Nutrition and Kidney Stone Disease
Abstract
:1. Introduction
2. Fluid Intake
2.1. Tap Water and Mineral Water
2.2. Fruit Juices and Fruit Juice Beverages
2.3. Soft Drinks
2.4. Tea and Coffee
3. Protein
4. Carbohydrates
5. Fat
6. Oxalate
7. Calcium
8. Sodium Chloride
9. Dietary Management
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hesse, A.; Brändle, E.; Wilbert, D.; Köhrmann, K.U.; Alken, P. Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur. Urol. 2003, 44, 709–713. [Google Scholar] [CrossRef]
- Romero, V.; Akpinar, H.; Assimos, D.G. Kidney stones: A global picture of prevalence, incidence, and associated risk factors. Rev. Urol. 2010, 12, e86–e96. [Google Scholar] [PubMed]
- Chewcharat, A.; Curhan, G. Trends in the prevalence of kidney stones in the United States from 2007 to 2016. Urolithiasis 2021, 49, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Uribarri, J.; Oh, M.S.; Carroll, H.J. The first kidney stone. Ann. Intern. Med. 1989, 111, 1006–1009. [Google Scholar] [CrossRef] [PubMed]
- Shoag, J.; Halpern, J.; Goldfarb, D.S.; Eisner, B.H. Risk of chronic and end stage kidney disease in patients with nephrolithiasis. J. Urol. 2014, 192, 1440–1445. [Google Scholar] [CrossRef] [PubMed]
- Dhondup, T.; Kittanamongkolchai, W.; Vaughan, L.E.; Mehta, R.A.; Chhina, J.K.; Enders, F.T.; Hickson, L.J.; Lieske, J.C.; Rule, A.D. Risk of ESRD and mortality in kidney and bladder stone formers. Am. J. Kidney Dis. 2018, 72, 790–797. [Google Scholar] [CrossRef] [Green Version]
- Lieske, J.C.; Rule, A.D.; Krambeck, A.E.; Williams, J.C.; Bergstralh, E.J.; Mehta, R.A.; Moyer, T.P. Stone composition as a function of age and sex. Clin. J. Am. Soc. Nephrol. 2014, 9, 2141–2146. [Google Scholar] [CrossRef] [Green Version]
- Siener, R.; Hesse, A. The effect of different diets on urine composition and the risk of calcium oxalate crystallization in healthy subjects. Eur. Urol. 2002, 42, 289–296. [Google Scholar] [CrossRef]
- Siener, R.; Schade, N.; Nicolay, C.; von Unruh, G.E.; Hesse, A. The efficacy of dietary intervention on urinary risk factors for stone formation in recurrent calcium oxalate stone patients. J. Urol. 2005, 173, 1601–1605. [Google Scholar] [CrossRef]
- Siener, R.; Buchholz, N.; Daudon, M.; Hess, B.; Knoll, T.; Osther, P.J.; Reis-Santos, J.; Sarica, K.; Traxer, O.; Trinchieri, A. Quality assessment of urinary stone analysis: Results of a multicenter study of laboratories in Europe. PLoS ONE 2016, 11, e0156606. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.C.; Gambaro, G.; Rodgers, A.; Asplin, J.; Bonny, O.; Costa-Bauzá, A.; Ferraro, P.M.; Fogazzi, G.; Fuster, D.G.; Goldfarb, D.S.; et al. Urine and stone analysis for the investigation of the renal stone former: A consensus conference. Urolithiasis 2021, 49, 1–16. [Google Scholar] [CrossRef]
- Yagisawa, T.; Chandhoke, P.S.; Fan, J. Comparison of comprehensive and limited metabolic evaluations in the treatment of patients with recurrent calcium urolithiasis. J. Urol. 1999, 161, 1449–1452. [Google Scholar] [CrossRef]
- Parks, J.H.; Goldfisher, E.; Asplin, J.R.; Coe, F.L. A single 24-hour urine collection is inadequate for the medical evaluation of nephrolithiasis. J. Urol. 2002, 167, 1607–1612. [Google Scholar] [CrossRef]
- Hesse, A.; Tiselius, H.G.; Siener, R.; Hoppe, B. Urinary Stones: Diagnosis, Treatment and Prevention of Recurrence, 3rd ed.; Karger: Basel, Switzerland, 2009. [Google Scholar]
- Türk, C.; Neisius, A.; Petrik, A.; Seitz, C.; Skolarikos, A.; Somani, B.; Thomas, K.; Gambaro, G.; Davis, N.F.; Donaldson, J.F.; et al. EAU Guidelines on Urolithiasis; European Association of Urology, EAU Guidelines Office: Arnhem, The Netherlands, 2021. [Google Scholar]
- Pearle, M.S.; Goldfarb, D.S.; Assimos, D.G.; Curhan, G.; Denu-Ciocca, C.J.; Matlaga, B.R.; Monga, M.; Penniston, K.L.; Preminger, G.M.; Turk, T.M.T.; et al. Medical management of kidney stones: AUA guideline. J. Urol. 2014, 192, 316–324. [Google Scholar] [CrossRef]
- Gambaro, G.; Croppi, E.; Coe, F.; Lingeman, J.; Moe, O.; Worcester, E.; Buchholz, N.; Bushinsky, D.; Curhan, G.C.; Ferraro, P.M.; et al. Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: A consensus statement. J. Nephrol. 2016, 29, 715–734. [Google Scholar] [CrossRef] [PubMed]
- Kocvara, A.; Plasgura, P.; Petrik, A.; Louzensky, G.; Bartonickova, K.; Dvoracek, J. A prospective study of nonmedical prophylaxis after a first kidney stone. BJU Int. 1999, 84, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Hesse, A. Fluid intake and epidemiology of urolithiasis. Eur. J. Clin. Nutr. 2003, 57, S47–S51. [Google Scholar] [CrossRef] [Green Version]
- Caudarella, R.; Rizzoli, E.; Pironi, L.; Malavolta, N.; Martelli, G.; Poggioli, G.; Gozzetti, G.; Miglioli, M. Renal stone formation in patients with inflammatory bowel disease. Scanning Microsc. 1993, 7, 371–380. [Google Scholar]
