Beneficial Effects of a Specially Designed Home Meal Replacement on Cardiometabolic Parameters in Individuals with Obesity: Preliminary Results of a Randomized Controlled Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Population, and Home Meal Replacement
2.2. Dietary Intake Data, Energy, and Nutrient Intake
2.3. Cardiometabolic Parameters
2.4. Measurements of Anthropometric and Laboratory Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128 9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Obesity and Overweight. Available online: http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. (accessed on 30 April 2021).
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M. The Nutrition Transition and Obesity in the Developing World. J. Nutr. 2001, 131, 871S–873S. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Regional Office for the Eastern, Mediterranean. Healthy Diet; World Health Organization Regional Office for the Eastern Mediterranean: Cario, Egypt, 2019. [Google Scholar]
- Goodhart, R.S.; Shils, M.E. Modern Nutrition in Health and Disease; Lea and Febiger: Philadelphia, PA, USA, 1980. [Google Scholar]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Taylor, D.S.; Yu-Poth, S.; Huth, P.; Moriarty, K.; Fishell, V.; Hargrove, R.L.; Zhao, G.; Etherton, T.D. Polyunsaturated fatty acids in the food chain in the United States. Am. J. Clin. Nutr. 2000, 71, 179S–188S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simopoulos, A.P. Omega-6/Omega-3 Essential Fatty Acid Ratio and Chronic Diseases. Food Rev. Int. 2004, 20, 77–90. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Park, K. Omega-3 and omega-6 polyunsaturated fatty acids and metabolic syndrome: A systematic review and meta-analysis. Clin. Nutr. 2020, 39, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Evolutionary Aspects of Diet: The Omega-6/Omega-3 Ratio and the Brain. Mol. Neurobiol. 2011, 44, 203–215. [Google Scholar] [CrossRef]
- de Lorgeril, M.; Renaud, S.; Salen, P.; Monjaud, I.; Mamelle, N.; Martin, J.; Guidollet, J.; Touboul, P.; Delaye, J. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 1994, 343, 1454–1459. [Google Scholar] [CrossRef]
- The Western-Pacific Regional Office of World Health Organization. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; World Health Organization Regional Office for the Western Pacific: Sydney, Australia, 2000. [Google Scholar]
- The Korean Nutrition Society. Computer-Aided Nutritional Analysis Program (CAN-Pro) Version 5.0. Available online: http://www.kns.or.kr/Center/CanPro5.asp (accessed on 20 June 2021).
- Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [CrossRef]
- Kang, H.-T.; Kim, S.-Y.; Kim, J.; Kim, J.; Kim, J.; Park, H.A.; Shin, J.; Cho, S.H.; Choi, Y.; Shim, J.Y. Clinical practice guideline of prevention and treatment for metabolic syndrome. Korean J. Fam. Pr. 2015, 5, 375–420. [Google Scholar]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simental-Mendía, L.E.; Rodríguez-Morán, M.; Guerrero-Romero, F. The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef]
- Hadaegh, F.; Khalili, D.; Ghasemi, A.; Tohidi, M.; Sheikholeslami, F.; Azizi, F. Triglyceride/HDL-cholesterol ratio is an independent predictor for coronary heart disease in a population of Iranian men. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 401–408. [Google Scholar] [CrossRef]
