Plant Proteins and Exercise: What Role Can Plant Proteins Have in Promoting Adaptations to Exercise?
Abstract
:1. Introduction
1.1. Muscle Protein Metabolism and Skeletal Muscle
1.2. The Importance of Added Protein to Optimize Exercise Training Adaptations
1.3. The Case for Plant Proteins
1.4. Quality Considerations for Both Animal and Plant-Based Protein
2. Methods
3. Acute Studies Using Plant Proteins and Exercise
4. Prolonged Studies Using Plant Proteins and Exercise
5. Recovery Considerations for Plant Protein Sources
6. Considerations for Older Adults
7. Increasing the Anabolic Potential of Plant Sources
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burd, N.A.; Tang, J.E.; Moore, D.R.; Phillips, S.M. Exercise training and protein metabolism: Influences of contraction, protein intake, and sex-based differences. J. Appl. Physiol. 2009, 106, 1692–1701. [Google Scholar] [CrossRef] [PubMed]
- Koopman, R.; van Loon, L.J. Aging, exercise, and muscle protein metabolism. J. Appl. Physiol. 2009, 106, 2040–2048. [Google Scholar] [CrossRef]
- Biolo, G.; Tipton, K.D.; Klein, S.; Wolfe, R.R. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am. J. Physiol. 1997, 273, E122–E129. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Churchward-Venne, T.A.; Burd, N.A.; Breen, L.; Tarnopolsky, M.A.; Phillips, S.M. Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men. Nutr. Metab. 2012, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, S.M. A brief review of higher dietary protein diets in weight loss: A focus on athletes. Sports Med. 2014, 44 (Suppl S2), S149–S153. [Google Scholar] [CrossRef] [Green Version]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef]
- Phillips, S.M.; Chevalier, S.; Leidy, H.J. Protein "requirements" beyond the RDA: Implications for optimizing health. Appl. Physiol. Nutr. Metab. 2016, 41, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.M.; Van Loon, L.J.C. Dietary protein for athletes: From requirements to optimum adaptation. J. Sports Sci. 2011, 29 (Suppl S1), S29–S38. [Google Scholar] [CrossRef]
- Cermak, N.M.; Res, P.T.; de Groot, L.C.; Saris, W.H.; van Loon, L.J. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: A meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1454–1464. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, N.R.; DiMarco, N.M.; Langley, S.; American Dietetic Association; Dietitians of Canada; American College of Sports Medicine: Nutrition and Athletic Performance. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Am. Diet. Assoc. 2009, 109, 509–527. [Google Scholar]
- Tipton, K.D.; Gurkin, B.E.; Matin, S.; Wolfe, R.R. Nonessential amino acids are not necessary to stimulate net muscle protein synthesis in healthy volunteers. J. Nutr. Biochem. 1999, 10, 89–95. [Google Scholar] [CrossRef]
- Volpi, E.; Kobayashi, H.; Sheffield-Moore, M.; Mittendorfer, B.; Wolfe, R.R. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am. J. Clin. Nutr. 2003, 78, 250–258. [Google Scholar] [CrossRef]
- Drummond, M.J.; Rasmussen, B.B. Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 222–226. [Google Scholar] [CrossRef]
- Witard, O.C.; Jackman, S.R.; Breen, L.; Smith, K.; Selby, A.; Tipton, K.D. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am. J. Clin. Nutr. 2014, 99, 86–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, H.; Johnston, C.; Wharton, C. Plant-Based Diets: Considerations for Environmental Impact, Protein Quality, and Exercise Performance. Nutrients 2018, 10, 1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAOSTAT. Food Balance Sheets; Food and Agriculture Organization of the United Nations Statistics Division: Rome, Italy, 2013. [Google Scholar]
