Low Serum Vitamin E Level Associated with Low Hand Grip Strength in Community-Dwelling Adults: Korean National Health and Nutrition Examination Survey (KNHANES VII) 2016–2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Hand Grip Strength
2.3. Study Variables
2.4. Statistical Analyses
3. Results
3.1. Study Subjects
3.2. Association between Serum Vitamin E and Low Hand Grip Strength
3.3. Association between Serum Vitamin E Quintiles and Hand Grip Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohannon, R.W. Muscle strength: Clinical and prognostic value of hand-grip dynamometry. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Norman, K.; Stobaus, N.; Gonzalez, M.C.; Schulzke, J.D.; Pirlich, M. Hand grip strength: Outcome predictor and marker of nutritional status. Clin. Nutr. 2011, 30, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Celis-Morales, C.A.; Welsh, P.; Lyall, D.M.; Steell, L.; Petermann, F.; Anderson, J.; Iliodromiti, S.; Sillars, A.; Graham, N.; Mackay, D.F.; et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: Prospective cohort study of half a million UK Biobank participants. BMJ 2018, 361, k1651. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, S.K.; Lee, D.R.; Lee, J. The Relationship between Handgrip Strength and Cognitive Function in Elderly Koreans over 8 Years: A Prospective Population-Based Study Using Korean Longitudinal Study of Ageing. Korean J. Fam. Med. 2019, 40, 9–15. [Google Scholar] [CrossRef]
- Gi, Y.M.; Jung, B.; Kim, K.W.; Cho, J.H.; Ha, I.H. Low handgrip strength is closely associated with anemia among adults: A cross-sectional study using Korea National Health and Nutrition Examination Survey (KNHANES). PLoS ONE 2020, 15, e0218058. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef]
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef]
- Ahn, S.; Jun, S.; Kim, S.-A.; Ha, K.; Joung, H. Current status and trends in estimated intakes and major food groups of vitamin E among Korean adults: Using the 1~6thKorea National Health and Nutrition Examination Survey. J. Nutr. Health 2017, 50, 483–493. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.N.; Cho, Y.O. Vitamin E status of 20- to 59-year-old adults living in the Seoul metropolitan area of South Korea. Nutr. Res. Pr. 2015, 9, 192–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, R.S. Principles of Nutritional Assessment; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Chung, E.; Mo, H.; Wang, S.; Zu, Y.; Elfakhani, M.; Rios, S.R.; Chyu, M.C.; Yang, R.S.; Shen, C.L. Potential roles of vitamin E in age-related changes in skeletal muscle health. Nutr. Res. 2018, 49, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Glynn, R.J.; Ridker, P.M.; Goldhaber, S.Z.; Zee, R.Y.; Buring, J.E. Effects of random allocation to vitamin E supplementation on the occurrence of venous thromboembolism: Report from the Women’s Health Study. Circulation 2007, 116, 1497–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, E.W.; Wong, T.Y.; Kreis, A.J.; Simpson, J.A.; Guymer, R.H. Dietary antioxidants and primary prevention of age related macular degeneration: Systematic review and meta-analysis. BMJ 2007, 335, 755. [Google Scholar] [CrossRef] [Green Version]
- Mangialasche, F.; Xu, W.; Kivipelto, M.; Costanzi, E.; Ercolani, S.; Pigliautile, M.; Cecchetti, R.; Baglioni, M.; Simmons, A.; Soininen, H.; et al. Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. Neurobiol. Aging 2012, 33, 2282–2290. [Google Scholar] [CrossRef]
