The Potential Link between Episodes of Diverticulitis or Hemorrhoidal Proctitis and Diets with Selected Plant Foods: A Case–Control Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design, Setting, and Population
2.2. Interviews and Variables
2.3. Measures and Scoring System
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peery, A.F.; Crockett, S.D.; Murphy, C.C.; Lund, J.L.; Dellon, E.S.; Williams, J.L.; Jensen, E.T.; Shaheen, N.J.; Barritt, A.S.; Lieber, S.R.; et al. Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. Gastroenterology 2019, 156, 254–272.e11. [Google Scholar] [CrossRef] [Green Version]
- Peery, A.F.; Dellon, E.S.; Lund, J.; Crockett, S.D.; McGowan, C.E.; Bulsiewicz, W.J.; Gangarosa, L.M.; Thiny, M.T.; Stizenberg, K.; Morgan, D.R.; et al. Burden of Gastrointestinal Disease in the United States: 2012 Update. Gastroenterology 2012, 143, 1179–1187.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altomare, D.F.; Giuratrabocchetta, S. Conservative and surgical treatment of haemorrhoids. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, G.G.; Rahul, B.G. Prevalence and risk factors of hemorrhoids: A study in a semi-urban centre. Int. Surg. J. 2018, 5, 496–499. [Google Scholar] [CrossRef]
- Jacobs, D.O. Hemorrhoids. Curr. Opin. Gastroenterol. 2018, 34, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, P.; Régnier, C.; Goron, F.; Salmat, G. The prevalence, characteristics and treatment of hemorrhoidal disease: Results of an international web-based survey. J. Comp. Eff. Res. 2020, 9, 1219–1232. [Google Scholar] [CrossRef] [PubMed]
- Loder, P.B.; Kamm, M.A.; Nicholls, R.J.; Phillips, R.K.S. Haemorrhoids: Pathology, pathophysiology and aetiology. BJS 2005, 81, 946–954. [Google Scholar] [CrossRef]
- Matrana, M.R.; Margolin, D.A. Epidemiology and Pathophysiology of Diverticular Disease. Clin. Colon Rectal Surg. 2009, 22, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commane, D.M.; Arasaradnam, R.P.; Mills, S.; Mathers, J.C.; Bradburn, M. Diet, ageing and genetic factors in the pathogenesis of diverticular disease. World J. Gastroenterol. 2009, 15, 2479–2488. [Google Scholar] [CrossRef]
- Everhart, J.E.; Ruhl, C.E. Burden of Digestive Diseases in the United States Part II: Lower Gastrointestinal Diseases. Gastroenterology 2009, 136, 741–754. [Google Scholar] [CrossRef]
- Aldoori, W.H.; Giovannucci, E.L.; Rimm, E.B.; Wing, A.L.; Trichopoulos, D.V.; Willett, W.C. A prospective study of alcohol, smoking, caffeine, and the risk of symptomatic diverticular disease in men. Ann. Epidemiol. 1995, 5, 221–228. [Google Scholar] [CrossRef]
- Turunen, P.; Wikström, H.; Carpelan-Holmström, M.; Kairaluoma, P.; Kruuna, O.; Scheinin, T. Smoking Increases the Incidence of Complicated Diverticular Disease of the Sigmoid Colon. Scand. J. Surg. 2010, 99, 14–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humes, D.; Ludvigsson, J.F.; Jarvholm, B. Smoking and the Risk of Hospitalization for Symptomatic Diverticular Disease. Dis. Colon Rectum 2016, 59, 110–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acheson, R.M. Haemorrhoids in the adult male; a small epidemiological study. Guy’s Hosp. Rep. 1960, 109, 184–195. [Google Scholar]