- Parks, J.H.; Worcester, E.M.; O´Connor, R.C.; Coe, F.L. Urine stone risk factors in nephrolithiasis patients with and without bowel disease. Kidney Int. 2003, 63, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Lotan, Y.; Antonelli, J.; Jiménez, I.B.; Gharbi, H.; Herring, R.; Beaver, A.; Dennis, A.; Merveldt, D.V.; Carter, S.; Cohen, A.; et al. The kidney stone and increased water intake trial in steel workers: Results from a pilot study. Urolithiasis 2017, 45, 177–183. [Google Scholar] [CrossRef]
- Linder, B.J.; Rangel, L.J.; Krambeck, A.E. The effect of work location on urolithiasis in health care professionals. Urolithiasis 2013, 41, 327–331. [Google Scholar] [CrossRef]
- Malieckal, D.A.; Goldfarb, D.S. Occupational kidney stones. Curr. Opin. Nephrol. Hypertens. 2020, 29, 232–236. [Google Scholar] [CrossRef]
- Borghi, L.; Meschi, T.; Amato, F.; Briganti, A.; Novarini, A.; Giannini, A. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: A 5-year randomized prospective study. J. Urol. 1996, 155, 839–843. [Google Scholar] [CrossRef]
- Fink, H.A.; Akornor, J.W.; Garimella, P.S.; MacDonald, R.; Cutting, A.; Rutks, I.R.; Monga, M.; Wilt, T.J. Diet, fluid, or supplements for secondary prevention of nephrolithiasis: A systematic review and meta-analysis of randomized trials. Eur. Urol. 2009, 56, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Fink, H.A.; Wilt, T.J.; Eidman, K.E.; Garimella, P.S.; MacDonald, R.; Rutks, I.R.; Brasure, M.; Kane, R.L.; Ouellette, J.; Monga, M. Medical management to prevent nephrolithiasis in adults: A systematic review for an American College of Physicians clinical guideline. Ann. Intern. Med. 2013, 158, 535–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qaseem, A.; Dallas, P.; Forciea, M.A.; Starkey, M.; Denberg, T.D. Dietary and pharmacologic management to prevent recurrent nephrolithiasis in adults: A clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 2014, 161, 659–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheungpasitporn, W.; Rossetti, S.; Friend, K.; Erickson, S.B.; Lieske, J.C. Treatment effect, adherence, and safety of high fluid intake for the prevention of incident and recurrent kidney stones: A systematic review and meta-analysis. J. Nephrol. 2016, 29, 211–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, B.B.; Lin, M.E.; Huang, R.H.; Hong, Y.K.; Lin, B.L.; He, X.J. Dietary and lifestyle factors for primary prevention of nephrolithiasis: A systematic review and meta-analysis. BMC Nephrol. 2020, 21, 267. [Google Scholar] [CrossRef]
- Bao, Y.; Tu, X.; Wei, Q. Water for preventing urinary stones. Cochrane Database Syst. Rev. 2020, 1–26. [Google Scholar] [CrossRef]
- Borghi, L.; Meschi, T.; Maggiore, U.; Prati, B. Dietary therapy in idiopathic nephrolithiasis. Nutr. Rev. 2006, 64, 301–312. [Google Scholar] [CrossRef]
- Servais, A.; Thomas, K.; Strologo, L.D.; Sayer, J.A.; Bekri, S.; Bertholet-Thomas, A.; Bultitude, M.; Capolongo, G.; Cerkauskiene, R.; Daudon, M.; et al. Cystinuria: Clinical practice recommendation. Kidney Int. 2021, 99, 48–58. [Google Scholar] [CrossRef]
- Barbey, F.; Joly, D.; Rieu, P.; Méjean, A.; Daudon, M.; Jungers, P. Medical treatment of cystinuria: Critical reappraisal of long-term results. J. Urol. 2000, 163, 1419–1423. [Google Scholar] [CrossRef]
- Willis, S.; Goldfarb, D.S.; Thomas, K.; Bultitude, M. Comment—Water to prevent kidney stones: Tap vs. bottled; soft vs. hard—Does it matter? BJU Int. 2019, 124, 905–906. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Hardness in Drinking-Water. In Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO Press: Geneva, Switzerland, 2011. [Google Scholar]
- Shuster, J.; Finlayson, B.; Scheaffer, R.; Sierakowski, R.; Zoltek, J.; Dzegede, S. Water hardness and urinary stone disease. J. Urol. 1982, 128, 422–425. [Google Scholar] [CrossRef]
- Schwartz, B.F.; Schenkman, N.S.; Bruce, J.E.; Leslie, S.W.; Stoller, M.L. Calcium nephrolithiasis: Effect of water hardness on urinary electrolytes. Urology 2002, 60, 23–27. [Google Scholar] [CrossRef]
- Basiri, A.; Shakhssalim, N.; Koshdel, A.R.; Pakmanesh, H.; Radfar, M.H. Drinking water composition and incidence of urinary calculus: Introducing an new index. Iran. J. Kidney Dis. 2011, 5, 15–20. [Google Scholar] [PubMed]
- Siener, R. Can the manipulation of urinary pH by beverages assist with the prevention of stone recurrence? Urolithiasis 2016, 44, 51–56. [Google Scholar] [CrossRef]
- Keßler, T.; Hesse, A. Cross-over study of the influence of bicarbonate-rich mineral water on urinary composition in comparison with sodium potassium citrate in healthy male subjects. Br. J. Nutr. 2000, 84, 865–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siener, R.; Jahnen, A.; Hesse, A. Influence of a mineral water rich in calcium, magnesium and bicarbonate on urine composition and the risk of calcium oxalate crystallization. Eur. J. Clin. Nutr. 2004, 58, 270–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caudarella, R.; Rizzoli, E.; Buffa, A.; Bottura, A.; Stefoni, S. Comparative study of the influence of 3 types of mineral water in patients with idiopathic calcium lithiasis. J. Urol. 1998, 159, 658–663. [Google Scholar] [CrossRef]
- Rodgers, A.L. Effect of mineral water containing calcium and magnesium on calcium oxalate urolithiasis risk factors. Urol. Int. 1997, 58, 93–99. [Google Scholar] [CrossRef]