- Constantinou, C.; Papas, A.; Constantinou, A.I. Vitamin E and cancer: An insight into the anticancer activities of vitamin E isomers and analogs. Int. J. Cancer 2008, 123, 739–752. [Google Scholar] [CrossRef]
- Semba, R.D.; Blaum, C.; Guralnik, J.M.; Moncrief, D.T.; Ricks, M.O.; Fried, L.P. Carotenoid and vitamin E status are associated with indicators of sarcopenia among older women living in the community. Aging Clin. Exp. Res. 2003, 15, 482–487. [Google Scholar] [CrossRef]
- Ble, A.; Cherubini, A.; Volpato, S.; Bartali, B.; Walston, J.D.; Windham, B.G.; Bandinelli, S.; Lauretani, F.; Guralnik, J.M.; Ferrucci, L. Lower plasma vitamin E levels are associated with the frailty syndrome: The InCHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Ter Borg, S.; Luiking, Y.C.; van Helvoort, A.; Boirie, Y.; Schols, J.; de Groot, C. Low Levels of Branched Chain Amino Acids, Eicosapentaenoic Acid and Micronutrients Are Associated with Low Muscle Mass, Strength and Function in Community-Dwelling Older Adults. J. Nutr. Health Aging 2019, 23, 27–34. [Google Scholar] [CrossRef]
- Sayer, A.A.; Syddall, H.; Martin, H.; Patel, H.; Baylis, D.; Cooper, C. The developmental origins of sarcopenia. J. Nutr. Health Aging 2008, 12, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.W.; Song, S.; Lee, J.E.; Oh, K.; Shim, J.; Kweon, S.; Paik, H.Y.; Joung, H. Reproducibility and validity of an FFQ developed for the Korea National Health and Nutrition Examination Survey (KNHANES). Public Health Nutr. 2015, 18, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes, A. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S13–S28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef]
- Killip, S.; Bennett, J.M.; Chambers, M.D. Iron deficiency anemia. Am. Fam. Physician 2007, 75, 671–678. [Google Scholar]
- Quality Control of the Clinical Laboratory for the Korea National Health and Nutrition Examination Survey (KNHANES). Available online: https://www.prism.go.kr/homepage (accessed on 21 November 2018).
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadaraya, E.A. On estimating regression. Theory Probab. Its Appl. 1964, 9, 141–142. [Google Scholar] [CrossRef]
- Cesari, M.; Pahor, M.; Bartali, B.; Cherubini, A.; Penninx, B.W.; Williams, G.R.; Atkinson, H.; Martin, A.; Guralnik, J.M.; Ferrucci, L. Antioxidants and physical performance in elderly persons: The Invecchiare in Chianti (InCHIANTI) study. Am. J. Clin. Nutr. 2004, 79, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Welch, A.A.; Jennings, A.; Kelaiditi, E.; Skinner, J.; Steves, C.J. Cross-Sectional Associations Between Dietary Antioxidant Vitamins C, E and Carotenoid Intakes and Sarcopenic Indices in Women Aged 18–79 Years. Calcif. Tissue Int. 2020, 106, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Fingeret, M.; Vollenweider, P.; Marques-Vidal, P. No association between vitamin C and E supplementation and grip strength over 5 years: The Colaus study. Eur. J. Nutr. 2019, 58, 609–617. [Google Scholar] [CrossRef]
- Robinson, S.M.; Jameson, K.A.; Batelaan, S.F.; Martin, H.J.; Syddall, H.E.; Dennison, E.M.; Cooper, C.; Sayer, A.A.; Hertfordshire Cohort Study, G. Diet and its relationship with grip strength in community-dwelling older men and women: The Hertfordshire cohort study. J. Am. Geriatr. Soc. 2008, 56, 84–90. [Google Scholar] [CrossRef]
