Nutritional Adequacy and Diet Quality Are Associated with Standardized Height-for-Age among U.S. Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Estimation of Usual Dietary Intake
2.3. Estimation of Height-for-Age Z Score
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- WHO. Global Nutrition Targets 2025: Policy Brief Series (WHO/NMH/NHD/14.2); World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Crookston, B.T.; Schott, W.; Cueto, S.; Dearden, K.A.; Engle, P.; Georgiadis, A.; Lundeen, E.A.; Penny, M.E.; Stein, A.D.; Behrman, J.R. Postinfancy growth, schooling, and cognitive achievement: Young Lives. Am. J. Clin. Nutr. 2013, 98, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Fink, G.; Rockers, P.C. Childhood growth, schooling, and cognitive development: Further evidence from the Young Lives study. Am. J. Clin. Nutr. 2014, 100, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martorell, R. Results and implications of the INCAP follow-up study. J. Nutr. 1995, 125, 1127S–1138S. [Google Scholar] [CrossRef]
- Olofin, I.; McDonald, C.M.; Ezzati, M.; Flaxman, S.; Black, R.E.; Fawzi, W.W.; Caulfield, L.E.; Danaei, G.; Nutrition Impact Model, S. Associations of suboptimal growth with all-cause and cause-specific mortality in children under five years: A pooled analysis of ten prospective studies. PLoS ONE 2013, 8, e64636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kossmann, J.; Nestel, P.; Herrera, M.G.; El-Amin, A.; Fawzi, W.W. Undernutrition and childhood infections: A prospective study of childhood infections in relation to growth in the Sudan. Acta Paediatr. 2000, 89, 1122–1128. [Google Scholar] [CrossRef]
- Vilcins, D.; Sly, P.D.; Jagals, P. Environmental Risk Factors Associated with Child Stunting: A Systematic Review of the Literature. Ann. Glob. Health 2018, 84, 551–562. [Google Scholar] [CrossRef]
- Titaley, C.R.; Ariawan, I.; Hapsari, D.; Muasyaroh, A.; Dibley, M.J. Determinants of the Stunting of Children Under Two Years Old in Indonesia: A Multilevel Analysis of the 2013 Indonesia Basic Health Survey. Nutrients 2019, 11, 1106. [Google Scholar] [CrossRef] [Green Version]
- Steiner, K.L.; Ahmed, S.; Gilchrist, C.A.; Burkey, C.; Cook, H.; Ma, J.Z.; Korpe, P.S.; Ahmed, E.; Alam, M.; Kabir, M.; et al. Species of Cryptosporidia Causing Subclinical Infection Associated With Growth Faltering in Rural and Urban Bangladesh: A Birth Cohort Study. Clin. Infect. Dis. 2018, 67, 1347–1355. [Google Scholar] [CrossRef]
- Roberts, J.L.; Stein, A.D. The Impact of Nutritional Interventions beyond the First 2 Years of Life on Linear Growth: A Systematic Review and Meta-Analysis. Adv. Nutr. 2017, 8, 323–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiplonkar, S.; Khadilkar, A.; Pandit-Agrawal, D.; Kawade, R.; Kadam, N.; Ekbote, V.; Sanwalka, N.; Khadilkar, V. Influence of micronutrient status and socioeconomic gradient on growth indices of 2-18-year-old Indian girls. J. Pediatr. Endocrinol. Metab. 2013, 26, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Sticker, L.S.; Thompson, D.L., Jr.; Fernandez, J.M.; Bunting, L.D.; DePew, C.L. Dietary protein and(or) energy restriction in mares: Plasma growth hormone, IGF-I, prolactin, cortisol, and thyroid hormone responses to feeding, glucose, and epinephrine. J. Anim. Sci. 1995, 73, 1424–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, W.J.; Underwood, L.E.; Clemmons, D.R. Effects of caloric or protein restriction on insulin-like growth factor-I (IGF-I) and IGF-binding proteins in children and adults. J. Clin. Endocrinol. Metab. 1995, 80, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Hadi, H.; Stoltzfus, R.J.; Dibley, M.J.; Moulton, L.H.; West, K.P., Jr.; Kjolhede, C.L.; Sadjimin, T. Vitamin A supplementation selectively improves the linear growth of indonesian preschool children: Results from a randomized controlled trial. Am. J. Clin. Nutr. 2000, 71, 507–513. [Google Scholar] [CrossRef]
- Yackobovitch-Gavan, M.; Phillip, M.; Gat-Yablonski, G. How Milk and Its Proteins Affect Growth, Bone Health, and Weight. Horm. Res. Paediatr. 2017, 88, 63–69. [Google Scholar] [CrossRef] [PubMed]
- National Center for Health Statistics. National Health and Nutrition Examination Survey Questionnaire; 2007–2008 Data Files; CDC: Hyattsville, MD, USA, 2010.
