 * | 0.60 * | 0.58 * | 0.62 * |
Women Cross-Classification (%) | Men Cross-Classification (%) | All | |||||||
---|---|---|---|---|---|---|---|---|---|
Dietary Intakes | Perfect Agreement (Same Quartile) | Same or Adjacent Quartile | Gross Misclassification (Opposite Quartile) | Κ | Perfect Agreement (Same Quartile) | Same or Adjacent Quartile | Gross misclassification (Opposite Quartile) | Κ | K |
Energy | 47.0 | 84.4 | 3.4 | 0.28 | 38.5 | 76.8 | 3.1 | 0.13 | 0.25 |
Carbohydrates (non fiber) | 49.5 | 86.1 | 1.7 | 0.32 | 44.6 | 80.0 | 4.6 | 0.23 | 0.30 |
Fat | 38.4 | 80.9 | 5.2 | 0.17 | 44.7 | 75.3 | 7.7 | 0.25 | 0.21 |
Saturated fat | 40.0 | 75.8 | 3.4 | 0.20 | 40.1 | 67.6 | 7.7 | 0.20 | 0.20 |
Monounsaturated fat | 35.7 | 76.6 | 5.2 | 0.14 | 36.9 | 84.8 | 9.2 | 0.15 | 0.15 |
Polyunsaturated fat | 33.9 | 71.3 | 7.8 | 0.12 | 44.6 | 80.0 | 7.7 | 0.27 | 0.17 |
Protein | 42.7 | 80.8 | 3.5 | 0.14 | 38.5 | 80.0 | 4.6 | 0.22 | 0.22 |
Fiber | 48.7 | 89.6 | 1.8 | 0.31 | 32.4 | 81.6 | 4.6 | 0.13 | 0.25 |
Sucrose | 40.1 | 79.1 | 5.2 | 0.23 | 43.1 | 72.3 | 9.2 | 0.20 | 0.22 |
Alcohol | 40.9 | 79.9 | 2.6 | 0.20 | 44.6 | 76.9 | 10.8 | 0.25 | 0.23 |
Vitamin C | 45.2 | 80.1 | 2.6 | 0.27 | 46.1 | 84.7 | 9.2 | 0.27 | 0.27 |
Folate | 40.9 | 79.1 | 1.8 | 0.21 | 38.5 | 72.3 | 3.1 | 0.19 | 0.20 |
β-carotene | 40.0 | 81.0 | 2.6 | 0.20 | 29.3 | 60.1 | 6.1 | 0.04 | 0.15 |
Vitamin D | 33.0 | 70.3 | 10.5 | 0.11 | 27.7 | 73.6 | 11.0 | 0.04 | 0.08 |
Vitamin E | 32.2 | 70.4 | 6.1 | 0.09 | 46.2 | 76.9 | 1.5 | 0.28 | 0.16 |
Iron | 47.0 | 83.5 | 3.4 | 0.29 | 40.1 | 72.4 | 1.5 | 0.18 | 0.26 |
Zink | 45.3 | 77.4 | 4.4 | 0.26 | 46.2 | 81.5 | 4.6 | 0.26 | 0.27 |
Magnesium | 43.6 | 86.2 | 1.7 | 0.25 | 41.6 | 81.5 | 7.7 | 0.22 | 0.24 |
Calcium | 38.2 | 80.9 | 2.6 | 0.18 | 27.7 | 70.7 | 6.2 | 0.03 | 0.13 |
Sodium | 44.3 | 80.9 | 4.3 | 0.24 | 43.2 | 71.6 | 6.1 | 0.19 | 0.25 |
Water | 51.2 | 84.3 | 1.8 | 0.35 | 39.9 | 81.7 | 1.5 | 0.20 | 0.30 |
Dietary Factor | ρ All | ρ Women | ρ Men |
---|---|---|---|
Low-fiber soft bread total | 0.70 | 0.67 | 0.68 |
Low-fiber crispbread | 0.40 | 0.38 | 0.45 |
High-fiber soft bread total | 0.73 | 0.69 | 0.79 |
Medium high-fiber soft bread | 0.60 | 0.56 | 0.63 |
Very high-fiber soft bread | 0.61 | 0.58 | 0.66 |
High-fiber crisp bread | 0.66 | 0.58 | 0.80 |
Fish total | 0.54 | 0.58 | 0.44 |
Fatty fish | 0.56 | 0.61 | 0.50 |
Lean fish and shellfish | 0.55 | 0.51 | 0.62 |
Fish products times | 0.48 | 0.51 | 0.45 |
Vegetables total | 0.58 | 0.57 | 0.61 |
Legumes | 0.61 | 0.60 | 0.63 |
Green leafy vegetables | 0.55 | 0.64 | 0.37 |
Cruciferous vegetables | 0.57 | 0.54 | 0.56 |
Onions | 0.66 | 0.71 | 0.57 |
Tomatoes | 0.60 | 0.64 | 0.51 |
Carrots | 0.59 | 0.70 | 0.42 |
Other vegetables | 0.48 | 0.47 | 0.51 |