- Wenzel, S.E. Arachidonic acid metabolites: Mediators of inflammation in asthma. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1997, 17, 3–12. [Google Scholar]
- Faber, J.; Berkhout, M.; Fiedler, U.; Avlar, M.; Witteman, B.; Vos, A.; Henke, M.; Garssen, J.; Van Helvoort, A.; Otten, M. Rapid EPA and DHA incorporation and reduced PGE2 levels after one week intervention with a medical food in cancer pa-tients receiving radiotherapy, a randomized trial. Clin. Nutr. 2013, 32, 338–345. [Google Scholar] [CrossRef]
- Guo, X.-F.; Li, X.; Shi, M.; Li, D. n-3 Polyunsaturated Fatty Acids and Metabolic Syndrome Risk: A Meta-Analysis. Nutrition 2017, 9, 703. [Google Scholar] [CrossRef]
- Friday, K.E.; Childs, M.T.; Tsunehara, C.H.; Fujimoto, W.Y.; Bierman, E.L.; Ensinck, J.W. Elevated Plasma Glucose and Lowered Triglyceride Levels from Omega-3 Fatty Acid Supplementation in Type II Diabetes. Diabetes Care 1989, 12, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, A.; Suzuki, Y.; Aoyama, T.; Takeuchi, H. Dietary Alpha-Linolenic Acid Inhibits Angiotensin-Converting Enzyme Activity and mRNA Expression Levels in the Aorta of Spontaneously Hypertensive Rats. J. Oleo Sci. 2009, 58, 355–360. [Google Scholar] [CrossRef]
- Belchior, T.; Paschoal, V.A.; Magdalon, J.; Chimin, P.; Farias, T.M.; Filho, A.D.B.C.; Gorjão, R.; St.-Pierre, P.; Miyamoto, S.; Kang, J.X.; et al. Omega-3 fatty acids protect from diet-induced obesity, glucose intolerance, and adipose tissue inflammation through PPARγ-dependent and PPARγ-independent actions. Mol. Nutr. Food Res. 2015, 59, 957–967. [Google Scholar] [CrossRef]
- James, M.J.; Gibson, R.; Cleland, L.G. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J. Clin. Nutr. 2000, 71, 343s–348s. [Google Scholar] [CrossRef]
- Warensjö, E.; Sundström, J.; Lind, L.; Vessby, B. Factor analysis of fatty acids in serum lipids as a measure of dietary fat quality in relation to the metabolic syndrome in men. Am. J. Clin. Nutr. 2006, 84, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Freire, R.D.; Cardoso, M.A.; Gimeno, S.G.; Ferreira, S.R.; for the Japanese-Brazilian Diabetes Study Group. Dietary Fat Is Associated with Metabolic Syndrome in Japanese Brazilians. Diabetes Care 2005, 28, 1779–1785. [Google Scholar] [CrossRef] [Green Version]
- Petersson, H.; Basu, S.; Cederholm, T.; Riserus, U. Serum fatty acid composition and indices of stearoyl-CoA desaturase activity are associated with systemic inflammation: Longitudinal analyses in middle-aged men. Br. J. Nutr. 2008, 99, 1186–1189. [Google Scholar] [CrossRef] [Green Version]
- Petersson, H.; Lind, L.; Hulthe, J.; Elmgren, A.; Cederholm, T.; Risérus, U. Relationships between serum fatty acid composition and multiple markers of inflammation and endothelial function in an elderly population. Atherosclerosis 2009, 203, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Campos, H. Polyunsaturated Fatty Acids, Inflammation, and Cardiovascular Disease: Time to Widen Our View of the Mechanisms. J. Clin. Endocrinol. Metab. 2006, 91, 398–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: Results of the GIS-SI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet 1999, 354, 447–455.