- National Center for Health Statistics. National Health and Nutrition Examination Survey Questionnaire; 2009–2010 Data Files; CDC: Hyattsville, MD, USA, 2012.
- National Center for Health Statistics. National Health and Nutrition Examination Survey Questionnaire; 2011–2012 Data Files; CDC: Hyattsville, MD, USA, 2014.
- Harttig, U.; Haubrock, J.; Knuppel, S.; Boeing, H.; Consortium, E. The MSM program: Web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur. J. Clin. Nutr. 2011, 65 (Suppl. S1), S87–S91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haubrock, J.; Nothlings, U.; Volatier, J.L.; Dekkers, A.; Ocke, M.; Harttig, U.; Illner, A.K.; Knuppel, S.; Andersen, L.F.; Boeing, H.; et al. Estimating usual food intake distributions by using the multiple source method in the EPIC-Potsdam Calibration Study. J. Nutr. 2011, 141, 914–920. [Google Scholar] [CrossRef] [Green Version]
- Food and Nutrition Board. Dietary Reference Intakes for Vitamins and Minerals. Available online: https://www.nal.usda.gov/fnic/vitamins-and-minerals (accessed on 13 May 2021).
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- WHO. Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Cole, T.J.; Green, P.J. Smoothing reference centile curves: The LMS method and penalized likelihood. Stat. Med. 1992, 11, 1305–1319. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, S.A.; Andersen, C.; Behrman, J.; Singh, A.; Stein, A.D.; Benny, L.; Crookston, B.T.; Cueto, S.; Dearden, K.; Georgiadis, A.; et al. Disparities in children’s vocabulary and height in relation to household wealth and parental schooling: A longitudinal study in four low- and middle-income countries. SSM Popul. Health 2017, 3, 767–786. [Google Scholar] [CrossRef]
- Devakumar, D.; Kular, D.; Shrestha, B.P.; Grijalva-Eternod, C.; Daniel, R.M.; Saville, N.M.; Manandhar, D.S.; Costello, A.; Osrin, D.; Wells, J.C.K. Socioeconomic determinants of growth in a longitudinal study in Nepal. Matern. Child Nutr. 2018, 14. [Google Scholar] [CrossRef] [Green Version]
- Lourenco, B.H.; Villamor, E.; Augusto, R.A.; Cardoso, M.A. Determinants of linear growth from infancy to school-aged years: A population-based follow-up study in urban Amazonian children. BMC Public Health 2012, 12, 265. [Google Scholar] [CrossRef]
- Freedman, D.S.; Thornton, J.C.; Mei, Z.; Wang, J.; Dietz, W.H.; Pierson, R.N., Jr.; Horlick, M. Height and adiposity among children. Obes. Res. 2004, 12, 846–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, P.H.; Headey, D.; Frongillo, E.A.; Tran, L.M.; Rawat, R.; Ruel, M.T.; Menon, P. Changes in Underlying Determinants Explain Rapid Increases in Child Linear Growth in Alive & Thrive Study Areas between 2010 and 2014 in Bangladesh and Vietnam. J. Nutr. 2017, 147, 462–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tessema, M.; Gunaratna, N.S.; Brouwer, I.D.; Donato, K.; Cohen, J.L.; McConnell, M.; Belachew, T.; Belayneh, D.; De Groote, H. Associations among High-Quality Protein and Energy Intake, Serum Transthyretin, Serum Amino Acids and Linear Growth of Children in Ethiopia. Nutrients 2018, 10, 1776. [Google Scholar] [CrossRef] [Green Version]
