Small and Large Intestine (II): Inflammatory Bowel Disease, Short Bowel Syndrome, and Malignant Tumors of the Digestive Tract
Abstract
:1. Introduction
2. Inflammatory Bowel Disease
2.1. Introduction
2.2. Causes of Malnutrition in IBD (Pathogenesis)
2.2.1. Poor Dietary Intake
2.2.2. Increase Nutrient Malabsorption
2.2.3. Increased Protein Loss
2.2.4. Increased Metabolism
2.3. Impact of IBD on Nutritional Status: Macro and Micronutrients
2.3.1. Macronutrients
2.3.2. Micronutrients (Vitamins and Minerals)
- (a)
- Vitamin D
- (b)
- Vitamin B12
- (c)
- Iron
2.4. Consequences of IBD on Growth, Bone Mass, and Sarcopenia
2.4.1. Growth
2.4.2. Bone Mass
2.4.3. Sarcopenia
2.5. Assessment of Nutritional Status in IBD
2.5.1. Medical History
2.5.2. Physical Examination
2.5.3. Analytics
2.5.4. Tools for the Detection of Malnutrition
2.6. Indications for Parenteral and Enteral Nutrition in IBD
2.6.1. Enteral Nutrition
2.6.2. Parenteral Nutrition
2.7. Nutritional Support in Specific Settings Related to IBD
2.7.1. Children and Adolescents
2.7.2. Stenosis
- Patients with asymptomatic radiological stenosis: restrict the intake of insoluble fiber in food.
- Symptomatic strictures: soft or semi-liquid diet, with enteral supplements as needed for avoiding malnutrition.
- Occlusive symptoms: EEN using a probe distal to the occluded segment (in proximal stenoses). In the presence of complete occlusion, PN is indicated.
2.7.3. Fistula
2.7.4. Severe Ulcerative Colitis
2.7.5. Stoma with Severe Diarrhea
2.8. Nutritional Support in Perioperative Management
2.8.1. Consequences of Malnutrition in Surgical Patients
2.8.2. Key Aspects of Perioperative Care
- Integration of nutrition into the overall management of the patient: Malnutrition has a negative impact on the clinical course, increased complications, and mortality, and its correction has been associated with the reduction in complications in patients with IBD. In a meta-analysis that included five studies with a total of 1111 patients with Crohn’s disease, the patients who received preoperative nutritional support had a lower rate of complications compared to the group that did not receive them (20% vs 61.3% OR 0.26 p < 0.001) [68].
- Avoidance of long periods of preoperative fasting: Fasting from the night before the intervention is unnecessary. If the patient does not present a risk of aspiration, they can drink liquids up to 2 h before anesthesia, and 6 h before in the case of solids [69]. Since the implementation of these new recommendations, there has not been an increase in the incidence of aspiration, regurgitation, or morbidity and mortality.
- Re-establishment of oral feeding as early as possible after surgery: In most patients, an oral diet can be started in the first hours after the intervention. Restarting oral nutrition early is associated with a significant decrease in complications, mortality, and hospital stay [70].
- Metabolic control: Insulin resistance develops within minutes of surgery, causing protein loss and alterations in glucose metabolism with rapid release of glycogen in the liver, and similarly occurs in muscle, where the reserves of energy are also depleted. Complications associated with this insulin resistance include infections and cardiovascular problems. Its prevention and treatment is an effective measure to reduce complications after major surgery. ERAS (Enhanced Recovery After Surgery) programs and goals, such as preoperative glucose administration, minimally invasive surgery, and pain control, reduce insulin resistance during surgery by up to 50% [71].
- Reduction in factors that exacerbate stress-related catabolism or impair gastrointestinal function: It has been shown that measures to reduce the stress of surgery can minimize catabolism and support anabolism, throughout the surgical process, allowing better and faster recovery in patients, even after major surgical operations [72]. ERAS protocols can be used, which combine a series of measures to minimize stress and facilitate the return of function: these include preoperative preparation and medication, fluid balance, postoperative anesthesia and analgesia, pre- and postoperative nutrition, and mobilization [60].