- Hyams, L.; Philpot, J. An epidemiological investigation of hemorrhoids. Am. J. Proctol. 1970, 21, 177–193. [Google Scholar]
- Ballinger, A. Adverse effects of nonsteroidal anti-inflammatory drugs on the colon. Curr. Gastroenterol. Rep. 2008, 10, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Hjern, F.; Mahmood, M.W.; Abraham-Nordling, M.; Wolk, A.; Håkansson, N. Cohort study of corticosteroid use and risk of hospital admission for diverticular disease. BJS 2014, 102, 119–124. [Google Scholar] [CrossRef]
- Aune, D.; Sen, A.; Leitzmann, M.F.; Norat, T.; Tonstad, S.; Vatten, L.J. Body mass index and physical activity and the risk of diverticular disease: A systematic review and meta-analysis of prospective studies. Eur. J. Nutr. 2017, 56, 2423–2438. [Google Scholar] [CrossRef] [Green Version]
- Johanson, J.F.; Sonnenberg, A. Temporal changes in the occurrence of hemorrhoids in the United States and England. Dis. Colon Rectum 1991, 34, 585–593. [Google Scholar] [CrossRef]
- Johanson, J.F. Association of hemorrhoidal disease with diarrheal disorders. Dis. Colon Rectum 1997, 40, 215–221. [Google Scholar] [CrossRef]
- Jung, H.-K.; Choung, R.S.; Locke, R.G.; Schleck, C.D.; Zinsmeister, A.R.; Talley, N.J. Diarrhea-Predominant Irritable Bowel Syndrome Is Associated With Diverticular Disease: A Population-Based Study. Am. J. Gastroenterol. 2010, 105, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Mulhall, A.M.; Mahid, S.S.; Petras, R.E.; Galandiuk, S. Diverticular Disease Associated with Inflammatory Bowel Disease-Like Colitis. Dis. Colon Rectum 2009, 52, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Reichert, M.C.; Kupcinskas, J.; Krawczyk, M.; Jüngst, C.; Casper, M.; Grünhage, F.; Appenrodt, B.; Zimmer, V.; Weber, S.N.; Tamelis, A.; et al. A Variant of COL3A1 (rs3134646) Is Associated with Risk of Developing Diverticulosis in White Men. Dis. Colon Rectum 2018, 61, 604–611. [Google Scholar] [CrossRef]
- Shim, J.-S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef]
- Golder, M.; Ster, I.C.; Babu, P.; Sharma, A.; Bayat, M.; Farah, A. Demographic determinants of risk, colon distribution and density scores of diverticular disease. World J. Gastroenterol. 2011, 17, 1009–1017. [Google Scholar]
- Tej, G.N.V.C.; Neogi, K.; Nayak, P.K. Caffeine-enhanced anti-tumor activity of anti-PD1 monoclonal antibody. Int. Immunopharmacol. 2019, 77, 106002. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, N.; Katakura, M.; Matsuzaki, K.; Sumiyoshi, E.; Yachie, A.; Shido, O. Chronic administration of theobromine inhibits mTOR signal in rats. Basic Clin. Pharmacol. Toxicol. 2019, 124, 575–581. [Google Scholar] [CrossRef]