- Moore, D.R.; Soeters, P.B. The Biological Value of Protein. Nestle Nutr. Inst. Workshop Ser. 2015, 82, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Eggum, B. Comments on report of a joint FAO/WHO expert consultation on protein quality evaluation, Rome 1990. Z. Ernahr. 1991, 30, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, G. The protein digestibility-corrected amino acid score. J. Nutr. 2000, 130, 1865S–1867S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- van Vliet, S.; Burd, N.A.; van Loon, L.J. The Skeletal Muscle Anabolic Response to Plant-versus Animal-Based Protein Consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.E.; Moore, D.R.; Kujbida, G.W.; Tarnopolsky, M.A.; Phillips, S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009, 107, 987–992. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Dietary protein quality evaluation in human nutrition. Report of an FAQ Expert Consultation. FAO Food Nutr. Pap. 2013, 92, 1–66. [Google Scholar]
- Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M.P.; Maubois, J.L.; Beaufrere, B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA 1997, 94, 14930–14935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boirie, Y.; Gachon, P.; Corny, S.; Fauquant, J.; Maubois, J.L.; Beaufrere, B. Acute postprandial changes in leucine metabolism as assessed with an intrinsically labeled milk protein. Am. J. Physiol. 1996, 271, E1083–E1091. [Google Scholar] [CrossRef]
- Dangin, M.; Boirie, Y.; Garcia-Rodenas, C.; Gachon, P.; Fauquant, J.; Callier, P.; Ballevre, O.; Beaufrere, B. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E340–E348. [Google Scholar] [CrossRef] [Green Version]
- Dangin, M.; Boirie, Y.; Guillet, C.; Beaufrere, B. Influence of the protein digestion rate on protein turnover in young and elderly subjects. J. Nutr. 2002, 132, 3228S–3233S. [Google Scholar] [CrossRef]
- Bos, C.; Metges, C.C.; Gaudichon, C.; Petzke, K.J.; Pueyo, M.E.; Morens, C.; Everwand, J.; Benamouzig, R.; Tome, D. Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J. Nutr. 2003, 133, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, F.; Mahe, S.; Benamouzig, R.; Luengo, C.; Dare, S.; Gaudichon, C.; Tome, D. Nutritional value of [15N]-soy protein isolate assessed from ileal digestibility and postprandial protein utilization in humans. J. Nutr. 1999, 129, 1992–1997. [Google Scholar] [CrossRef] [PubMed]
- Gaudichon, C.; Mahe, S.; Benamouzig, R.; Luengo, C.; Fouillet, H.; Dare, S.; Van Oycke, M.; Ferriere, F.; Rautureau, J.; Tome, D. Net postprandial utilization of [15N]-labeled milk protein nitrogen is influenced by diet composition in humans. J. Nutr. 1999, 129, 890–895. [Google Scholar] [CrossRef]
- Bos, C.; Juillet, B.; Fouillet, H.; Turlan, L.; Dare, S.; Luengo, C.; N’Tounda, R.; Benamouzig, R.; Gausseres, N.; Tome, D.; et al. Postprandial metabolic utilization of wheat protein in humans. Am. J. Clin. Nutr. 2005, 81, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Luiking, Y.C.; Deutz, N.E.; Jakel, M.; Soeters, P.B. Casein and soy protein meals differentially affect whole-body and splanchnic protein metabolism in healthy humans. J. Nutr. 2005, 135, 1080–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohrke, B.; Saggau, E.; Schadereit, R.; Beyer, M.; Bellmann, O.; Kuhla, S.; Hagemeister, H. Activation of skeletal muscle protein breakdown following consumption of soyabean protein in pigs. Br. J. Nutr. 2001, 85, 447–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouillet, H.; Bos, C.; Gaudichon, C.; Tome, D. Approaches to quantifying protein metabolism in response to nutrient ingestion. J. Nutr. 2002, 132, 3208S–3218S. [Google Scholar] [CrossRef] [Green Version]
- Millward, D.J.; Fereday, A.; Gibson, N.R.; Cox, M.C.; Pacy, P.J. Efficiency of utilization of wheat and milk protein in healthy adults and apparent lysine requirements determined by a single-meal [1-13C]leucine balance protocol. Am. J. Clin. Nutr. 2002, 76, 1326–1334. [Google Scholar] [CrossRef]