- Borel, P.; Moussa, M.; Reboul, E.; Lyan, B.; Defoort, C.; Vincent-Baudry, S.; Maillot, M.; Gastaldi, M.; Darmon, M.; Portugal, H.; et al. Human plasma levels of vitamin E and carotenoids are associated with genetic polymorphisms in genes involved in lipid metabolism. J. Nutr. 2007, 137, 2653–2659. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, S.L.; Baraibar, M.A.; Lundberg, S.; Eeg-Olofsson, O.; Larsson, L.; Friguet, B. Oxidative proteome alterations during skeletal muscle ageing. Redox Biol. 2015, 5, 267–274. [Google Scholar] [CrossRef]
- Buonocore, D.; Rucci, S.; Vandoni, M.; Negro, M.; Marzatico, F. Oxidative system in aged skeletal muscle. Muscles Ligaments Tendons J. 2011, 1, 85–90. [Google Scholar]
- Aragno, M.; Mastrocola, R.; Catalano, M.G.; Brignardello, E.; Danni, O.; Boccuzzi, G. Oxidative stress impairs skeletal muscle repair in diabetic rats. Diabetes 2004, 53, 1082–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.; Xing, Q.; Li, Y.; Han, X.; Sun, L. Dexmedetomidine protects against ischemia-reperfusion injury in rat skeletal muscle. J. Surg. Res. 2014, 186, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Servais, S.; Letexier, D.; Favier, R.; Duchamp, C.; Desplanches, D. Prevention of unloading-induced atrophy by vitamin E supplementation: Links between oxidative stress and soleus muscle proteolysis? Free Radic. Biol. Med. 2007, 42, 627–635. [Google Scholar] [CrossRef] [Green Version]
- Meydani, M.; Fielding, R.A.; Cannon, J.G.; Blumberg, J.B.; Evans, W.J. Muscle uptake of vitamin E and its association with muscle fiber type. J. Nutr. Biochem. 1997, 8, 74–78. [Google Scholar] [CrossRef]
- Spencer, A.P.; Carson, D.S.; Crouch, M.A. Vitamin E and coronary artery disease. Arch. Intern. Med. 1999, 159, 1313–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, H.C.; Emmelot-Vonk, M.H.; Verhaar, H.J.; van der Schouw, Y.T. Vitamin D and muscle function: Is there a threshold in the relation? J. Am. Med. Dir. Assoc. 2013, 14, 627.e13–627.e18. [Google Scholar] [CrossRef]
- Krzywanski, J.; Mikulski, T.; Pokrywka, A.; Mlynczak, M.; Krysztofiak, H.; Fraczek, B.; Ziemba, A. Vitamin B12 Status and Optimal Range for Hemoglobin Formation in Elite Athletes. Nutrients 2020, 12, 1038. [Google Scholar] [CrossRef] [Green Version]
- Thurnham, D.I.; Davies, J.A.; Crump, B.J.; Situnayake, R.D.; Davis, M. The use of different lipids to express serum tocopherol: Lipid ratios for the measurement of vitamin E status. Ann. Clin. Biochem. 1986, 23 Pt 5, 514–520. [Google Scholar] [CrossRef]
- NIH. Vitamin E Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/VitaminE-HealthProfessional/ (accessed on 26 March 2021).
Q1 (n = 429) <10.51 mg/L | Q2 (n = 431) 10.51–12.58 mg/L | Q3 (n = 429) 12.59–14.69 mg/L | Q4 (n = 434) 14.70–17.80 mg/L | Q5 (n = 431) ≥17.81 mg/L | p | |
---|---|---|---|---|---|---|
Age (years) | 64.5 ± 9.3 | 63.5 ± 9.4 | 63.2 ± 9.2 | 62.7 ± 8.4 | 62.0 ± 8.4 | 0.001 |
Sex, women | 175 (40.8) | 207 (48.0) | 238 (55.5) | 259 (59.7) | 264 (61.3) | <0.001 |
Height, cm | 162.2 ± 8.3 | 161.5 ± 8.7 | 160.6 ± 8.8 | 160.4 ± 8.8 | 160.1 ± 8.5 | 0.001 |
Weight, kg | 63.7 ± 10.6 | 63.2 ± 10.8 | 62.2 ± 10.2 | 62.6 ± 10.6 | 62.2 ± 10.6 | 0.150 |
BMI, kg/m2 | 24.2 ± 3.4 | 24.1 ± 3.0 | 24.0 ± 3.0 | 24.2 ± 2.9 | 24.2 ± 3.1 | 0.923 |
Low handgrip strength a | 245 (57.1) | 217 (50.3) | 205 (47.8) | 206 (47.5) | 188 (43.6) | 0.002 |
High household income(8.8 USD) | 192 (44.8) | 216 (50.1) | 223 (52.0) | 237 (54.6) | 236 (54.8) | 0.020 |