- Jiang, Y.; Turgeon, D.K.; Wright, B.D.; Sidahmed, E.; Ruffin, M.T.; Brenner, D.E.; Sen, A.; Zick, S.M. Effect of ginger root on cyclooxygenase-1 and 15-hydroxyprostaglandin dehydrogenase expression in colonic mucosa of humans at normal and increased risk for colorectal cancer. Eur. J. Cancer Prev. 2013, 22, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, N.; Saito, K. S-Alk(en)ylcysteine sulfoxides in the genus Allium: Proposed biosynthesis, chemical conversion, and bioactivities. J. Exp. Bot. 2019, 70, 4123–4137. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Tsuge, N.; Tomotake, M.; Nagatome, Y.; Sawada, H.; Nagata, T.; Kumagai, H. An onion enzyme that makes the eyes water. Nat. Cell Biol. 2002, 419, 685. [Google Scholar] [CrossRef]
- Rasier, R.; Kukner, A.S.; Şengül, E.A.; Yalcin, N.G.; Temizsoylu, O.; Bahcecioglu, H.O. The Decrease in Aqueous Tear Production Associated with Pepper Spray. Curr. Eye Res. 2014, 40, 429–433. [Google Scholar] [CrossRef]
- Srinivasan, K. Biological Activities of Red Pepper (Capsicum annuum) and Its Pungent Principle Capsaicin: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1488–1500. [Google Scholar] [CrossRef] [PubMed]
- Van Crombruggen, K.; Van Nassauw, L.; DeRycke, L.; Timmermans, J.-P.; Holtappels, G.; Hall, D.; Bachert, C. Capsaicin-induced vasodilatation in human nasal vasculature is mediated by modulation of cyclooxygenase-2 activity and abrogated by sulprostone. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2011, 383, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, M.; Kardar, M.H. Effect of Ethanol on Micro-Vessels Diameter and Prevention of Thrombosis. World J. Plast. Surg. 2019, 8, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Prashar, A.; Locke, I.C.; Evans, C.S. Cytotoxicity of clove (Syzygium aromaticum) oil and its major components to human skin cells. Cell Prolif. 2006, 39, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Wedel, T.; Barrenschee, M.; Lange, C.; Cossais, F.; Böttner, M. Morphologic Basis for Developing Diverticular Disease, Diverticulitis, and Diverticular Bleeding. Visc. Med. 2015, 31, 76–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, Z.; Rehm, C.D.; Rogers, G.; Ruan, M.; Wang, D.D.; Hu, F.B.; Mozaffarian, D.; Zhang, F.F.; Bhupathiraju, S.N. Trends in Dietary Carbohydrate, Protein, and Fat Intake and Diet Quality Among US Adults, 1999–2016. JAMA 2019, 322, 1178–1187. [Google Scholar] [CrossRef] [Green Version]
- Landais, E.; Moskal, A.; Mullee, A.; Nicolas, G.; Gunter, M.J.; Huybrechts, I.; Overvad, K.; Roswall, N.; Affret, A.; Fagherazzi, G.; et al. Coffee and Tea Consumption and the Contribution of Their Added Ingredients to Total Energy and Nutrient Intakes in 10 European Countries: Benchmark Data from the Late 1990s. Nutrients 2018, 10, 725. [Google Scholar] [CrossRef] [Green Version]
- Bingham, S.A. Limitations of the Various Methods for Collecting Dietary Intake Data. Ann. Nutr. Metab. 1991, 35, 117–127. [Google Scholar] [CrossRef]