- Areta, J.L.; Burke, L.M.; Ross, M.L.; Camera, D.M.; West, D.W.; Broad, E.M.; Jeacocke, N.A.; Moore, D.R.; Stellingwerff, T.; Phillips, S.M.; et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J. Physiol. 2013, 591, 2319–2331. [Google Scholar] [CrossRef]
- Wilkinson, S.B.; Tarnopolsky, M.A.; Macdonald, M.J.; Macdonald, J.R.; Armstrong, D.; Phillips, S.M. Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am. J. Clin. Nutr. 2007, 85, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Solomon-Hill, G.; Volk, B.M.; Kupchak, B.R.; Looney, D.P.; Dunn-Lewis, C.; Comstock, B.A.; Szivak, T.K.; Hooper, D.R.; Flanagan, S.D.; et al. The effects of soy and whey protein supplementation on acute hormonal reponses to resistance exercise in men. J. Am. Coll. Nutr. 2013, 32, 66–74. [Google Scholar] [CrossRef]
- Pinckaers, P.J.M.; Kouw, I.W.K.; Hendriks, F.K.; van Kranenburg, J.M.X.; de Groot, L.; Verdijk, L.B.; Snijders, T.; van Loon, L.J.C. No differences in muscle protein synthesis rates following ingestion of wheat protein, milk protein, and their protein blend in healthy, young males. Br. J. Nutr. 2021, 1–38. [Google Scholar] [CrossRef]
- Oikawa, S.Y.; Bahniwal, R.; Holloway, T.M.; Lim, C.; McLeod, J.C.; McGlory, C.; Baker, S.K.; Phillips, S.M. Potato Protein Isolate Stimulates Muscle Protein Synthesis at Rest and with Resistance Exercise in Young Women. Nutrients 2020, 12, 1235. [Google Scholar] [CrossRef]
- Gorissen, S.H.; Horstman, A.M.; Franssen, R.; Crombag, J.J.; Langer, H.; Bierau, J.; Respondek, F.; van Loon, L.J. Ingestion of Wheat Protein Increases In Vivo Muscle Protein Synthesis Rates in Healthy Older Men in a Randomized Trial. J. Nutr. 2016, 146, 1651–1659. [Google Scholar] [CrossRef]
- Purpura, M.; Lowery, R.P.; Joy, J.M.; De Souza, E.O.; Kalman, D. A comparison of blood amino acid concentrations following ingestion of rice and whey protein isolate: A double-blind, crossover study. J. Nutr. Health Sci. 2014, 1, 306. [Google Scholar]
- Arya, S.S.; Salve, A.R.; Chauhan, S. Peanuts as functional food: A review. J. Food Sci. Technol. 2016, 53, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Lamb, D.A.; Moore, J.H.; Smith, M.A.; Vann, C.G.; Osburn, S.C.; Ruple, B.A.; Fox, C.D.; Smith, K.S.; Altonji, O.M.; Power, Z.M.; et al. The effects of resistance training with or without peanut protein supplementation on skeletal muscle and strength adaptations in older individuals. J. Int. Soc. Sports Nutr. 2020, 17, 66. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Church, D.D.; Schutzler, S.E.; Azhar, G.; Kim, I.Y.; Ferrando, A.A.; Wolfe, R.R. Metabolic Evaluation of the Dietary Guidelines’ Ounce Equivalents of Protein Food Sources in Young Adults: A Randomized Controlled Trial. J. Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.C.; DiSilvestro, R.A.; Babaknia, A.; Devor, S.T. Soy versus whey protein bars: Effects on exercise training impact on lean body mass and antioxidant status. Nutr. J. 2004, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Candow, D.G.; Burke, N.C.; Smith-Palmer, T.; Burke, D.G. Effect of whey and soy protein supplementation combined with resistance training in young adults. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 233–244. [Google Scholar] [CrossRef]
- Denysschen, C.A.; Burton, H.W.; Horvath, P.J.; Leddy, J.J.; Browne, R.W. Resistance training with soy vs whey protein supplements in hyperlipidemic males. J. Int. Soc. Sports Nutr. 2009, 6, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartman, J.W.; Tang, J.E.; Wilkinson, S.B.; Tarnopolsky, M.A.; Lawrence, R.L.; Fullerton, A.V.; Phillips, S.M. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am. J. Clin. Nutr. 2007, 86, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Volek, J.S.; Volk, B.M.; Gomez, A.L.; Kunces, L.J.; Kupchak, B.R.; Freidenreich, D.J.; Aristizabal, J.C.; Saenz, C.; Dunn-Lewis, C.; Ballard, K.D.; et al. Whey protein supplementation during resistance training augments lean body mass. J. Am. Coll. Nutr. 2013, 32, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Joy, J.M.; Lowery, R.P.; Wilson, J.M.; Purpura, M.; De Souza, E.O.; Wilson, S.M.; Kalman, D.S.; Dudeck, J.E.; Jäger, R. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance. Nutr. J. 2013, 12, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, J.M.; Ratliff, K.M.; Blumkaitis, J.C.; Harty, P.S.; Zabriskie, H.A.; Stecker, R.A.; Currier, B.S.; Jagim, A.R.; Jäger, R.; Purpura, M.; et al. Effects of daily 24-gram doses of rice or whey protein on resistance training adaptations in trained males. J. Int. Soc. Sports Nutr. 2020, 17, 60. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R. Maximizing Post-exercise Anabolism: The Case for Relative Protein Intakes. Front. Nutr. 2019, 6, 147. [Google Scholar] [CrossRef]
- Babault, N.; Paizis, C.; Deley, G.; Guerin-Deremaux, L.; Saniez, M.H.; Lefranc-Millot, C.; Allaert, F.A. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: A double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein. J. Int. Soc. Sports Nutr. 2015, 12, 3. [Google Scholar] [CrossRef] [Green Version]
- Reidy, P.T.; Borack, M.S.; Markofski, M.M.; Dickinson, J.M.; Deer, R.R.; Husaini, S.H.; Walker, D.K.; Igbinigie, S.; Robertson, S.M.; Cope, M.B.; et al. Protein Supplementation Has Minimal Effects on Muscle Adaptations during Resistance Exercise Training in Young Men: A Double-Blind Randomized Clinical Trial. J. Nutr. 2016, 146, 1660–1669. [Google Scholar] [CrossRef] [Green Version]
- Mobley, C.B.; Haun, C.T.; Roberson, P.A.; Mumford, P.W.; Romero, M.A.; Kephart, W.C.; Anderson, R.G.; Vann, C.G.; Osburn, S.C.; Pledge, C.D.; et al. Effects of Whey, Soy or Leucine Supplementation with 12 Weeks of Resistance Training on Strength, Body Composition, and Skeletal Muscle and Adipose Tissue Histological Attributes in College-Aged Males. Nutrients 2017, 9, 972. [Google Scholar] [CrossRef]
- Lynch, H.M.; Buman, M.P.; Dickinson, J.M.; Ransdell, L.B.; Johnston, C.S.; Wharton, C.M. No Significant Differences in Muscle Growth and Strength Development When Consuming Soy and Whey Protein Supplements Matched for Leucine Following a 12 Week Resistance Training Program in Men and Women: A Randomized Trial. Int. J. Environ. Res. Public Health 2020, 17, 3871. [Google Scholar] [CrossRef]
- Hevia-Larrain, V.; Gualano, B.; Longobardi, I.; Gil, S.; Fernandes, A.L.; Costa, L.A.R.; Pereira, R.M.R.; Artioli, G.G.; Phillips, S.M.; Roschel, H. High-Protein Plant-Based Diet Versus a Protein-Matched Omnivorous Diet to Support Resistance Training Adaptations: A Comparison Between Habitual Vegans and Omnivores. Sports Med. 2021, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Thomson, R.L.; Brinkworth, G.D.; Noakes, M.; Buckley, J.D. Muscle strength gains during resistance exercise training are attenuated with soy compared with dairy or usual protein intake in older adults: A randomized controlled trial. Clin. Nutr. 2016, 35, 27–33. [Google Scholar] [CrossRef]
- Kritikos, S.; Papanikolaou, K.; Draganidis, D.; Poulios, A.; Georgakouli, K.; Tsimeas, P.; Tzatzakis, T.; Batsilas, D.; Batrakoulis, A.; Deli, C.K.; et al. Effect of whey vs. soy protein supplementation on recovery kinetics following speed endurance training in competitive male soccer players: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2021, 18, 23. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Cholewa, J.M.; Dardevet, D.; Huang, T.; Zhao, Y.; Shang, H.; Yang, Y.; Ding, X.; Zhang, C.; Wang, H.; et al. Effects of oat protein supplementation on skeletal muscle damage, inflammation and performance recovery following downhill running in untrained collegiate men. Food Funct. 2018, 9, 4720–4729. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Zwetsloot, K.A.; Simonson, A.J.; Hoyle, A.T.; Wang, X.; Nelson, H.K.; Lefranc-Millot, C.; Guerin-Deremaux, L. Effects of Whey and Pea Protein Supplementation on Post-Eccentric Exercise Muscle Damage: A Randomized Trial. Nutrients 2020, 12, 2382. [Google Scholar] [CrossRef]