- Tavazzi, L.; Maggioni, A.P.; Marchioli, R.; Barlera, S.; Franzosi, M.G.; Latini, R.; Lucci, D.; Nicolosi, G.L.; Porcu, M.; Tognoni, G. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): A randomised, double-blind, placebo-controlled trial. Lancet 2008, 372, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvadó, J.; Fernández-Ballart, J.; Rosa, L.-R.; Martínez-González, M.-A.; Fitó, M.; Estruch, R.; Corella, D.; Fiol, M.; Gómez-Gracia, E.; Arós, F.; et al. Effect of a Mediterranean Diet Supplemented with Nuts on Metabolic Syndrome Status: One-year results of the PREDIMED randomized trial. Arch. Intern. Med. 2008, 168, 2449–2458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauch, B.; Schiele, R.; Schneider, S.; Diller, F.; Victor, N.; Gohlke, H.; Gottwik, M.; Steinbeck, G.; Del Castillo, U.; Sack, R.; et al. OMEGA, a Randomized, Placebo-Controlled Trial to Test the Effect of Highly Purified Omega-3 Fatty Acids on Top of Modern Guideline-Adjusted Therapy After Myocardial Infarction. Circulation 2010, 122, 2152–2159. [Google Scholar] [CrossRef] [Green Version]
- Writing Group for the AREDS2 Research Group. Effect of long-chain omega-3 fatty acids and lutein + zeaxanthin supplements on cardiovascular outcomes: Results of the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA Intern. Med. 2014, 174, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Ascend Study Collaborative Group. Effects of n-3 fatty acid supplements in diabetes mellitus. N. Engl. J. Med. 2018, 379, 1540–1550. [Google Scholar] [CrossRef]
- Lee, P.S.S.; Dart, A.M.; Walker, K.Z.; O’Dea, K.; Chin-Dusting, J.P.F.; Skilton, M.R. Effect of altering dietary n-6:n-3 PUFA ratio on cardiovascular risk measures in patients treated with statins: A pilot study. Br. J. Nutr. 2011, 108, 1280–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poreba, M.; Mostowik, M.; Siniarski, A.; Golebiowska-Wiatrak, R.; Malinowski, K.P.; Haberka, M.; Konduracka, E.; Nessler, J.; Undas, A.; Gajos, G. Treatment with high-dose n-3 PUFAs has no effect on platelet function, coagulation, metabolic status or inflammation in patients with atherosclerosis and type 2 diabetes. Cardiovasc. Diabetol. 2017, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Siniarski, A.; Haberka, M.; Mostowik, M.; Gołębiowska-Wiatrak, R.; Poręba, M.; Malinowski, K.; Gąsior, Z.; Konduracka, E.; Nessler, J.; Gajos, G. Treatment with omega-3 polyunsaturated fatty acids does not improve endothelial function in patients with type 2 diabetes and very high cardiovascular risk: A randomized, double-blind, placebo-controlled study (Omega-FMD). Atherosclerosis 2018, 271, 148–155. [Google Scholar] [CrossRef]
- Monnard, C.R.; Dulloo, A.G. Polyunsaturated fatty acids as modulators of fat mass and lean mass in human body composition regulation and cardiometabolic health. Obes. Rev. 2021, 22 (Suppl. 2), e13197. [Google Scholar] [CrossRef] [PubMed]