- Karagülle, O.; Smorag, U.; Candir, F.; Gundermann, G.; Jonas, U.; Becker, A.J.; Gehrke, A.; Gutenbrunner, C. Clinical study on the effect of mineral waters containing bicarbonate on the risk of urinary stone formation in patients with multiple episodes of CaOx-urolithiasis. World J. Urol. 2007, 25, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, V.B.; Baxmann, A.C.; Tiselius, H.G.; Heilberg, I.P. The effect of sodium bicarbonate upon urinary citrate excretion in calcium stone formers. Urology 2013, 82, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Wasserfurth, P.; Schneider, I.; Ströhle, A.; Nebl, J.; Bitterlich, N.; Hahn, A. Effects of mineral waters on acid-base status in healthy adults: Results of a randomized trial. Food Nutr. Res. 2019, 63, 3515. [Google Scholar] [CrossRef] [PubMed]
- Stoots, S.J.M.; Geraghty, R.; Kamphuis, G.M.; Jamnadass, E.; Henderickx, M.M.E.L.; Ventimiglia, E.; Traxer, O.; Keller, E.X.; DeConinck, V.; Talso, M.; et al. Variations in the mineral content of bottled ‘still’ water across Europe: Comparison of 182 brands across 10 countries. J. Endourol. 2021, 35, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Stoots, S.J.M.; Geraghty, R.; Kamphuis, G.M.; Jamnadass, E.; Henderickx, M.M.E.L.; Ventimiglia, E.; Traxer, O.; Keller, E.X.; DeConinck, V.; Talso, M.; et al. Variations in the mineral content of bottled ‘carbonated or sparkling’ water across Europe: Comparison of 126 brands across 10 countries. Cent. Eur. J. Urol. 2021, 74. [Google Scholar] [CrossRef]
- Hamm, L.L.; Hering-Smith, K.S. Pathophysiology of hypocitraturic nephrolithiasis. Endocrinol. Metab. Clin. N. Am. 2002, 31, 885–893. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Taylor, E.N.; Gambaro, G.; Curhan, G.C. Soda and other beverages and the risk of kidney stones. Clin. J. Am. Soc. Nephrol. 2013, 8, 1389–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wabner, C.L.; Pak, C.Y.C. Effect of orange juice consumption on urinary stone risk factors. J. Urol. 1993, 149, 1405–1408. [Google Scholar] [CrossRef]
- Hönow, R.; Laube, N.; Schneider, A.; Keßler, T.; Hesse, A. Influence of grapefruit-, orange- and apple-juice consumption on urinary variables and risk of crystallization. Br. J. Nutr. 2003, 90, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Odvina, C.V. Comparative value of orange juice versus lemonade in reducing stone-forming risk. Clin. J. Am. Soc. Nephrol. 2006, 1, 1269–1274. [Google Scholar] [CrossRef] [Green Version]
- Hönow, R.; Hesse, A. Comparison of extraction methods for the determination of soluble and total oxalate in foods by HPLC-enzyme-reactor. Food Chem. 2002, 78, 511–521. [Google Scholar] [CrossRef]
- Siener, R.; Seidler, A.; Voss, S.; Hesse, A. The oxalate content of fruit and vegetable juices, nectars and drinks. J. Food Compos. Anal. 2016, 45, 108–112. [Google Scholar] [CrossRef]
- Large, T.; Williams, J.; Asplin, J.R.; Krambeck, A. Using low-calorie orange juice as a dietary alternative to alkali therapy. J. Endourol. 2020, 34, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Kregiel, D. Health safety of soft drinks: Contents, containers, and microorganisms. Biomed Res. Int. 2015, 2015, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hönow, R.; Gu, K.L.R.; Hesse, A.; Siener, R. Oxalate content of green tea of different origin, quality, preparation and time of harvest. Urol. Res. 2010, 38, 377–381. [Google Scholar] [CrossRef]
- Siener, R.; Seidler, A.; Voss, S.; Hesse, A. Oxalate content of beverages. J. Food Compos. Anal. 2017, 63, 184–188. [Google Scholar] [CrossRef]
- Penniston, K.L.; Nakada, S.Y.; Holmes, R.P.; Assimos, D.G. Quantitative assessment of citric acid in lemon juice, lime juice, and commercially-available fruit juice products. J. Endourol. 2008, 22, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Seltzer, M.A.; Low, R.K.; McDonald, M.; Shami, G.S.; Stoller, M.L. Dietary manipulation with lemonade to treat hypocitraturic calcium nephrolithiasis. J. Urol. 1996, 156, 907–909. [Google Scholar] [CrossRef]
- Penniston, K.L.; Steele, T.H.; Nakada, S.Y. Lemonade therapy increases urinary citrate and urine volumes in patients with recurrent calcium oxalate stone formation. Urology 2007, 70, 856–860. [Google Scholar] [CrossRef]
- Kang, D.E.; Sur, R.L.; Haleblian, G.E.; Fitzsimons, N.J.; Borawski, K.M.; Preminger, G.M. Long-term lemonade based dietary manipulation in patients with hypocitraturic nephrolithiasis. J. Urol. 2007, 177, 1358–1362. [Google Scholar] [CrossRef]
- Aras, B.; Kalfazade, N.; Tugcu, V.; Kemahli, E.; Özbay, B.; Polat, H.; Tasci, A.I. Can lemon juice be an alternative to potassium citrate in the treatment of urinary calcium stones in patients with hypocitraturia? A prospective randomized study. Urol. Res. 2008, 36, 313–317. [Google Scholar] [CrossRef]
- Koff, S.G.; Paquette, E.L.; Cullen, J.; Gancarczyk, K.K.; Tucciarone, P.R.; Schenkman, N.S. Comparison between lemonade and potassium citrate and impact on urine pH and 24-hour urine parameters in patients with kidney stone formation. Urology 2007, 69, 1013–1016. [Google Scholar] [CrossRef]