- Early mobilization to facilitate protein synthesis and muscle function: Physical exercise is the fundamental pillar both in the prevention and in the treatment of sarcopenia. Resistance training improves body composition, leading to an increase in lean body mass and a decrease in fat, including visceral fat, a major risk factor for the development of metabolic syndrome, diabetes, and chronic inflammation [73].
2.8.3. Nutritional Management
- Malnutrition has been detected before the operation.
- It is expected that the patient will not be able to resume an oral diet for the next 7 days.
- It is estimated that the oral diet will not be able to cover 60–70% of the requirements in the following 10 days.
- Patients with IBD are at nutritional risk and therefore should be screened for malnutrition.
- In general, the energy requirements of patients with IBD are similar to those of the healthy population.
- Protein requirements increase in active IBD, and intake should be increased (1.2–1.5 g/kg/d in adults) with the recommended intake in the general population. In remission, the protein intake should not be increased.
- Patients with IBD should be regularly evaluated for micronutrient deficiencies, and specific deficits should be corrected.
- If the energy protein requirements cannot be covered with an oral diet, oral nutritional supplements will be considered.
- If the requirements are still not met despite oral nutritional supplements, exclusive enteral tube nutrition is recommended.
- Patients with serious nutritional risk may benefit from perioperative nutrition, even if it entails a delay in the surgical act. In these cases, enteral nutrition, either by oral nutritional supplements or exclusive enteral nutrition, is preferable to parenteral nutrition, unless there is severe dysfunction of the digestive tract.
- In the case of a surgical emergency, nutritional support will be carried out postoperatively.
- Mixed nutrition (enteral and parenteral nutrition) will be performed when at least 60% of the requirements cannot be covered by the enteral route.
- Exclusive parenteral nutrition is only indicated when enteral nutrition is not feasible or contraindicated, as in cases of intestinal obstruction or ileus, severe shock, intestinal ischemia, high-output fistula, or severe intestinal bleeding.
- For Crohn’s disease patients who have been deprived of nutrition for many days, standard measures and precautions should be taken to prevent refeeding syndrome, especially regarding phosphate and thiamine.
- In patients with Crohn’s disease and prolonged intestinal failure, parenteral nutrition is mandatory, at least in the early stages of intestinal failure.
- In most patients treated for IBD, normal oral food intake or enteral nutrition can be started shortly after surgery.
- In patients with Crohn’s disease of more than 20 cm from the terminal ileum, with or without preservation of the ileocecal valve, vitamin B12 replacement should be carried out.
3. Short Bowel Syndrome (and Intestinal Failure)
3.1. Introduction
3.2. Pathophysiology of Short Bowel Syndrome
- End-jejunostomy: the ileum and colon completely removed. These patients present with accelerated gastric emptying and bowel transit due to reduced hormonal secretion of polypeptide YY and enteroglucagon 1 and 2. In addition, the increase in excretion of water and electrolytes leads to a high risk of dehydration immediately after surgery and induces hypomagnesemia, hypotension, and renal failure [83].
- Jejunocolonic anastomosis: jejunoileal resection with the preservation of the colon. These patients can reabsorb unabsorbed fluids in their colon. On the other hand, most of the ileum has been removed; therefore, the clinical course is dominated by malnutrition, diarrhea/steatorrhea, and vitamin deficiencies [83].
- Jejunoileal anastomosis: jejunal resection leaving ≥10 cm of the terminal ileum and the colon intact. These patients usually do not need nutritional support [83].
- Acute phase: This phase starts immediately after resection and lasts for 3 to 4 weeks. It is characterized by huge enteric losses due to an increased gastric secretion as a consequence to the loss of hormonal feedback signals. It is important to avoid dehydration, acute kidney failure, acid/base imbalance, and electrolyte abnormalities [84].
- Adaptation phase: The intestines undergo an innate process of functional recovery, and this phase lasts 1–2 years. The changes increase the absorptive surface, while the time of intestinal transit decreases to optimize the time available for absorption. In brief, there are structural and functional adaptations, but it is necessary to promote them by the presence of nutrients within the gut lumen [83].
- Failure phase: This phase is characterized by an inability to withstand oral or enteral feeding and requires parenteral nutrition. It can be reversible (intravenous nutritional support over months or years) or irreversible (lifelong PN).