- Gutin, B.; Stallmann-Jorgensen, I.S.; Le, A.H.; Johnson, M.H.; Dong, Y. Relations of diet and physical activity to bone mass and height in black and white adolescents. Pediatr. Rep. 2011, 3, e10. [Google Scholar] [CrossRef] [Green Version]
- Esfarjani, F.; Roustaee, R.; Mohammadi-Nasrabadi, F.; Esmaillzadeh, A. Major dietary patterns in relation to stunting among children in Tehran, Iran. J. Health Popul. Nutr. 2013, 31, 202–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iannotti, L.L.; Dulience, S.J.; Green, J.; Joseph, S.; Francois, J.; Antenor, M.L.; Lesorogol, C.; Mounce, J.; Nickerson, N.M. Linear growth increased in young children in an urban slum of Haiti: A randomized controlled trial of a lipid-based nutrient supplement. Am. J. Clin. Nutr. 2014, 99, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Mwanri, L.; Worsley, A.; Ryan, P.; Masika, J. Supplemental vitamin A improves anemia and growth in anemic school children in Tanzania. J. Nutr. 2000, 130, 2691–2696. [Google Scholar] [CrossRef]
- van Stuijvenberg, M.E.; Nel, J.; Schoeman, S.E.; Lombard, C.J.; du Plessis, L.M.; Dhansay, M.A. Low intake of calcium and vitamin D, but not zinc, iron or vitamin A, is associated with stunting in 2- to 5-year-old children. Nutrition 2015, 31, 841–846. [Google Scholar] [CrossRef]
- Traber, M.G. Vitamin E inadequacy in humans: Causes and consequences. Adv. Nutr. 2014, 5, 503–514. [Google Scholar] [CrossRef] [Green Version]
- Rosado, J.L. Separate and joint effects of micronutrient deficiencies on linear growth. J. Nutr. 1999, 129, 531S–533S. [Google Scholar] [CrossRef] [PubMed]
- Nezami, M.; Segovia-Siapco, G.; Beeson, W.L.; Sabate, J. Associations between Consumption of Dairy Foods and Anthropometric Indicators of Health in Adolescents. Nutrients 2016, 8, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grenov, B.; Michaelsen, K.F. Growth Components of Cow’s Milk: Emphasis on Effects in Undernourished Children. Food Nutr. Bull. 2018, 39, S45–S53. [Google Scholar] [CrossRef] [PubMed]
- de Beer, H. Dairy products and physical stature: A systematic review and meta-analysis of controlled trials. Econ. Hum. Biol. 2012, 10, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, C.; Molgaard, C.; Michaelsen, K.F. Cow’s milk and linear growth in industrialized and developing countries. Annu. Rev. Nutr. 2006, 26, 131–173. [Google Scholar] [CrossRef]
- Hoppe, C.; Molgaard, C.; Juul, A.; Michaelsen, K.F. High intakes of skimmed milk, but not meat, increase serum IGF-I and IGFBP-3 in eight-year-old boys. Eur. J. Clin. Nutr. 2004, 58, 1211–1216. [Google Scholar] [CrossRef] [PubMed]
- Esterle, L.; Sabatier, J.P.; Guillon-Metz, F.; Walrant-Debray, O.; Guaydier-Souquieres, G.; Jehan, F.; Garabedian, M. Milk, rather than other foods, is associated with vertebral bone mass and circulating IGF-1 in female adolescents. Osteoporos. Int. 2009, 20, 567–575. [Google Scholar] [CrossRef]