- Cheng, J.W.; Wagner, H.; Asplin, J.R.; Hodgkin, G.; Schlaifer, A.; Fargusson, M.; Fargusson, J.; Baldwin, D.D. The effect of lemonade and diet lemonade upon urinary parameters affecting calcium urinary stone formation. J. Endourol. 2019, 33, 160–166. [Google Scholar] [CrossRef]
- Eisner, B.H.; Asplin, J.R.; Goldfarb, D.S.; Ahmad, A.; Stoller, M.L. Citrate, malate and alkali content in commonly consumed diet sodas: Implications for nephrolithiasis treatment. J. Urol. 2010, 183, 2419–2423. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, D.S.; Asplin, J.R. Effect of grapefruit juice on urinary lithogenicity. J. Urol. 2001, 166, 263–267. [Google Scholar] [CrossRef]
- Keßler, T.; Jansen, B.; Hesse, A. Effect of blackcurrant-, cranberry- and plum juice consumption on risk factors associated with kidney stone formation. Eur. J. Clin. Nutr. 2002, 56, 1020–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McHarg, T.; Rodgers, A.; Charlton, K. Influence of cranberry juice on the urinary risk factors for calcium oxalate kidney stone formation. BJU Int. 2003, 92, 765–768. [Google Scholar] [CrossRef] [Green Version]
- Gettman, M.T.; Ogan, K.; Brinkley, L.J.; Adams-Huet, B.; Pak, C.Y.C.; Pearle, M.S. Effect of cranberry juice consumption on urinary stone risk factors. J. Urol. 2005, 174, 590–594. [Google Scholar] [CrossRef]
- Patel, R.M.; Jiang, P.; Asplin, J.; Granja, I.; Capretz, T.; Osann, K.; Okhunov, Z.; Landman, J.; Clayman, R.V. Coconut water: An unexpected source of urinary citrate. Biomed. Res. Int. 2018, 2018, 3061742. [Google Scholar] [CrossRef] [Green Version]
- Shuster, J.; Jenkins, A.; Logan, C.; Barnett, T.; Riehle, R.; Zackson, D.; Wolfe, H.; Dale, R.; Daley, M.; Malic, I.; et al. Soft drink consumption and urinary stone recurrence: A randomized prevention trial. J. Clin. Epidemiol. 1992, 45, 911–916. [Google Scholar] [CrossRef]
- Choi, J.W.J.; Ford, E.S.; Gao, X.; Choi, H.K. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2008, 59, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Curhan, G. Soft drinks, fructose consumption, and the risk of gout in men: Prospective cohort study. Br. Med. J. 2008, 336, 309–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, E.N.; Curhan, G.C. Fructose consumption and the risk of kidney stones. Kidney Int. 2008, 73, 207–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barghouthy, Y.; Corrales, M.; Doizi, S.; Somani, B.K.; Traxer, O. Tea and coffee consumption and pathophysiology related to kidney stone formation: A systematic review. World J. Urol. 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Wu, J.S.; Chang, Y.F.; Sun, Z.J.; Chang, C.J.; Lu, F.H.; Yang, Y.C. Increased amount and duration of tea consumption may be associated with decreased risk of renal stone disease. World J. Urol. 2019, 37, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Littlejohns, T.J.; Neal, N.L.; Bradbury, K.E.; Heers, H.; Allen, N.E.; Turney, B.W. Fluid intake and dietary factors and the risk of incident kidney stones in UK biobank: A population-based prospective cohort study. Eur. Urol. Focus 2020, 6, 752–761. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, P.M.; Taylor, E.N.; Gambaro, G.; Curhan, G.C. Caffeine intake and the risk of kidney stones. Am. J. Clin. Nutr. 2014, 100, 1596–1603. [Google Scholar] [CrossRef] [Green Version]
- Massey, L.K.; Wise, K.J. Impact of gender and age on urinary water and mineral excretion responses to acute caffeine doses. Nutr. Res. 1992, 12, 605–612. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA) Panel on Dietetic Products, Nutrition and Allergies. Scientific Opinion on the Safety of Caffeine. EFSA J. 2015, 13, 4102. [Google Scholar] [CrossRef] [Green Version]
- Shu, X.; Cai, H.; Xiang, Y.B.; Li, H.; Lipworth, L.; Miller, N.L.; Zheng, W.; Shu, X.O.; His, R.S. Green tea intake and risk of incident kidney stones: Prospective cohort studies in middle-aged and elderly Chinese individuals. Int. J. Urol. 2019, 26, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Mahdavi, R.; Yagin, N.L.; Liebman, M.; Nikniaz, Z. Effect of different brewing times on soluble oxalate content of loose-packed black teas and tea bags. Urolithiasis 2013, 41, 15–19. [Google Scholar] [CrossRef]
- McKay, D.W.; Seviour, J.P.; Comerford, A.; Vasdev, S.; Massey, L.K. Herbal tea: An alternative to regular tea for those who form calcium oxalate stones. J. Am. Diet. Assoc. 1995, 95, 360–361. [Google Scholar] [CrossRef]
- Richter, M.; Baerlocher, K.; Bauer, J.M.; Elmadfa, I.; Heseker, H.; Leschik-Bonnet, E.; Stangl, G.; Volkert, D.; Stehle, P. Revised reference values for the intake of protein. Ann. Nutr. Metab. 2019, 74, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Kok, D.J.; Iestra, J.A.; Doorenbos, C.J.; Papapoulos, S.E. The effects of dietary excesses in animal protein and in sodium on the composition and the crystallization kinetics of calcium oxalate monohydrate in urines of healthy men. J. Clin. Endocrinol. Metab. 1990, 71, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.T.; Wang, C.Y.; Sakhaee, K.; Brinkley, L.; Pak, C.Y.C. Effect of low-carbohydrate high-protein diets on acid-base balance, stone-forming propensity, and calcium metabolism. Am. J. Kidney Dis. 2002, 40, 265–274. [Google Scholar] [CrossRef]