- Saracino, P.G.; Saylor, H.E.; Hanna, B.R.; Hickner, R.C.; Kim, J.S.; Ormsbee, M.J. Effects of Pre-Sleep Whey vs. Plant-Based Protein Consumption on Muscle Recovery Following Damaging Morning Exercise. Nutrients 2020, 12, 2049. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Lieberman, H.R.; McLellan, T.M. Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: A systematic review. Sports Med. 2014, 44, 655–670. [Google Scholar] [CrossRef] [PubMed]
- Doherty, T.J. Invited review: Aging and sarcopenia. J. Appl. Physiol. 2003, 95, 1717–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iannuzzi-Sucich, M.; Prestwood, K.M.; Kenny, A.M. Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M772–M777. [Google Scholar] [CrossRef] [Green Version]
- Clark, B.C.; Manini, T.M. What is dynapenia? Nutrition 2012, 28, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.M. Nutrient-rich meat proteins in offsetting age-related muscle loss. Meat. Sci. 2012, 92, 174–178. [Google Scholar] [CrossRef]
- Pannemans, D.L.; Wagenmakers, A.J.; Westerterp, K.R.; Schaafsma, G.; Halliday, D. Effect of protein source and quantity on protein metabolism in elderly women. Am. J. Clin. Nutr. 1998, 68, 1228–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giezenaar, C.; Chapman, I.; Luscombe-Marsh, N.; Feinle-Bisset, C.; Horowitz, M.; Soenen, S. Ageing Is Associated with Decreases in Appetite and Energy Intake--A Meta-Analysis in Healthy Adults. Nutrients 2016, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.R.; Robinson, M.J.; Fry, J.L.; Tang, J.E.; Glover, E.I.; Wilkinson, S.B.; Prior, T.; Tarnopolsky, M.A.; Phillips, S.M. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am. J. Clin. Nutr. 2009, 89, 161–168. [Google Scholar] [CrossRef]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clin. Sci. (Lond) 2011, 121, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Churchward-Venne, T.A.; Burd, N.A.; Mitchell, C.J.; West, D.W.; Philp, A.; Marcotte, G.R.; Baker, S.K.; Baar, K.; Phillips, S.M. Supplementation of a suboptimal protein dose with leucine or essential amino acids: Effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J. Physiol. 2012, 590, 2751–2765. [Google Scholar] [CrossRef]
- Engelen, M.P.; Rutten, E.P.; De Castro, C.L.; Wouters, E.F.; Schols, A.M.; Deutz, N.E. Supplementation of soy protein with branched-chain amino acids alters protein metabolism in healthy elderly and even more in patients with chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2007, 85, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Norton, L.E.; Wilson, G.J.; Layman, D.K.; Moulton, C.J.; Garlick, P.J. Leucine content of dietary proteins is a determinant of postprandial skeletal muscle protein synthesis in adult rats. Nutr. Metab. (Lond) 2012, 9, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, G.L. The rationale for consuming protein blends in sports nutrition. J. Am. Coll. Nutr. 2009, 28 Suppl, 464S–472S. [Google Scholar] [CrossRef]
- Reidy, P.T.; Walker, D.K.; Dickinson, J.M.; Gundermann, D.M.; Drummond, M.J.; Timmerman, K.L.; Fry, C.S.; Borack, M.S.; Cope, M.B.; Mukherjea, R.; et al. Protein blend ingestion following resistance exercise promotes human muscle protein synthesis. J. Nutr. 2013, 143, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B.; et al. International society of sports nutrition position stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2017, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Burd, N.A.; West, D.W.; Moore, D.R.; Atherton, P.J.; Staples, A.W.; Prior, T.; Tang, J.E.; Rennie, M.J.; Baker, S.K.; Phillips, S.M. Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J. Nutr. 2011, 141, 568–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennings, B.; Koopman, R.; Beelen, M.; Senden, J.M.; Saris, W.H.; van Loon, L.J. Exercising before protein intake allows for greater use of dietary protein-derived amino acids for de novo muscle protein synthesis in both young and elderly men. Am. J. Clin. Nutr. 2011, 93, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Stecker, R.A.; Moon, J.M.; Russo, T.J.; Ratliff, K.M.; Mumford, P.W.; Jäger, R.; Purpura, M.; Kerksick, C.M. Bacillus coagulans GBI-30, 6086 improves amino acid absorption from milk protein. Nutr. Metab. (Lond) 2020, 17, 93. [Google Scholar] [CrossRef]
- Jäger, R.; Zaragoza, J.; Purpura, M.; Iametti, S.; Marengo, M.; Tinsley, G.M.; Anzalone, A.J.; Oliver, J.M.; Fiore, W.; Biffi, A.; et al. Probiotic Administration Increases Amino Acid Absorption from Plant Protein: A Placebo-Controlled, Randomized, Double-Blind, Multicenter, Crossover Study. Probiotics Antimicrob. Proteins 2020, 12, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
Reference | Participants | Design | Study Duration | Dosing Protocol | Exercise Program | Primary Variables | Key Findings |
---|---|---|---|---|---|---|---|
Wilkinson et al. 2007 [39] | 8 healthy males (21.6 ± 0.3 years.) | RCT, crossover (2 groups) Milk (n = 8) Soy (n = 8) | 1 trial visit per condition 7-day washout |
Macronutrient-matched soy or milk beverages (18 g protein) | Lower body exercise bout |
Protein kinetics Net muscle protein balance |
↓ Net balance (AUC) after soy ingestion vs. milk ↓ Fractional synthesis rate in muscle after soy consumption vs. milk |
Tang et al. 2009 [24] | 6 healthy young men (22.8 ± 3.9 years.) | RCT, crossover (3 groups) Whey (n = 6) Casein (n = 6) Soy (n = 6) |
10 g of EAA in the form of: Whey, casein and soy protein | Unilateral lower-body exercise | Mixed muscle protein fractional synthetic rate (FSR) Blood EAA | ↓ Blood EAA, BCAA, and leucine concentrations following soy ingestion compared to whey ↓ MPS (~18%) after soy consumption vs. whey after exercise ↑ MPS (~64%) with soy consumption at rest and following resistance exercise (69%) vs. casein | |
Yang et al. 2012 [4] | 30 elderly men (71 ± 5 years.) |
RCT (3 groups) Control Soy 20 g Soy 40 g | 1 trial visit per group 4 h post-protein consumption |
20 g or 40 g of soy protein isolate Compared to previous responses from similarly aged men who had ingested 20 g and 40 g of whey protein isolate |
Acute bout of unilateral knee-extensor resistance exercise prior to ingesting no protein | Myofibrillar protein synthesis (MPS) |
↑ Whole-body leucine oxidation for S20 vs. W20 ↔ in both exercised and non-exercised leg muscles for S20 vs. 0 g ↓ MPS post S40 under both rested and post-exercise conditions vs. W40 ↑ MPS post S40 than 0 g under post-exercise conditions |
Kraemer et al. 2013 [40] | 10 resistance trained males (21.7 ± 2.8 years.) |
RCT, crossover (3 groups) Whey protein isolate Soy protein isolate Maltodextrin | 14 days | 20 g | Acute heavy resistance exercise test consisting of 6 sets of 10 repetitions in the squat exercise at 80% of the subject’s 1 RM | Sex hormones post resistance training |
↓ Testosterone responses following supplementation with soy protein ↔ SHBG concentrations between experimental treatments ↔ in estradiol concentrations between groups |
Purpura et al. 2014 [44] | 10 trained male subjects (22.2 ± 4.2 years.) |
RCT, crossover (2 groups) Rice protein Whey protein | 2 trial visits per condition (7-day washout) | 48 g isonitrogenous and isocaloric | N/A | Plasma concentrations of amino acids |
↑ Tmax for RPI for EAA, non-EAA, and total amino acids ↔ For AUC between conditions ↔ for Cmax between conditions ↑ Cmax faster for leucine in the RPI group. |