3.3. Consequences on Metabolism, Liver, and Kidney Function
3.3.1. Metabolism Complications
- (a)
- D-lactic acidosis: A rare and severe neurological syndrome, manifested by lethargy, confusion, and unexplained acidosis. It occurs in some SBS patients with an intact colon. SBS leads to an increased load of undigested carbohydrates to the colon as well as Lactobacillus bacteria that produce an excessive fermentation of carbohydrates and increase their production and absorption of D- lactic acid [85].
- (b)
- Metabolic bone disease: Low bone mineral density with metabolic bone disease is commonly reported in patients receiving HPN. The pathogenesis is related to several factors that may be HPN-related and/or related to a patient’s underlying disease. In SBS patients with poor nutrient absorption, particularly fat malabsorption, vitamin D deficiency may play a role [86].
- (c)
- (d)
- Cholelithiasis: It can occur in up to 44% of patients with SBS [89]. The loss of bile salts, due to the absence of ileal reabsorption, combined with a decrease in the emptying of the gallbladder, caused by the reduction in the oral intake of nutrients, and the decrease in the production of cholecystokinin promote the formation of gallstones. Risk factors include the use of PN, resection of the terminal ileum, and an intestinal remnant <120 cm [89].
3.3.2. Liver Complications
3.3.3. Kidney Function
3.4. Management
3.4.1. Nutritional Therapy
3.4.2. Drug Therapy
3.4.3. Surgical Procedures
3.4.4. Future Treatments
4. Malignant Tumors of the Digestive Tract
4.1. Introduction
4.2. Colon and Rectal Tumors
4.3. Small Bowel Tumors
4.4. Causes of Cancer-Associated Malnutrition
4.4.1. Mechanisms Related to the Tumor
Tumor-Related Digestive System Disorders
Tumor-Induced Metabolic Alterations
Inflammatory Mediators
4.4.2. Host Response to the Tumor
Psychological Effects
Anorexia and Cachexia
4.4.3. Treatment Related
Surgery
Chemotherapy
Radiotherapy
4.5. Consequences of Cancer-Associated Malnutrition
4.5.1. Impact on Quality of Life
4.5.2. Response to Treatment and Mortality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gee, M.I.; Grace, M.G.; Wensel, R.H.; Sherbaniuk, R.; Thomson, A.B. Protein-energy malnutrition in gastroenterology outpatients: Increased risk in Crohn’s disease. J. Am. Diet. Assoc. 1985, 85, 1466–1474. [Google Scholar]
- Casanova, M.J.; Chaparro, M.; Molina, B.; Merino, O.; Batanero, R.; Dueñas-Sadornil, C.; Robledo, P.; Garcia-Albert, A.M.; Gómez-Sánchez, M.B.; Calvet, X.; et al. Prevalence of malnutrition and nutritional characteristics of patients with inflammatory bowel disease. J. Crohn’s Colitis 2017, 11, 1430–1439. [Google Scholar] [CrossRef]
- Cabré, E.; Gassull, M.A. Nutrition in inflammatory bowel disease: Impact on disease and therapy. Curr. Opin. Gastroenterol. 2001, 17, 342–349. [Google Scholar] [CrossRef]
- Curtis, L.J.; Bernier, P.; Jeejeebhoy, K.; Allard, J.; Duerksen, D.; Gramlich, L.; Laporte, M.; Keller, H.H. Costs of hospital malnutrition. Clin. Nutr. 2017, 36, 1391–1396. [Google Scholar] [CrossRef] [PubMed]
- Cucino, C.; Sonnenberg, A. Cause of death in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2001, 7, 250–255. [Google Scholar] [CrossRef]
- Bozzetti, F.; Gianotti, L.; Braga, M.; di Carlo, V.; Mariani, L. Postoperative complications in gastrointestinal cancer patients: The joint role of the nutritional status and the nutritional support. Clin. Nutr. 2007, 26, 698–709. [Google Scholar] [CrossRef]
- Halmos, E.P.; Gibson, P.R. Dietary management of IBD—Insights and advice. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 133–146. [Google Scholar] [CrossRef]