- Huncharek, M.; Muscat, J.; Kupelnick, B. Impact of dairy products and dietary calcium on bone-mineral content in children: Results of a meta-analysis. Bone 2008, 43, 312–321. [Google Scholar] [CrossRef]
- Harnack, L.; Stang, J.; Story, M. Soft drink consumption among US children and adolescents: Nutritional consequences. J. Am. Diet. Assoc. 1999, 99, 436–441. [Google Scholar] [CrossRef]
- Marshall, T.A.; Eichenberger Gilmore, J.M.; Broffitt, B.; Stumbo, P.J.; Levy, S.M. Diet quality in young children is influenced by beverage consumption. J. Am. Coll. Nutr. 2005, 24, 65–75. [Google Scholar] [CrossRef]
- Rodriguez-Artalejo, F.; Garcia, E.L.; Gorgojo, L.; Garces, C.; Royo, M.A.; Martin Moreno, J.M.; Benavente, M.; Macias, A.; De Oya, M.; Investigators of the Four Provinces Study. Consumption of bakery products, sweetened soft drinks and yogurt among children aged 6-7 years: Association with nutrient intake and overall diet quality. Br. J. Nutr. 2003, 89, 419–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballew, C.; Kuester, S.; Gillespie, C. Beverage choices affect adequacy of children’s nutrient intakes. Arch. Pediatr. Adolesc. Med. 2000, 154, 1148–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharkey, J.R.; Johnson, C.M.; Dean, W.R. Less-healthy eating behaviors have a greater association with a high level of sugar-sweetened beverage consumption among rural adults than among urban adults. Food Nutr. Res. 2011, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, M.; Murakami, K.; Sasaki, S.; Takahashi, Y.; Okubo, H. Soft drink intake is associated with diet quality even among young Japanese women with low soft drink intake. J. Am. Diet. Assoc. 2008, 108, 1997–2004. [Google Scholar] [CrossRef]
- DeChristopher, L.R.; Uribarri, J.; Tucker, K.L. Intakes of apple juice, fruit drinks and soda are associated with prevalent asthma in US children aged 2-9 years. Public Health Nutr. 2016, 19, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazariegos-Ramos, E.; Guerrero-Romero, F.; Rodriguez-Moran, M.; Lazcano-Burciaga, G.; Paniagua, R.; Amato, D. Consumption of soft drinks with phosphoric acid as a risk factor for the development of hypocalcemia in children: A case-control study. J. Pediatr. 1995, 126, 940–942. [Google Scholar] [CrossRef]
- Fernando, G.R.; Martha, R.M.; Evangelina, R. Consumption of soft drinks with phosphoric acid as a risk factor for the development of hypocalcemia in postmenopausal women. J. Clin. Epidemiol. 1999, 52, 1007–1010. [Google Scholar] [CrossRef]
- Schulze, M.B.; Manson, J.E.; Ludwig, D.S.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 2004, 292, 927–934. [Google Scholar] [CrossRef]
- Gibson, S.A.; Horgan, G.W.; Francis, L.E.; Gibson, A.A.; Stephen, A.M. Low Calorie Beverage Consumption Is Associated with Energy and Nutrient Intakes and Diet Quality in British Adults. Nutrients 2016, 8, 9. [Google Scholar] [CrossRef] [Green Version]
HAZ (Min, Max) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Total | T1 (n = 2038) (4.57, −0.27) | T2 (n = 2039) (−0.27, 0.57) | T3 (n = 2039) (0.57, 3.98) | p-Value * | |||||