- Giannini, S.; Nobile, M.; Sartori, L.; Carbonare, L.D.; Ciuffreda, M.; Corrò, P.; D’Angelo, A.; Calò, L.; Crepaldi, G. Acute effects of moderate dietary protein restriction in patients with idiopathic hypercalciuria and calcium nephrolithiasis. Am. J. Clin. Nutr. 1999, 69, 267–271. [Google Scholar] [CrossRef]
- Pedersen, A.N.; Kondrup, J.; Børsheim, E. Health effects of protein intake in healthy adults: A systematic literature review. Food Nutr. Res. 2013, 57, 21245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Elswyk, M.E.; Weatherford, C.A.; McNeill, S.H. A systematic review of renal health in healthy individuals associated with protein intake above the US Recommended Daily Allowance in randomized controlled trials and observational studies. Adv. Nutr. 2018, 9, 404–418. [Google Scholar] [CrossRef]
- Curhan, G.C.; Willett, W.C.; Knight, E.L.; Stampfer, M.J. Dietary factors and the risk of incident kidney stones in younger women. Arch. Intern. Med. 2004, 164, 885–891. [Google Scholar] [CrossRef] [Green Version]
- Taylor, E.N.; Stampfer, M.J.; Curhan, G.C. Dietary factors and the risk of incident kidney stones in men: New insights after 14 years of follow-up. J. Am. Soc. Nephrol. 2004, 15, 3225–3232. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Hoffmann, G. Comparison of high vs. normal/low protein diets on renal function in subjects without chronic kidney disease: A systematic review and meta-analysis. PLoS ONE 2014, 9, e97656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siener, R.; Struwe, F.; Hesse, A. Effect of L-methionine on the risk of phosphate stone formation. Urology 2016, 98, 39–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remer, T. Influence of diet on acid-base balance. Semin. Dial. 2000, 13, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.M.; Mandel, E.I.; Curhan, G.C.; Gambaro, G.; Taylor, E.N. Dietary protein and potassium, diet–dependent net acid load, and risk of incident kidney stones. Clin. J. Am. Soc. Nephrol. 2016, 11, 1834–1844. [Google Scholar] [CrossRef]
- Remer, T.; Manz, F. Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am. J. Clin. Nutr. 1994, 59, 1356–1361. [Google Scholar] [CrossRef]
- Remer, T.; Manz, F. Potential renal acid load of foods and its influence on urine pH. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef]
- Meschi, T.; Maggiore, U.; Fiaccadori, E.; Schianchi, T.; Bosi, S.; Adorni, G.; Ridolo, E.; Guerra, A.; Allegri, F.; Novarini, A.; et al. The effect of fruits and vegetables on urinary stone risk factors. Kidney Int. 2004, 66, 2402–2410. [Google Scholar] [CrossRef] [Green Version]
- Moe, O.W.; Huang, C.L. Hypercalciuria from acid load: Renal mechanisms. J. Nephrol. 2006, 19, S53–S61. [Google Scholar]
- Power, C.; Barker, D.J.P.; Nelson, M.; Winter, P.D. Diet and renal stones: A case-control study. Br. J. Urol. 1984, 56, 456–459. [Google Scholar] [PubMed]
- Fellström, B.; Danielson, B.G.; Karlström, B.; Lithell, H.; Ljunghall, S.; Vessby, B. Dietary habits in renal stone patients compared with healthy subjects. Br. J. Urol. 1989, 63, 575–580. [Google Scholar] [CrossRef]
- Al Zahrani, H.; Norman, R.W.; Thompson, C.; Weerasinghe, S. The dietary habits of idiopathic calcium stone-formers and normal control subjects. BJU Int. 2000, 85, 616–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinchieri, A.; Mandressi, A.; Luongo, P.; Longo, G.; Pisani, E. The influence of diet on urinary risk factors for stones in healthy subjects and idiopathic renal calcium stone formers. Br. J. Urol. 1991, 67, 230–236. [Google Scholar] [CrossRef]
- Curhan, G.C.; Willett, W.C.; Rimm, E.B.; Stampfer, M.J. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N. Engl. J. Med. 1993, 328, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Curhan, G.C.; Willett, W.C.; Speizer, F.E.; Spiegelman, D.; Stampfer, M.J. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann. Intern. Med. 1997, 126, 497–504. [Google Scholar] [CrossRef]
- Lemann, J.; Piering, W.; Lennon, E.J. Possible role of carbohydrate-induced calciuria in calcium oxalate kidney-stone formation. N. Engl. J. Med. 1969, 280, 232–237. [Google Scholar] [CrossRef]
- Barilla, D.E.; Townsend, J.; Pak, C.Y.C. An exaggerated augmentation of renal calcium excretion after oral glucose ingestion in patients with renal hypercalciuria. Investig. Urol. 1978, 15, 486–488. [Google Scholar]
- Nguyen, N.U.; Dumoulin, G.; Henriet, M.T.; Regnard, J. Effects of i.v. insulin bolus on urinary calcium and oxalate excretion in healthy subjects. Horm. Metab. Res. 1998, 30, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.J.; Gerhardt, A.; Rosenberg, I.H. Effects of glucose and glucose polymers on calcium absorption in healthy subjects. Am. J. Clin. Nutr. 1987, 46, 699–701. [Google Scholar] [CrossRef]
- Yoon, V.; Adams-Huet, B.; Sakhaee, K.; Maalouf, N.M. Hyperinsulinemia and urinary calcium excretion in calcium stone formers with idiopathic hypercalciuria. J. Clin. Endocrinol. Metab. 2013, 98, 2589–2594. [Google Scholar] [CrossRef] [Green Version]