Gorissen et al. 2016 [43] | 60 healthy older men (71 ± 1 years.) |
RCT (5 groups) Wheat (n = 12) WPH35 g (n = 12) Casein (n = 12) Whey (n = 12) WPH60 g (n = 12) | 1 trial visit per group. 240 min | 35 g or 60 g | N/A | Postprandial increase in plasma EAA concentrations |
↓ Postprandial increase in plasma EAA concentration after ingesting WPH-35 vs. Whey-35 ↓ Myofibrillar protein synthesis rates after ingesting WPH-35 vs. MCas-35 ↓ Postprandial increase in plasma leucine concentrations after ingesting WPH-60 vs. Whey-35 |
Oikawa et al. 2020 [42] | 24 healthy young women (21 ± 3 years.) |
RCT, single blind (2 groups) PP (n = 12) Control (n = 12) |
25 g of potato protein (PP) twice daily (1.6 g/kg/d total protein) (CON) (0.8 g/kg/d total protein) for 2 weeks. | Unilateral RE (~30% of maximal strength to failure) was performed thrice weekly with the opposite limb serving as a non-exercised control (Rest) | Myofibrillar protein synthesis |
↑ MPS at Rest, and in the Exercise limb following PP ingestion ↑ MPS in CON vs. baseline after Exercise only. | |
Pinckaers et al. 2021 [41] | 36 males (23 ± 3 years.) |
RCT, parallel-group design 3 groups (n = 12/group) |
30 g milk protein (MILK) 30 g wheat protein (WHEAT) 30 g blend combining 15 g wheat plus 15 g milk protein (WHEAT+MILK). | N/A |
Post-prandial plasma amino acid profiles Myofibrillar protein synthesis rates |
↓ Post-prandial plasma EAA concentration post WHEAT vs. MILK ↔ Post-prandial plasma EAA concentration post MILK and WHEAT+MILK ↔ Post-prandial myofibrillar protein synthesis rates between MILK vs WHEAT ↔ Post-prandial myofibrillar protein synthesis rates between MILK vs WHEAT+MILK |
Reference | Participants (Age) | Design | Study Duration | Dosing Protocol (Timing) | Exercise Program | Primary Variables | Key Findings |
---|---|---|---|---|---|---|---|
Babault et al. [56] | 161 males (18–25 years) | RCT (3 groups) Control (n = 54) Whey (n = 53) Pea (n = 53) | 12 weeks | 50 g pea/day (two 25 g doses) | RT 3×/week | Muscle thickness Strength | ↑ Bicep thickness ↑ 1-RM Strength |
Brown et al. [48] | 27 healthy, college-aged males (19–25 years) | RCT (3 groups) Control (n = 9) Whey (n = 9) Soy (n = 9) | 9 weeks | 33 g soy/day (11 g dose 3x/d) | RT 2×/week | Body comp | ↑ Fat-free mass ↓ Percent body fat |
Candow et al. [49] | 27 non-active males and females (18–35 years) | RCT (3 groups) Control (n = 9) Whey (n = 9) Soy (n = 9) | 6 weeks | 1.2 g soy/day (3 daily doses) | RT 4×/week | Body comp Strength | ↑ Fat-free mass ↑ Strength |
DeNysschen et al. [50] | 28 overweight males (21–50 years) | RCT (3 groups) Control (n = 9) Whey (n = 10) Soy (n = 9) | 12 weeks | 26 g soy/day(Post-workout) | RT 3×/week | Body comp Strength Anthropometrics | ↑ Fat free mass ↓ Percent body fat ↑ Strength ↓ Waist-to-hip ratio |
Hartman et al. [51] | 57 healthy males(18–30 years) | RCT (3 groups) Control (n = 19) Milk (n = 18) Soy (n = 19) | 12 weeks | 17.5 g soy/day (Post-workout) | RT 5×/week | Body comp Strength Muscle fiber size | ↑ Fat-free mass ↔ Strength ↑Muscle fiber area |
Hevia-Larrain et al. [60] | 38 untrained young males (18–35) | RCT (2 groups) Vegans (n = 19) Ominivores (n = 19) | 12 weeks | 1.6 g/kg/day (Soy or Whey) | RT 2×/week | Leg muscle mass Muscle mass Muscle fiber size Strength | ↑ Leg muscle mass ↑ Lean body mass ↑ VL CSA ↑ Leg press 1-RM |
Joy et al. [53] | 24 healthy males (18–30) | RCT (2 groups) Rice (n = 12) Whey (n = 12) | 8 weeks | 48 g rice/day (Post-workout) | RT 3×/week | Body comp Strength Power | ↑ Fat-free mass ↑ Strength ↑ Wingate power |
Lamb et al. 2020 [46] | 39 non-active older males and females (50–80 years) | RCT (2 groups) Control (n = 19) Peanut protein (n = 20) | 10 weeks | 30 g peanut/day (1x/d) | RT 2×/week | Body comp Muscle thickness Knee flexion torque | ↔ Body comp ↑ VL thickness ↑ Knee flexion torque |