n | % | n | % | n | % | n | % | ||
Gender | 0.203 | ||||||||
Boys | 3125 | 50.9 | 1024 | 50.2 | 1034 | 49.1 | 1067 | 53.2 | |
Girls | 2991 | 49.1 | 1014 | 49.8 | 1005 | 50.9 | 972 | 46.8 | |
Age (y) | 0.278 | ||||||||
2–6 | 2281 | 33.4 | 721 | 34.5 | 788 | 33.2 | 772 | 32.6 | |
7–12 | 2210 | 35.6 | 678 | 33.5 | 726 | 34.5 | 806 | 38.8 | |
13–18 | 1625 | 30.9 | 639 | 32.0 | 525 | 32.3 | 461 | 28.6 | |
Ethnicity | <0.0001 | ||||||||
White | 1987 | 59.7 | 607 | 55.5 | 681 | 59.8 | 699 | 63.5 | |
Black | 1373 | 12.5 | 367 | 11.3 | 432 | 11.4 | 574 | 14.6 | |
Mexican-American | 1396 | 13.8 | 549 | 17.0 | 488 | 14.5 | 359 | 10.1 | |
Other | 1360 | 14.0 | 515 | 16.2 | 438 | 14.3 | 407 | 11.8 | |
PIR | <0.001 | ||||||||
<1.3 | 2520 | 33.1 | 926 | 40.2 | 843 | 31.6 | 751 | 27.9 | |
1.3–1.85 | 697 | 10.5 | 229 | 10.4 | 223 | 10.7 | 245 | 10.4 | |
>1.85 | 2488 | 56.4 | 745 | 49.4 | 827 | 57.7 | 916 | 61.7 | |
Mother’s age when born | 0.131 | ||||||||
<30 | 4203 | 66.3 | 1476 | 69.3 | 1440 | 68.9 | 1351 | 64.1 | |
30–39 | 1716 | 30.8 | 518 | 28.4 | 560 | 29.6 | 638 | 34.0 | |
≥40 | 197 | 2.9 | 44 | 2.3 | 39 | 1.5 | 50 | 1.9 | |
Physical activity | 0.927 | ||||||||
Inactive a | 245 | 12.0 | 104 | 13.4 | 78 | 11.2 | 63 | 11.4 | |
<500 MET-min/wk | 213 | 10.6 | 89 | 10.5 | 66 | 10.3 | 58 | 10.9 | |
≥500 MET-min/wk | 1398 | 77.4 | 514 | 76.1 | 448 | 78.5 | 436 | 77.7 | |
BMI (percentile) | <0.0001 | ||||||||
<5 | 209 | 3.4 | 99 | 5.1 | 69 | 3.2 | 41 | 1.9 | |
5–84.9 | 3997 | 66.1 | 1496 | 74.6 | 1352 | 66.8 | 1149 | 57.4 | |
85–94.9 | 910 | 15.0 | 259 | 10.7 | 303 | 15.9 | 348 | 18.1 | |
≥95 | 1000 | 15.5 | 184 | 9.6 | 315 | 14.1 | 501 | 22.5 | |
Supplement use | 0.339 | ||||||||
Yes | 1286 | 25.7 | 448 | 27.7 | 429 | 24.1 | 409 | 25.6 | |
No | 4825 | 74.3 | 1588 | 72.3 | 1608 | 75.9 | 1629 | 74.4 | |
Sleep hours (n, hours) | 743 | 7.6 | 331 | 7.4 | 226 | 7.6 | 173 | 7.7 | 0.073 |
Birth weight (n, kg) | 5373 | 3.1 | 1661 | 3.0 | 1769 | 3.1 | 1832 | 3.3 | <0.0001 |
HAZ (Min, Max) | p for Trend * | |||
---|---|---|---|---|
T1 (n = 2038) (−4.57, −0.27) | T2 (n = 2039) (−0.27, 0.57) | T3 (n = 2039) (0.57, 3.98) | ||
Mean (SE) | Mean (SE) | Mean (SE) | ||
Vitamin A (μg/d) | 585.8 (7.2) | 611.6 (10.5) | 646.3 (9.2) | <0.01 |
Vitamin C (mg) | 78.7 (1.4) | 82.0 (1.8) | 82.2 (1.4) | 0.103 |
Vitamin D (μg/d) | 5.7 (0.1) | 5.9 (0.1) | 6.2 (0.1) | <0.05 |
Vitamin E (μg/d) | 6.2 (0.1) | 6.5 (0.1) | 6.7 (0.1) | <0.05 |
Thiamin (mg/d) | 1.5 (0.0) | 1.5 (0.0) | 1.6 (0.0) | <0.001 |
Riboflavin (mg/d) | 1.9 (0.0) | 2.0 (0.0) | 2.1 (0.0) | <0.001 |
Niacin (mg/d) | 20.6 (0.2) | 21.2 (0.3) | 22.2 (0.4) | <0.05 |
Vit B6 (mg/d) | 1.7 (0.0) | 1.8 (0.0) | 1.8 (0.0) | <0.01 |
Vit B12 (mg/d) | 4.8 (0.1) | 5.0 (0.1) | 5.2 (0.1) | <0.05 |
Folate (μg/d) | 357.1 (4.4) | 366.0 (5.9) | 383.5 (5.2) | 0.099 |
Calcium (mg/d) | 986.6 (10.0) | 1017.7 (13.1) | 1085.1 (13.6) | <0.0001 |
Iron (mg/d) | 13.7 (0.2) | 14.1 (0.2) | 14.6 (0.2) | <0.05 |
Zinc (mg/d) | 9.9 (0.1) | 10.2 (0.1) | 10.6 (0.1) | 0.103 |