Fruit and berries total | 0.70 | 0.66 | 0.72 |
Fruits total | 0.71 | 0.66 | 0.71 |
Citrus | 0.59 | 0.57 | 0.63 |
Other fruits | 0.64 | 0.64 | 0.53 |
Berries | 0.69 | 0.72 | 0.61 |
Sugar-sweetened beverages | 0.74 | 0.68 | 0.76 |
Low-calorie beverages | 0.68 | 0.70 | 0.69 |
Energy/sport beverages | 0.58 | 0.51 | 0.65 |
Butter for cooking | 0.40 | 0.29 | 0.59 |
Margarine for cooking | 0.44 | 0.42 | 0.47 |
Oil/liquid margarine for cooking | 0.57 | 0.53 | 0.65 |
Oil/vinaigrette on salad | 0.60 | 0.61 | 0.60 |
Energy bars/protein powder | 0.58 | 0.62 | 0.56 |
Protein beverages | 0.41 | 0.29 | 0.56 |
Food replacement products | 0.32 | 0.28 | 0.39 |
Probiotic products | 0.44 | 0.52 | 0.26 |
Home cooked meals | 0.71 | 0.72 | 0.69 |
Precooked/ready to eat dishes | 0.51 | 0.53 | 0.48 |
Eating out at restaurants | 0.79 | 0.79 | 0.76 |
Take-away/fast food | 0.72 | 0.76 | 0.66 |
Fatty Fish/CMPF | n | 4DFR | SFFQ | Combination 4DFR and SFFQ by PCA |
---|---|---|---|---|
All | 1332 a | 0.25 | 0.46 | 0.43 |
Women | 731 | 0.28 | 0.45 | 0.44 |
Men | 601 | 0.22 | 0.46 | 0.42 |
Citrus/ Proline betaine | ||||
All | 1433 | 0.51 | 0.35 | 0.53 |
Women | 794 | 0.50 | 0.34 | 0.50 |
Men | 639 | 0.53 | 0.36 | 0.55 |
Fruits vegetable/ β-carotene | ||||
All | 1301 b | 0.35 | 0.32 | 0.39 |
Women | 713 | 0.34 | 0.27 | 0.35 |
Men | 588 | 0.30 | 0.30 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hellstrand, S.; Ottosson, F.; Smith, E.; Brunkwall, L.; Ramne, S.; Sonestedt, E.; Nilsson, P.M.; Melander, O.; Orho-Melander, M.; Ericson, U. Dietary Data in the Malmö Offspring Study–Reproducibility, Method Comparison and Validation against Objective Biomarkers. Nutrients 2021, 13, 1579. https://doi.org/10.3390/nu13051579
Hellstrand S, Ottosson F, Smith E, Brunkwall L, Ramne S, Sonestedt E, Nilsson PM, Melander O, Orho-Melander M, Ericson U. Dietary Data in the Malmö Offspring Study–Reproducibility, Method Comparison and Validation against Objective Biomarkers. Nutrients. 2021; 13(5):1579. https://doi.org/10.3390/nu13051579
Chicago/Turabian StyleHellstrand, Sophie, Filip Ottosson, Einar Smith, Louise Brunkwall, Stina Ramne, Emily Sonestedt, Peter M. Nilsson, Olle Melander, Marju Orho-Melander, and Ulrika Ericson. 2021. "Dietary Data in the Malmö Offspring Study–Reproducibility, Method Comparison and Validation against Objective Biomarkers" Nutrients 13, no. 5: 1579. https://doi.org/10.3390/nu13051579
APA StyleHellstrand, S., Ottosson, F., Smith, E., Brunkwall, L., Ramne, S., Sonestedt, E., Nilsson, P. M., Melander, O., Orho-Melander, M., & Ericson, U. (2021). Dietary Data in the Malmö Offspring Study–Reproducibility, Method Comparison and Validation against Objective Biomarkers. Nutrients, 13(5), 1579. https://doi.org/10.3390/nu13051579