- Asselman, M.; Verkoelen, C.F. Fructose intake as a risk factor for kidney stone disease. Kidney Int. 2008, 73, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.U.; Dumoulin, G.; Henriet, M.T.; Regnard, J. Increase in urinary calcium and oxalate after fructose infusion. Horm. Metab. Res. 1995, 27, 155–158. [Google Scholar] [CrossRef]
- Johnson, R.J.; Perez-Pozo, S.E.; Lillo, J.L.; Grases, F.; Schold, J.D.; Kuwabara, M.; Sato, Y.; Hernando, A.A.; Garcia, G.; Jensen, T.; et al. Fructose increases risk for kidney stones: Potential role in metabolic syndrome and heat stress. BMC Nephrol. 2018, 19, 315. [Google Scholar] [CrossRef] [PubMed]
- Emmerson, B.T. Effect of oral fructose on urate production. Ann. Rheum. Dis. 1974, 33, 276–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, I.H.; Kelley, W.N. Studies on the mechanism of fructose-induced hyperuricemia in man. Metabolism 1972, 21, 713–721. [Google Scholar] [CrossRef]
- Rodgers, A.L.; Siener, R. The efficacy of polyunsaturated fatty acids as protectors against calcium oxalate renal stone formation: A review. Nutrients 2020, 12, 1069. [Google Scholar] [CrossRef]
- Baggio, B.; Gambaro, G.; Zambon, S.; Marchini, F.; Bassi, A.; Bordin, L.; Clari, G.; Manzato, E. Anomalous phospholipid n-6 polyunsaturated fatty acid composition in idiopathic calcium nephrolithiasis. J. Am. Soc. Nephrol. 1996, 7, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Lote, C.J.; Haylor, J. Eicosanoids in renal function. Prostaglandins Leukot. Essent. Fatty Acids 1989, 36, 203–217. [Google Scholar] [CrossRef]
- Calder, P.C.; Grimble, R.F. Polyunsaturated fatty acids, inflammation and immunity. Eur. J. Clin. Nutr. 2002, 56, S14–S19. [Google Scholar] [CrossRef] [Green Version]
- Baggio, B.; Budakovic, A.; Nassuato, M.A.; Vezzoli, G.; Manzato, E.; Luisetto, G.; Zaninotto, M. Plasma phospholipid arachidonic acid content and calcium metabolism in idiopathic calcium nephrolithiasis. Kidney Int. 2000, 58, 1278–1284. [Google Scholar] [CrossRef] [Green Version]
- Watkins, B.A.; Li, Y.; Seifert, M.F. Lipids as modulators of bone remodelling. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Buck, A.C.; Lote, C.J.; Sampson, W.F. The influence of renal prostaglandins on urinary calcium excretion in idiopathic urolithiasis. J. Urol. 1983, 129, 421–426. [Google Scholar] [CrossRef]
- Hirayama, H.; Ikegami, K.; Shimomura, T.; Soejima, H.; Yamamoto, T. The possible role of prostaglandin E2 in urinary stone formation. J. Urol. 1988, 139, 549–551. [Google Scholar] [CrossRef]
- Baggio, B.; Priante, G.; Brunati, A.M.; Clari, G.; Bordin, L. Specific modulatory effect of arachidonic acid on human red blood cell oxalate transport: Clinical implications in calcium oxalate nephrolithiasis. J. Am. Soc. Nephrol. 1999, 10, S381–S384. [Google Scholar]
- Cao, J.; Schwichtenberg, K.A.; Hanson, N.Q.; Tsai, M.Y. Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids. Clin. Chem. 2006, 52, 2265–2272. [Google Scholar] [CrossRef] [Green Version]
- Naya, Y.; Ito, H.; Masai, M.; Yamaguchi, K. Association of dietary fatty acids with urinary oxalate excretion in calcium oxalate stone-formers in their fourth decade. BJU Int. 2002, 89, 842–846. [Google Scholar] [CrossRef] [Green Version]
- Siener, R.; Jansen, B.; Watzer, B.; Hesse, A. Effect of n-3 fatty acid supplementation on urinary risk factors for calcium oxalate stone formation. J. Urol. 2011, 185, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, A. Aspects of calcium oxalate crystallization: Theory, in vitro studies, and in vivo implementation. J. Am. Soc. Nephrol. 1999, 10, S351–S354. [Google Scholar]
- Pak, C.Y.C.; Adams-Huet, B.; Poindexter, J.R.; Pearle, M.S.; Peterson, R.D.; Moe, O.W. Relative effect of urinary calcium and oxalate on saturation of calcium oxalate. Kidney Int. 2004, 66, 2032–2037. [Google Scholar] [CrossRef] [Green Version]
- Siener, R.; Glatz, S.; Nicolay, C.; Hesse, A. Prospective study on the efficacy of a selective treatment and risk factors for relapse in recurrent calcium oxalate stone patients. Eur. Urol. 2003, 44, 467–474. [Google Scholar] [CrossRef]
- Siener, R.; Ebert, D.; Nicolay, C.; Hesse, A. Dietary risk factors for hyperoxaluria in calcium oxalate stone formers. Kidney Int. 2003, 63, 1037–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, J.; Jiang, J.; Assimos, D.G.; Holmes, R.P. Hydroxyproline ingestion and urinary oxalate and glycolate excretion. Kidney Int. 2006, 70, 1929–1934. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.; Madduma-Liyanage, K.; Mobley, J.A.; Assimos, D.G.; Holmes, R.P. Ascorbic acid intake and oxalate synthesis. Urolithiasis 2016, 44, 289–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, R.P.; Goodman, H.O.; Assimos, D.G. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 2001, 59, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Siener, R.; Bade, D.J.; Hesse, A.; Hoppe, B. Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria. J. Transl. Med. 2013, 11, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, E.N.; Curhan, G.C. Oxalate intake and the risk for nephrolithiasis. J. Am. Soc. Nephrol. 2007, 18, 2198–2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crivelli, J.J.; Mitchell, T.; Knight, J.; Wood, K.D.; Assimos, D.G.; Holmes, R.P.; Fargue, S. Contribution of dietary oxalate and oxalate precursors to urinary oxalate excretion. Nutrients 2021, 13, 62. [Google Scholar] [CrossRef]