HAZ (Min, Max) | p for Trend * | |||
---|---|---|---|---|
T1 (n = 2038) (−4.57, −0.27) | T2 (n = 2039) (−0.27, 0.57) | T3 (n = 2039) (0.57, 3.98) | ||
Vitamin A (μg/d) | 1.0 (ref) | 0.81 (0.56–1.17) | 0.74 (0.50–1.09) | 0.288 |
Vitamin C (mg) | 1.0 (ref) | 0.73 (0.49–1.08) | 0.79 (0.52–1.18) | 0.249 |
Vitamin D (μg/d) | 1.0 (ref) | 0.80 (0.49–1.30) | 0.71 (0.45–1.11) | 0.296 |
Vitamin E (μg/d) | 1.0 (ref) | 0.81 (0.63–1.03) | 0.75 (0.59–0.95) | <0.05 |
Thiamin (mg/d) | 1.0 (ref) | 1.29 (0.47–3.55) | 1.45 (0.57–3.69) | 0.702 |
Riboflavin (mg/d) | 1.0 (ref) | 1.02 (0.30–3.48) | 0.81 (0.18–3.60) | 0.949 |
Niacin (mg/d) | 1.0 (ref) | 0.19 (0.04–1.03) | 0.36 (0.09–1.40) | 0.099 |
Vit B6 (mg/d) | 1.0 (ref) | 0.53 (0.15–1.92) | 1.63 (0.45–5.91) | 0.257 |
Vit B12 (mg/d) | 1.0 (ref) | 0.34 (0.08–1.46) | 1.03 (0.19–5.61) | 0.302 |
Folate (μg/d) | 1.0 (ref) | 0.96 (0.62–1.48) | 1.01 (0.66-1.54) | 0.977 |
Calcium (mg/d) | 1.0 (ref) | 0.79 (0.64–0.97) | 0.69 (0.57–0.85) | <0.01 |
Iron (mg/d) | 1.0 (ref) | 1.06 (0.36–3.11) | 0.80 (0.27–2.39) | 0.886 |
Zinc (mg/d) | 1.0 (ref) | 1.31 (0.71–2.43) | 0.90 (0.50–1.60) | 0.496 |
Lowest HAZ (T1) | Highest HAZ (T3) | |||
---|---|---|---|---|
Rank | Food Group | Intake (g/d) | Food Group | Intake (g/d) |
1 | Total carbonated soft drinks | 162.6 | Low-fat milk products | 182.2 |
2 | Mixtures mainly grain | 150.4 | Total carbonated soft drinks | 162.7 |
3 | Low-fat milk products | 145.1 | Mixtures mainly grain | 156.3 |
4 | Regular fruit juice drinks | 78.4 | Regular fruit juice drinks | 83.6 |
5 | Mixtures mainly meat, poultry, fish | 74.1 | Mixtures mainly meat, poultry, fish | 78.5 |
6 | High-fat milk products | 56.8 | Tea | 69.2 |
7 | Tea | 51.7 | High-fat milk products | 43.9 |
8 | 100% Orange juice | 37.6 | Yeast breads and rolls | 41.4 |
9 | Yeast breads and rolls | 36.4 | 100% Orange juice | 36.8 |
10 | Cakes, cookies, pastries, pies | 32.5 | Low-calorie fruit juice drinks | 36.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Melough, M.M.; Kim, D.; Sakaki, J.R.; Lee, J.; Choi, K.; Chun, O.K. Nutritional Adequacy and Diet Quality Are Associated with Standardized Height-for-Age among U.S. Children. Nutrients 2021, 13, 1689. https://doi.org/10.3390/nu13051689
Kim K, Melough MM, Kim D, Sakaki JR, Lee J, Choi K, Chun OK. Nutritional Adequacy and Diet Quality Are Associated with Standardized Height-for-Age among U.S. Children. Nutrients. 2021; 13(5):1689. https://doi.org/10.3390/nu13051689
Chicago/Turabian StyleKim, Kijoon, Melissa M. Melough, Dongwoo Kim, Junichi R. Sakaki, Joonsuk Lee, Kyungju Choi, and Ock K. Chun. 2021. "Nutritional Adequacy and Diet Quality Are Associated with Standardized Height-for-Age among U.S. Children" Nutrients 13, no. 5: 1689. https://doi.org/10.3390/nu13051689
APA StyleKim, K., Melough, M. M., Kim, D., Sakaki, J. R., Lee, J., Choi, K., & Chun, O. K. (2021). Nutritional Adequacy and Diet Quality Are Associated with Standardized Height-for-Age among U.S. Children. Nutrients, 13(5), 1689. https://doi.org/10.3390/nu13051689