Lynch et al. [59] | 48 non-active males and females (18–35 years) | RCT (2 groups Whey (n = 26) Soy (n = 22) | 12 weeks | 19 g whey or 26 g soy/day (post-workout) | RT 3×/week | Body mass Body comp Muscle thickness Knee flexion and extension torque | ↑ Body mass ↑ Fat-free mass ↔ VL thickness ↑ Peak torque |
Mobley et al. [58] | 75 healthy, untrained males (19–23 years) | RCT (5 groups) Control (n = 15) Leucine (n = 14) WPC (n = 17) WPH (n = 14) Soy (n = 15) | 12 weeks | 39.2 g soy/day (post-workout and pre-sleep) | RT 3×/week | Strength Body mass Body comp Muscle fiber CSA | ↔ Strength ↔ Body mass ↑ Muscle Mass ↑ Type I/II CSA |
Moon et al. [54] | 24 healthy, trained males (18–50 years) | RCT (2 groups) Whey (n = 12) Rice (n = 12) | 8 weeks | 24 g rice or whey/day (post-workout) | RT 4×/week | Body comp Muscular strength Muscular Endurance Anaerobic Capacity | ↑ Body comp ↑ 1-RM strength ↑ Rep to fatigue ↑ Wingate power |
Reidy et al. [57] | 67 healthy males (18–35 years) | RCT (3 groups) Control (n = 23) Whey (n = 22) Soy (n = 23) | 12 weeks | 22 g soy or whey/day (post-workout) | RT 3×/week | Body comp Strength mCSA Muscle thickness | ↑ Lean body mass ↔ 1RM strength ↔ mCSA ↔ Muscle thickness |
Thomson et al. [61] | 83 older adults (50–79 years) | RCT (3 groups) Control (n = 23) MILK (n = 34) Soy (n = 26) | 12 weeks | 27 g soy/day (post-workout) | RT 3x/week | Strength Body comp Physical function | ↔ Strength ↑ Lean mass ↑ Physical function |
Volek et al. [52] | 63 untrained males and females (18–35 years) | RCT (3 groups) Control (n = 22) Whey (n = 19) Soy (n = 22) | 9 months | 24 g soy protein (Post-workout) | RT 3 ×/week | Body comp | ↑ Lean body mass ↔ Fat mass |
Author (Year) | Participants (Age) | Design | Study Duration | Dosing Protocol (Timing) | Exercise Program | Primary Variables | Key Findings |
---|---|---|---|---|---|---|---|
Nieman et al. [64] | 92 healthy, untrained males(18–55 years) | RCT (3 groups) Control (n = 30) Whey (n = 31) Pea (n = 31) | 5 days | 0.3 g/kg/d pea or whey/day (Pre-workout) | 90 min eccentric exercise bout | Strength Vertical jump Anaerobic power Muscle soreness | ↔ 1 RM strength ↔ Vertical jump ↔ Wingate power ↑ Muscle soreness |
Saracino et al. [65] | 27 active, middle-aged males(40–64 years) | RCT (4 groups) Control (n = 6) WPH (n = 9) WPI (n = 6) Rice/pea (n = 6) | 3 days | 40 g rice/Pea blend/day (pre-sleep) | Lower body muscle-sdamaging exercise | MVC Muscle soreness Thigh circumference | ↓ MVC ↔ Muscle soreness ↔ Thigh circumference |
Kritikos et al. [62] | 10 well-trained soccer players (n = 10) | RCT, crossover | 3 days | 1.5 g/kg/day whey or soy | Field-based speed training sessions | Performance Isokinetic strength MVC Lower body power Muscle damage Creatine kinase Muscle soreness | ↓ Isokinetic leg strength ↓ MVC ↓ Speed ↓CMJ ↑ CK ↑ DOMS |
Xia et al. [63] | 16 healthy, non-active males (19.7 ± 1.1 years) | RCT (2 groups) Control (n = 8) Oat (n = 8) | 19 days | 25 g oat/day (post-workout) | Downhill running | Muscle soreness IL-6 Creatine kinase Leg strength Vertical jump | ↓ Muscle soreness ↓ IL-6 ↓ CK ↑ 1 RM strength ↑ Vertical jump |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerksick, C.M.; Jagim, A.; Hagele, A.; Jäger, R. Plant Proteins and Exercise: What Role Can Plant Proteins Have in Promoting Adaptations to Exercise? Nutrients 2021, 13, 1962. https://doi.org/10.3390/nu13061962
Kerksick CM, Jagim A, Hagele A, Jäger R. Plant Proteins and Exercise: What Role Can Plant Proteins Have in Promoting Adaptations to Exercise? Nutrients. 2021; 13(6):1962. https://doi.org/10.3390/nu13061962
Chicago/Turabian StyleKerksick, Chad M., Andrew Jagim, Anthony Hagele, and Ralf Jäger. 2021. "Plant Proteins and Exercise: What Role Can Plant Proteins Have in Promoting Adaptations to Exercise?" Nutrients 13, no. 6: 1962. https://doi.org/10.3390/nu13061962