- Siniarski, A.; Rostoff, P.; Rychlak, R.; Krawczyk, K.; Gołębiowska-Wiatrak, R.; Mostowik, M.; Malinowski, K.P.; Konduracka, E.; Nessler, J.; Gajos, G. Unsaturated fatty acid composition in serum phospholipids in patients in the acute phase of myocardial infarction. Kardiol. Pol. 2019, 77, 935–943. [Google Scholar] [CrossRef] [Green Version]
Total | |
---|---|
N | 128 |
Age, years | 46.5 ± 5.6 |
Men, n (%) | 32 (25.0) |
Height, cm | 162.3 ± 8.0 |
Weight, kg | 74.2 ± 9.6 |
BMI, kg/m2 | 28.1 ± 2.9 |
Waist circumference, cm | 91.8 ± 6.9 |
5 SBP, mmHg | 126.6 ± 11.9 |
1 DBP, mmHg | 81.5 ± 10.2 |
Total cholesterol, mg/dL | 203.9 ± 35.0 |
6 TG, mg/dL | 134.9 ± 67.6 |
3 HDL-C, mg/dL | 54.4 ± 13.9 |
4 LDL-C, mg/dL | 135.5 ± 29.7 |
2 HbA1c, % | 5.5 ± 0.4 |
Glucose, mg/dL | 93.8 ± 14.0 |
Insulin, IU/mL | 9.3 ± 5.8 |
Home Meal Replacement | Control Diet | Between-Group Differences | ||||||
---|---|---|---|---|---|---|---|---|
Before | During | p-Value | Before | During | p-Value | Before | During | |
Total energy, kcal/d | 1745.5 ± 519.8 | 2050.8 ± 189.4 | <0.001 | 1766.6 ± 447.6 | 1705.9 ± 307.9 | 0.290 | 0.807 | <0.001 |
Carbohydrates, g/d | 256.5 ± 85.0 | 221.5 ± 18.9 | 0.001 | 240.6 ± 75.5 | 242.6 ± 48.6 | 0.833 | 0.265 | 0.002 |
Protein, g/d | 63.7 ± 25.1 | 100.1 ± 11.2 | <0.001 | 67.4 ± 24.0 | 64.9 ± 15.5 | 0.476 | 0.116 | <0.001 |
Fat, g/d | 48.8 ± 21.7 | 87.7 ± 9.6 | <0.001 | 55.0 ± 22.3 | 49.6 ± 15.3 | 0.086 | 0.407 | <0.001 |
1 ω3FA, g/d | 0.5 ± 0.7 | 2.0 ± 0.3 | <0.001 | 0.4 ± 0.6 | 0.8 ± 1.1 | 0.050 | 0.975 | <0.001 |
2 ω6FA, g/d | 3.5 ± 4.9 | 9.6 ± 1.2 | <0.001 | 2.8 ± 2.9 | 3.6 ± 2.5 | 0.094 | 0.324 | <0.001 |
ω6FA/ω3FA ratio | 12.2 ± 9.5 | 4.9 ± 0.0 | <0.001 | 10.6 ± 7.6 | 9.2 ± 5.6 | 0.200 | 0.309 | <0.001 |
HMR | Control (Regular Diet) | Between-Group Differences | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | Difference | p† | Before | After | Difference | p† | p * | p$ | p# | |
BMI, kg/m2 | 28.2 ± 2.8 | 28.0 ± 2.9 | −0.2 ± 0.4 | <0.001 | 28.1 ± 2.9 | 28.0 ± 3.0 | −0.1 ± 0.4 | 0.218 | 0.016 | 0.044 | 0.034 |
Weight, kg | 74.4 ± 9.7 | 73.7 ± 9.6 | −0.6 ± 1.2 | <0.001 | 74.0 ± 9.6 | 73.9 ± 9.7 | −0.1 ± 1.0 | 0.406 | 0.008 | 0.019 | 0.022 |
10 WC, cm | 92.1 ± 7.2 | 90.4 ± 7.0 | −1.7 ± 3.5 | <0.001 | 91.7 ± 6.8 | 91.2 ± 7.7 | −0.7 ± 2.9 | 0.060 | 0.096 | 0.452 | 0.093 |
6 SBP, mmHg | 126.3 ± 11.3 | 123.3 ± 10.7 | −3.0 ± 8.0 | 0.004 | 126.8 ± 12.5 | 125.8 ± 12.1 | −0.8 ± 13.0 | 0.645 | 0.256 | 0.116 | 0.299 |
1 DBP, mmHg | 81.1 ± 10.7 | 79.2 ± 9.7 | −1.9 ± 6.4 | 0.019 | 81.8 ± 9.8 | 79.2 ± 8.4 | −2.4 ± 8.9 | 0.036 | 0.731 | 0.652 | 0.717 |
7 TC, mg/dL | 205.1 ± 35.7 | 206.0 ± 36.1 | 0.9 ± 20.5 | 0.729 | 202.6 ± 34.6 | 204.3 ± 36.1 | 1.7 ± 19.3 | 0.487 | 0.821 | 0.619 | 0.835 |