- Savage, G.P.; Vanhanen, L.; Mason, S.M.; Ross, A.B. Effect of cooking on the soluble and insoluble oxalate content of some New Zealand foods. J. Food. Compos. Anal. 2000, 13, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Chai, W.; Liebman, M. Effect of cooking methods on vegetable oxalate content. J. Agric. Food Chem. 2005, 53, 3027–3030. [Google Scholar] [CrossRef]
- Siener, R.; Hönow, R.; Seidler, A.; Voss, S.; Hesse, A. Oxalate contents of species of the Polygonaceae, Amaranthaceae and Chenopodiaceae families. Food Chem. 2006, 98, 220–224. [Google Scholar] [CrossRef]
- Siener, R.; Hönow, R.; Voss, S.; Seidler, A.; Hesse, A. Oxalate content of cereals and cereal products. J. Agric. Food Chem. 2006, 54, 3008–3011. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Seidler, A.; Hönow, R. Oxalate-rich foods. Food Sci. Technol. 2021, 41, 169–173. [Google Scholar] [CrossRef]
- Taylor, E.N.; Curhan, G.C. Determinants of 24-hour urinary oxalate excretion. Clin. J. Am. Soc. Nephrol. 2008, 3, 1453–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, L.D.K.; Elinder, C.G.; Tiselius, H.G.; Wolk, A.; Åkesson, A. Ascorbic acid supplements and kidney stone incidence among men: A prospective study. JAMA Intern. Med. 2013, 173, 386–388. [Google Scholar] [CrossRef] [Green Version]
- Traxer, O.; Huet, B.; Poindexter, J.; Pak, C.Y.C.; Pearle, M.S. Effect of ascorbic acid consumption on urinary stone risk factors. J. Urol. 2003, 170, 397–401. [Google Scholar] [CrossRef]
- Siener, R.; Hoppe, B.; Löhr, P.; Müller, S.C.; Latz, S. Metabolic profile and impact of diet in patients with primary hyperoxaluria. Int. Urol. Nephrol. 2018, 50, 1583–1589. [Google Scholar] [CrossRef] [PubMed]
- Fargue, S.; Milliner, D.S.; Knight, J.; Olson, J.B.; Lowther, W.T.; Holmes, R.P. Hydroxyproline metabolism and oxalate synthesis in primary hyperoxaluria. J. Am. Soc. Nephrol. 2018, 29, 1615–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voss, S.; Hesse, A.; Zimmermann, D.J.; Sauerbruch, T.; von Unruh, G.E. Intestinal oxalate absorption is higher in idiopathic calcium oxalate stone formers than in healthy controls: Measurements with the [13C2]oxalate absorption test. J. Urol. 2006, 175, 1711–1715. [Google Scholar] [CrossRef]
- Von Unruh, G.E.; Voss, S.; Sauerbruch, T.; Hesse, A. Dependence of oxalate absorption on the daily calcium intake. J. Am. Soc. Nephrol. 2004, 15, 1567–1573. [Google Scholar] [CrossRef] [Green Version]
- Asplin, J.R. The management of patients with enteric hyperoxaluria. Urolithiasis 2016, 44, 33–43. [Google Scholar] [CrossRef]
- Siener, R.; Machaka, I.; Alteheld, B.; Bitterlich, N.; Metzner, C. Effect of fat-soluble vitamins A, D, E and K on vitamin status and metabolic profile in patients with fat malabsorption with and without urolithiasis. Nutrients 2020, 12, 3110. [Google Scholar] [CrossRef] [PubMed]
- Witting, C.; Langman, C.B.; Assimos, D.; Baum, M.A.; Kausz, A.; Milliner, D.; Tasian, G.; Worcester, E.; Allain, M.; West, M.; et al. Pathophysiology and treatment of enteric hyperoxaluria. Clin. J. Am. Soc. Nephrol. 2021, 16, 487–495. [Google Scholar] [CrossRef]
- Earnest, D.L.; Johnson, G.; Williams, H.E.; Admirand, W.H. Hyperoxaluria in patients with ileal resection: An abnormality in dietary oxalate absorption. Gastroenterology 1974, 66, 1114–1122. [Google Scholar] [CrossRef]
- Siener, R.; Petzold, J.; Bitterlich, N.; Alteheld, B.; Metzner, C. Determinants of urolithiasis in patients with intestinal fat malabsorption. Urology 2013, 81, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Bangen, U.; Sidhu, H.; Hönow, R.; von Unruh, G.; Hesse, A. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int. 2013, 83, 1144–1149. [Google Scholar] [CrossRef] [Green Version]
- Ticinesi, A.; Nouvenne, A.; Chiussi, G.; Castaldo, G.; Guerra, A.; Meschi, T. Calcium oxalate nephrolithiasis and gut microbiota: Not just a gut-kidney axis. A nutritional perspective. Nutrients 2020, 12, 548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, E.N.; Curhan, G.C. Dietary calcium from dairy and nondairy sources, and risk of symptomatic kidney stones. J. Urol. 2013, 190, 1255–1259. [Google Scholar] [CrossRef] [Green Version]
- Borghi, L.; Schianchi, T.; Meschi, T.; Guerra, A.; Allegri, F.; Maggiore, U.; Novarini, A. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N. Engl. J. Med. 2002, 346, 77–84. [Google Scholar] [CrossRef]
- Muldowney, F.P.; Freaney, R.; Moloney, M.F. Importance of dietary sodium in the hypercalciuria syndrome. Kidney Int. 1982, 22, 292–296. [Google Scholar] [CrossRef] [Green Version]