Educational status (≥high school) | 223 (52.0) | 228 (52.9) | 231 (53.8) | 236 (54.4) | 240 (55.7) | 0.847 |
Regular alcohol consumption | 197 (45.9) | 201 (46.6) | 203 (47.3) | 203 (46.8) | 195 (45.2) | 0.978 |
Current smoking | 85 (19.8) | 54 (12.5) | 67 (15.6) | 63 (14.5) | 59 (13.7) | 0.034 |
Resistance exercise | 0.908 | |||||
None | 322 (75.1) | 331 (76.8) | 338 (78.8) | 341 (78.6) | 334 (77.5) | |
Intermittent | 51 (11.9) | 51 (11.8) | 40 (9.3) | 47 (10.8) | 47 (10.9) | |
Regular | 56 (13.1) | 49 (11.4) | 51 (11.9) | 46 (10.6) | 50 (11.6) | |
Comorbidities | ||||||
Hypertension | 215 (50.1) | 207 (48.0) | 197 (45.9) | 197 (45.4) | 199 (46.2) | 0.625 |
Diabetes | 111 (25.9) | 79 (18.3) | 78 (18.2) | 72 (16.6) | 82 (19.0) | 0.006 |
Anemia | 53 (12.4) | 30 (7.0) | 31 (7.2) | 22 (5.1) | 17 (3.9) | <0.001 |
Nutrition | ||||||
Total calorie intake, kcal/day | 1909.9 ± 796.6 | 1971.0 ± 782.7 | 1908.5 ± 813.5 | 1834.1 ± 812.4 | 1861.6 ± 812.4 | 0.119 |
Total protein intake, g/day | 63.9 ± 32.9 | 67.7 ± 32.8 | 65.2 ± 32.9 | 63.7 ± 32.9 | 65.8 ± 34.9 | 0.410 |
Use of dietary supplements | 197 (45.9) | 210 (48.7) | 239 (55.7) | 259 (59.7) | 292 (67.7) | <0.001 |
Laboratory | ||||||
Fasting plasma glucose, mg/dL | 106.4 ± 22.4 | 104.4 ± 23.2 | 105.7 ± 32.2 | 105.4 ± 24.2 | 107.6 ± 30.5 | 0.505 |
Total cholesterol, mg/dL | 164.4 ± 33.5 | 183.9 ± 30.4 | 196.8 ± 34.1 | 207.4 ± 34.3 | 219.6 ± 42.2 | <0.001 |
hsCRP, g/dL | 0.60 [0.40, 1.19] | 0.53 [0.36, 1.08] | 0.60 [0.39, 1.15] | 0.60 [0.40, 1.07] | 0.68 [0.43, 1.23] | 0.006 |
Q1 | Q2 | Q3 | Q4 | Q5 | |||||
---|---|---|---|---|---|---|---|---|---|
Regression Models | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | OR (95% CI) | p | OR (95% CI) | p |
Model 1 | 1.39 (1.03–1.87) | 0.031 | 1.10 (0.82–1.48) | 0.523 | 1.00 (reference) | 1.39 (1.03–1.87) | 0.799 | 1.10 (0.82–1.48) | 0.675 |
Model 2 | 1.38 (1.02–1.86) | 0.037 | 1.10 (0.82–1.48) | 0.530 | 1.00 (reference) | 1.38 (1.02–1.86) | 0.769 | 1.10 (0.82–1.48) | 0.704 |
Model 3 | 1.40 (1.02–1.91) | 0.036 | 1.12 (0.83–1.51) | 0.456 | 1.00 (reference) | 1.40 (1.02–1.91) | 0.778 | 1.12 (0.83–1.51) | 0.544 |
Model 4 | 1.38 (1.01–1.89) | 0.045 | 1.12 (0.83–1.52) | 0.453 | 1.00 (reference) | 1.38 (1.01–1.89) | 0.834 | 1.12 (0.83–1.52) | 0.560 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Shin, S.; Hong, N.; Rhee, Y. Low Serum Vitamin E Level Associated with Low Hand Grip Strength in Community-Dwelling Adults: Korean National Health and Nutrition Examination Survey (KNHANES VII) 2016–2018. Nutrients 2021, 13, 1598. https://doi.org/10.3390/nu13051598
Kim Y, Shin S, Hong N, Rhee Y. Low Serum Vitamin E Level Associated with Low Hand Grip Strength in Community-Dwelling Adults: Korean National Health and Nutrition Examination Survey (KNHANES VII) 2016–2018. Nutrients. 2021; 13(5):1598. https://doi.org/10.3390/nu13051598
Chicago/Turabian StyleKim, Yongjae, Sungjae Shin, Namki Hong, and Yumie Rhee. 2021. "Low Serum Vitamin E Level Associated with Low Hand Grip Strength in Community-Dwelling Adults: Korean National Health and Nutrition Examination Survey (KNHANES VII) 2016–2018" Nutrients 13, no. 5: 1598. https://doi.org/10.3390/nu13051598
APA StyleKim, Y., Shin, S., Hong, N., & Rhee, Y. (2021). Low Serum Vitamin E Level Associated with Low Hand Grip Strength in Community-Dwelling Adults: Korean National Health and Nutrition Examination Survey (KNHANES VII) 2016–2018. Nutrients, 13(5), 1598. https://doi.org/10.3390/nu13051598