8 TG, mg/dL | 134.1 ± 64.6 | 115.6 ± 48.4 | −18.5 ± 55.9 | 0.010 | 135.7 ± 71.0 | 130.2 ± 69.3 | −5.6 ± 53.4 | 0.408 | 0.183 | 0.230 | 0.175 |
3 HDL-C, mg/dL | 54.0 ± 14.4 | 54.5 ± 13.5 | 0.6 ± 6.4 | 0.461 | 54.8 ± 13.7 | 54.1 ± 13.7 | −0.7 ± 5.8 | 0.336 | 0.232 | 0.172 | 0.221 |
5 LDL-C, mg/dL | 137.2 ± 31.7 | 138.3 ± 32.3 | 1.1 ± 21.2 | 0.134 | 133.9 ± 27.9 | 137.0 ± 32.0 | 3.0 ± 18.0 | 0.757 | 0.578 | 0.559 | 0.598 |
2 HbA1c, % | 5.5 ± 0.4 | 5.4 ± 0.4 | −0.0 ± 0.1 | <0.001 | 5.5 ± 0.4 | 5.5 ± 0.4 | 0.0 ± 0.1 | 0.033 | 0.214 | 0.402 | 0.247 |
Glucose, mg/dL | 93.9 ± 15.4 | 95.1 ± 13.4 | 1.2 ± 8.3 | 0.138 | 93.7 ± 12.5 | 94.1 ± 11.1 | 0.4 ± 7.9 | 0.796 | 0.579 | 0.855 | 0.591 |
Insulin, IU/mL | 9.2 ± 5.9 | 8.9 ± 5.8 | −0.3 ± 5.1 | 0.615 | 9.4 ± 5.7 | 9.4 ± 4.5 | 0.1 ± 4.3 | 0.902 | 0.641 | 0.168 | 0.641 |
4 HOMA-IR | 2.3 ± 2.1 | 2.1 ± 1.5 | −0.1 ± 1.6 | 0.504 | 2.2 ± 1.7 | 2.2 ± 1.3 | −0.0 ± 1.1 | 0.999 | 0.576 | 0.125 | 0.559 |
9 TyG index | 8.6 ± 0.5 | 8.5 ± 0.4 | −0.1 ± 0.4 | 0.002 | 8.6 ± 0.5 | 8.6 ± 0.5 | −0.0 ± 0.4 | 0.829 | 0.260 | 0.341 | 0.266 |
TG/HDL-C ratio | 2.8 ± 1.9 | 2.3 ± 1.5 | −0.5 ± 1.6 | 0.032 | 2.8 ± 2.1 | 2.7 ± 1.9 | −0.1 ± 1.3 | 0.335 | 0.156 | 0.116 | 0.142 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-W.; Kim, Y.; Hyun, T.; Song, S.; Yang, W.; Kim, Y.-S.; You, H.-S.; Chang, Y.-C.; Shin, S.-H.; Kang, H.-T. Beneficial Effects of a Specially Designed Home Meal Replacement on Cardiometabolic Parameters in Individuals with Obesity: Preliminary Results of a Randomized Controlled Clinical Trial. Nutrients 2021, 13, 2171. https://doi.org/10.3390/nu13072171
Lee J-W, Kim Y, Hyun T, Song S, Yang W, Kim Y-S, You H-S, Chang Y-C, Shin S-H, Kang H-T. Beneficial Effects of a Specially Designed Home Meal Replacement on Cardiometabolic Parameters in Individuals with Obesity: Preliminary Results of a Randomized Controlled Clinical Trial. Nutrients. 2021; 13(7):2171. https://doi.org/10.3390/nu13072171
Chicago/Turabian StyleLee, Jae-Woo, Yonghwan Kim, Taisun Hyun, Seunghye Song, Woojung Yang, Ye-Seul Kim, Hyo-Sun You, Young-Chang Chang, Seung-Ho Shin, and Hee-Taik Kang. 2021. "Beneficial Effects of a Specially Designed Home Meal Replacement on Cardiometabolic Parameters in Individuals with Obesity: Preliminary Results of a Randomized Controlled Clinical Trial" Nutrients 13, no. 7: 2171. https://doi.org/10.3390/nu13072171
APA StyleLee, J. -W., Kim, Y., Hyun, T., Song, S., Yang, W., Kim, Y. -S., You, H. -S., Chang, Y. -C., Shin, S. -H., & Kang, H. -T. (2021). Beneficial Effects of a Specially Designed Home Meal Replacement on Cardiometabolic Parameters in Individuals with Obesity: Preliminary Results of a Randomized Controlled Clinical Trial. Nutrients, 13(7), 2171. https://doi.org/10.3390/nu13072171