- Cade, J.E.; Burley, V.J.; Warm, D.L.; Thompson, R.L.; Margetts, B.M. Food-frequency questionnaires: A review of their design, validation and utilisation. Nutr. Res. Rev. 2004, 17, 5–22. [Google Scholar] [CrossRef] [Green Version]
Cases (N = 410) | Controls (N = 401) | Total (N = 811) | p-Value | |
---|---|---|---|---|
Age in years, mean (SD) | 55 (14) | 55 (19) | 55 (16) | 0.98 * |
Age groups, n (%) | 0.05 † | |||
18–50 years | 154 (37.6) | 141 (35.2) | 295 (36.4) | |
51–65 years | 153 (37.3) | 129 (32.2) | 282 (34.8) | |
66–94 years | 103 (25.1) | 131 (32.7) | 234 (28.9) | |
Gender, n (%) | 0.23 † | |||
Men | 239 (58.3) | 217 (54.1) | 456 (56.2) | |
Women | 171 (41.7) | 184 (45.9) | 355 (43.8) | |
Overall intake, mean (SD) | 8.45 (5.33) | 4.12 (1.64) | 6.31 (4.51) | 0.001 * |
Diverticulitis (N = 161) | Hemorrhoids (N = 249) | p-Value | |
---|---|---|---|
Age, mean (SD) | 59 (14) | 53 (13) | 0.001 * |
Gender, n (%) Men Women | 83 (51.6) 78 (48.4) | 156 (62.7) 93 (37.3) | 0.026 † |
Symptom severity, n (%) Simple Complicated ‡ | 115 (71.4) 46 (28.6) | 183 (73.5) 66 (26.5) | 0.64 † |
Overall intake, mean (SD) | 8.98 (5.25) | 8.10 (5.36) | 0.10 * |
Plant Foods | Cases (N = 410) | Controls (N = 401) | 2-Tailed p-Value * | Mean Difference | 95% CI | |||
---|---|---|---|---|---|---|---|---|
N | Mean | N | Mean | |||||
Individual products | ||||||||
Chocolate | 300 | 14.27 | 210 | 6.94 | <0.001 | 7.33 | 5.64 | 9.02 |
Tea | 82 | 11.92 | 53 | 6.25 | <0.001 | 5.68 | 2.67 | 8.69 |
Lemon | 133 | 11.63 | 65 | 7.95 | <0.001 | 3.67 | 1.67 | 5.67 |
Soft drinks | 82 | 12.52 | 50 | 8.92 | 0.045 | 3.60 | 0.08 | 7.12 |
Pepper | 219 | 7.60 | 113 | 4.10 | <0.001 | 3.50 | 2.34 | 4.65 |
Strawberry | 44 | 6.98 | 8 | 3.75 | 0.034 | 3.23 | 0.26 | 6.20 |
Vinegar | 223 | 9.37 | 170 | 6.32 | <0.001 | 3.06 | 2.00 | 4.11 |
Cold cut meats † | 329 | 6.24 | 108 | 3.22 | <0.001 | 3.02 | 2.09 | 3.96 |
Coffee | 337 | 16.20 | 241 | 13.68 | 0.003 | 2.52 | 0.85 | 4.19 |
Pickled vegetables | 301 | 8.48 | 211 | 6.44 | <0.001 | 2.04 | 1.01 | 3.07 |
Raw onion | 305 | 4.52 | 204 | 3.54 | <0.001 | 0.98 | 0.60 | 1.36 |
Cooked onion | 349 | 3.88 | 334 | 3.14 | <0.001 | 0.74 | 0.50 | 0.98 |
Cooked garlic | 296 | 3.72 | 295 | 3.05 | <0.001 | 0.67 | 0.37 | 0.97 |
Curcumin | 35 | 6.39 | 11 | 3.91 | 0.136 | 2.28 | −0.75 | 5.30 |
Ginger | 39 | 7.96 | 10 | 6.40 | 0.358 | 1.56 | −1.82 | 4.95 |
Curry | 41 | 4.48 | 10 | 3.00 | 0.135 | 1.48 | −0.47 | 3.42 |
Orange | 282 | 11.56 | 279 | 10.59 | 0.084 | 0.97 | −0.13 | 2.08 |
Chili pepper | 83 | 5.13 | 15 | 4.27 | 0.467 | 0.87 | −1.49 | 3.22 |
Raw garlic | 166 | 3.78 | 114 | 3.27 | 0.175 | 0.51 | −0.23 | 1.25 |
Clove | 30 | 4.28 | 0 | — | — | — | — | — |
Plant foods grouped by chemical component | ||||||||
Ethanol | 130 | 7.71 | 51 | 2.59 | <0.001 | 5.12 | 3.11 | 7.13 |
Caffeine ‡ | 404 | 14.97 | 338 | 10.21 | <0.001 | 4.76 | 3.61 | 5.90 |
Capsaicin | 371 | 6.44 | 187 | 3.74 | <0.001 | 2.70 | 2.05 | 3.36 |