- Sakhaee, K.; Harvey, J.A.; Padalino, P.K.; Whitson, P.; Pak, C.Y.C. The potential role of salt abuse on the risk for kidney stone formation. J. Urol. 1993, 150, 310–312. [Google Scholar] [CrossRef]
- Massey, L.K.; Whiting, S.J. Dietary salt, urinary calcium and kidney-stone risk. Nutr. Rev. 1995, 53, 131–134. [Google Scholar] [CrossRef]
- Nouvenne, A.; Meschi, T.; Prati, B.; Guerra, A.; Allegri, F.; Vezzoli, G.; Soldati, L.; Gambaro, G.; Maggiore, U.; Borghi, L. Effects of a low-salt diet on idiopathic hypercalciuria in calcium-oxalate stone formers: A 3-mo randomized controlled trial. Am. J. Clin. Nutr. 2010, 91, 565–570. [Google Scholar] [CrossRef] [Green Version]
General Measures |
Urine volume: at least 2.0 to 2.5 L/24 h |
Urine density: <1.010 g/cm3 |
Fluid intake evenly distributed throughout the day |
Fluid intake before going to bed |
Replacement of extrarenal fluid losses caused by extensive physical activity, hot and/or dry environments, occupation, mental stress, and diarrhea |
Neutral Beverages |
Fruit tea, herbal tea, kidney tea, bladder tea |
Tap water (attention must be paid to the sterility of water) |
Mineral water with a low content of calcium, bicarbonate, and sulfate |
Alkalizing Beverages |
Mineral water with high bicarbonate (≥1500 mg/L) and low calcium content (<150 mg/L) |
Orange juice |
Unsuitable Beverages |
Green tea, black tea, caffeinated coffee (maximum 0.5 L/day) |
Sugar-sweetened soft drinks, including cola |
Alcoholic beverages, including wine and beer |
Beverage | Description | Oxalate Content | References |
---|---|---|---|
(mg/100 mL) | |||
Vegetable Juices | |||
Rhubarb nectar | 60% juice | 198 | [56] |
Beetroot juice | 100% juice | 60–70 | [56] |
Tomato juice | 100% juice | 4.1–8.1 | [55,56] |
Multi-vegetable juice | 100% juice | 3.6–8.5 | [56] |
Carrot juice | 100% juice | 4.6–5.8 | [55,56] |
Soybean drink | 62% soymilk | 4.4 | [56] |
Fruit Juices | |||
Grape juice, red | 100% juice | 2.1–3.9 | [55,56] |
Grape juice, white | 100% juice | 1.5 | [55,56] |
Apple juice | 100% juice | 0.9 | [55,56] |
Grapefruit juice | 100% juice | 0.1–0.3 | [55,56] |
Orange juice | 100% juice | <d.l.–0.2 | [55,56] |
Tea and Coffee | |||
Green tea | Brewed | 0.8–14.0 | [59,60] |
Black tea | Brewed | 3.9–6.3 | [60] |
Iced tea | Ready-to-drink | 0.3–2.0 | [60] |
Coffee | Filtered | 0.6 | [55] |
Beer and Wine | |||
Malt beer | 1.8 | [60] | |
Wheat beer | 1.3–1.8 | [55,60] | |
Pils | 1.3 | [60] | |
Red wine | 0.7–1.3 | [60] | |
White wine | 0.3 | [60] |
Food | Description | Oxalate Content | References |
---|---|---|---|
(mg/100 g) | |||
Vegetables | |||
Spinach | Raw | 1959 | [143] |
Sorrel | Raw | 1391 | [143] |
Rhubarb | Raw | 1235 | [143] |
Mangold | Raw | 874 | [143] |
Sweet potato | Raw | 496 | [145] |
Okra | Raw | 317 | [145] |
Beetroot | Raw | 160 | [143] |
Olive, green | Canned | 45.7 | [55] |
Legumes | |||
Beans, white | Seeds, dry | 548 | [145] |
Soybeans | Seeds, dry | 277 | [145] |
Quail beans | Seeds, dry | 177 | [145] |
Kidney beans | Seeds, dry | 74.6 | [145] |
Green beans | Raw | 65.2 | [145] |
Fruits | |||
Star fruit | Raw | 295 | [55] |
Elderberry, black | Raw | 72.1 | [55] |
Blackberry | Raw | 29.2 | [55] |
Gooseberry, green | Raw | 27.0 | [55] |
Kiwi fruit | Raw | 23.0 | [55] |
Fig | Raw | 20.5 | [55] |
Pseudocereals | |||
Amaranth | Nuts | 232 | [143] |
Quinoa | Nuts | 184 | [143] |
Buckwheat | Nuts | 143 | [143] |
Cereals | |||
Wheat | Bran | 457 | [144] |
Wheat | Wholegrain flour | 70.0 | [144] |
Bulgur | 59.4 | [144] | |
Couscous | 65.2 | [144] | |
Nuts and Cocoa | |||
Sesame | 3800 | [55] | |
Almond | 383 | [55] | |
Hazel nut | 167 | [55] | |
Pistachio | 56.5 | [55] | |
Cocoa powder | 567–619 | [55,145] | |
Herbs and Spices | |||
Licorice | Root | 3569 | [145] |
Blue fenugreek | Powder | 1246 | [145] |
Pepper, black | Grinded | 623 | [55] |
Parsley | Raw | 136 | [55] |
Urinary Risk Factor | Limit | Recommendation |
---|---|---|
Urine volume | Urine volume < 2.0 L/24 h | Fluid intake that achieves urine volume ≥ 2.0 to 2.5 L/24 h |
Neutral and alkalizing beverages | ||
Hypercalciuria | Calcium > 5 mmol/24 h | Calcium intake: 1000 to 1200 mg/day |
Protein intake: 0.8 to 1.0 g/kg normal body weight/day | ||
Sodium chloride intake: <6 g/day | ||
Increased intake of vegetables and fruits | ||
Hyperoxaluria | Oxalate > 0.5 mmol/24 h | Low dietary oxalate intake |
Calcium intake: 1000 to 1200 mg/day (IH) | ||
Calcium supplementation (EH) | ||
Hyperuricosuria | Uric acid > 4 mmol/24 h | Protein intake: 0.8 to 1.0 g/kg normal body weight/day |
Reduced dietary purine intake | ||
Increased intake of vegetables and fruits | ||
Hypocitraturia | Citrate < 1.7 mmol/24 h | Protein intake: 0.8 to 1.0 g/kg normal body weight/day |
Increased intake of vegetables and fruits |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siener, R. Nutrition and Kidney Stone Disease. Nutrients 2021, 13, 1917. https://doi.org/10.3390/nu13061917
Siener R. Nutrition and Kidney Stone Disease. Nutrients. 2021; 13(6):1917. https://doi.org/10.3390/nu13061917
Chicago/Turabian StyleSiener, Roswitha. 2021. "Nutrition and Kidney Stone Disease" Nutrients 13, no. 6: 1917. https://doi.org/10.3390/nu13061917