Alliin | 381 | 3.94 | 379 | 3.09 | <0.001 | 0.84 | 0.11 | 0.63 |
Acids | 391 | 10.09 | 363 | 8.13 | <0.001 | 1.96 | 1.22 | 2.71 |
Eugenol | 64 | 6.38 | 25 | 4.32 | 0.026 | 2.07 | 0.26 | 3.88 |
Miscellaneous | 108 | 5.09 | 34 | 3.85 | 0.042 | 1.24 | 0.60 | 0.04 |
Quartiles by Overall Intake Score, n (%) | Cases (N = 410) | Controls (N = 401) | Total (N = 811) | p *-Value | Odds Ratio (95% CI) |
---|---|---|---|---|---|
n (%) | n (%) | n (%) | |||
Q1: 0.30–3.00 | 8 (2.0) | 112 (27.9) | 120 (14.8) | <0.001 | 0.05 (0.02 0.11) |
Q2: 3.01–5.00 | 77 (18.8) | 174 (43.4) | 251 (30.9) | <0.001 | 0.30 (0.22 0.41) |
Q3: 5.01–7.00 | 138 (33.7) | 91 (22.7) | 229 (28.2) | 0.001 | 1.73 (1.23 2.36) |
Q4: 7.01–27.7 | 187 (45.6) | 24 (6.0) | 211 (26.0) | <0.001 | 13.16 (8.33 20.83) |
Predictor Variables: Case over Control | β Coefficient | β Standard Error | p-Value | OR | (95% CI) | |
---|---|---|---|---|---|---|
Age | 0.014 | 0.006 | 0.018 | 1.01 | 1.00 | 1.03 |
Ethanol | 0.263 | 0.062 | <0.001 | 1.30 | 1.15 | 1.47 |
Caffeine * | 0.101 | 0.018 | <0.001 | 1.11 | 1.07 | 1.15 |
Capsaicin | 0.370 | 0.067 | <0.001 | 1.45 | 1.27 | 1.65 |
Alliin | 0.099 | 0.115 | 0.39 | 1.10 | 0.88 | 1.38 |
Acids | 0.075 | 0.038 | 0.048 | 1.08 | 1.00 | 1.16 |
Eugenol | 0.172 | 0.058 | 0.003 | 1.19 | 1.06 | 1.33 |
Miscellaneous | 0.019 | 0.068 | 0.78 | 1.02 | 0.89 | 1.16 |
Capsaicin-caffeine * | 0.003 | 0.005 | 0.55 | 1.00 | 0.99 | 1.01 |
Acid-alliin | 0.000 | 0.011 | 0.97 | 1.00 | 0.98 | 1.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flich-Carbonell, J.; Alegre-Martinez, A.; Alfonso-Sanchez, J.L.; Torres-Sanchez, M.T.; Gomez-Abril, S.; Martínez-Martínez, M.I.; Martin-Moreno, J.M. The Potential Link between Episodes of Diverticulitis or Hemorrhoidal Proctitis and Diets with Selected Plant Foods: A Case–Control Study. Nutrients 2021, 13, 1791. https://doi.org/10.3390/nu13061791
Flich-Carbonell J, Alegre-Martinez A, Alfonso-Sanchez JL, Torres-Sanchez MT, Gomez-Abril S, Martínez-Martínez MI, Martin-Moreno JM. The Potential Link between Episodes of Diverticulitis or Hemorrhoidal Proctitis and Diets with Selected Plant Foods: A Case–Control Study. Nutrients. 2021; 13(6):1791. https://doi.org/10.3390/nu13061791
Chicago/Turabian StyleFlich-Carbonell, Juan, Antoni Alegre-Martinez, Jose L. Alfonso-Sanchez, Maria T. Torres-Sanchez, Segundo Gomez-Abril, Maria I. Martínez-Martínez, and José M. Martin-Moreno. 2021. "The Potential Link between Episodes of Diverticulitis or Hemorrhoidal Proctitis and Diets with Selected Plant Foods: A Case–Control Study" Nutrients 13, no. 6: 1791. https://doi.org/10.3390/nu13061791
APA StyleFlich-Carbonell, J., Alegre-Martinez, A., Alfonso-Sanchez, J. L., Torres-Sanchez, M. T., Gomez-Abril, S., Martínez-Martínez, M. I., & Martin-Moreno, J. M. (2021). The Potential Link between Episodes of Diverticulitis or Hemorrhoidal Proctitis and Diets with Selected Plant Foods: A Case–Control Study. Nutrients, 13(6), 1791. https://doi.org/10.3390/nu13061791