- Narsale, A.A.; Carson, J.A. Role of interleukin-6 in cachexia: Therapeutic implications. Curr. Opin. Supportive Palliat. Care 2014, 8, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Patel, H.J.; Patel, B.M. TNF-α and cancer cachexia: Molecular insights and clinical implications. Life Sci. 2017, 170, 56–63. [Google Scholar] [CrossRef]
- Limdi, J.K.; Aggarwal, D.; McLaughlin, J.T. Dietary practices and beliefs in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2015, 22, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Zallot, C.; Quilliot, D.; Chevaux, J.B.; Peyrin-Biroulet, C.; Guéant-Rodriguez, R.M.; Freling, E.; Collet-Fenetrier, B.; Williet, N.; Ziegler, O.; Bigard, M.A.; et al. Dietary beliefs and behavior among inflammatory bowel disease patients. Inflamm. Bowel Dis. 2013, 19, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Grüner, N.; Mattner, J. Bile acids and microbiota: Multifaceted and versatile regulators of the liver–gut axis. Int. J. Mol. Sci. 2021, 22, 1397. [Google Scholar] [CrossRef]
- Winter, T.A.; O’Keefe, S.J.D.O.; Callanan, M.; Marks, T. Impaired gastric acid and pancreatic enzyme secretion in patients with Crohn’s disease may be a consequence of a poor nutritional state. Inflamm. Bowel Dis. 2004, 10, 618–625. [Google Scholar] [CrossRef]
- Lee, S.H. Intestinal permeability regulation by tight junction: Implication on inflammatory bowel diseases. Intest. Res. 2015, 13, 11. [Google Scholar] [CrossRef] [Green Version]
- Al-Jaouni, R.; Hébuterne, X.; Pouget, I.; Rampal, P. Energy metabolism and substrate oxidation in patients with Crohn’s disease. Nutrition 2000, 16, 173–178. [Google Scholar] [CrossRef]
- Mingrone, G.; Capristo, E.; Greco, A.v.; Benedetti, G.; de Gaetano, A.; Tataranni, P.A.; Gasbarrini, G. Elevated diet-induced thermogenesis and lipid oxidation rate in Crohn disease. Eur. J. Gastroenterol. Hepatol. 1999, 11, 689. [Google Scholar] [CrossRef]
- Casanova, M.J.; Ber, Y. Impacto de la enfermedad inflamatoria intestinal sobre el estado nutricional. In Consecuencias Nutricionales de las Enfermedades Digestivas. Clínicas Iberoamericanas de Gastroenterología y Hepatología; Montoro, M., Bernal, V., Eds.; Elsevier: Barcelona, Spain, 2017; pp. 71–83. [Google Scholar]
- Perkal, M.F.; Seashore, J.H. Nutrition and inflammatory bowel disease. Gastroenterol. Clin. North Am. 1989, 18, 567–578. [Google Scholar] [CrossRef]
- Beeken, W.L. Absorptive defects in young people with regional enteritis. Pediatrics 1973, 52, 69–74. [Google Scholar]
- Sasson, A.N.; Ingram, R.J.M.; Raman, M.; Ananthakrishnan, A.N. Nutrition in the management of inflammatory bowel diseases. Gastroenterol. Clin. North Am. 2021, 50, 151–167. [Google Scholar] [CrossRef]
- Rossi, R.E.; Whyand, T.; Murray, C.D.; Hamilton, M.I.; Conte, D.; Caplin, M.E. The role of dietary supplements in inflammatory bowel disease: A systematic review. Eur. J. Gastroenterol. Hepatol. 2016, 28, 1357–1364. [Google Scholar] [CrossRef]
- Mouli, V.P.; Ananthakrishnan, A.N. Review article: Vitamin D and inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2014, 39, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Duerksen, D.R.; Fallows, G.; Bernstein, C.N. Vitamin B12 malabsorption in patients with limited ileal resection. Nutrition 2006, 22, 1210–1213. [Google Scholar] [CrossRef]
- Reenan, J. Clinical manifestations of vitamin B-12 deficiency. Virtual Mentor 2006, 8, 392–396. [Google Scholar] [CrossRef]
- Dignass, A.U.; Gasche, C.; Bettenworth, D.; Birgegård, G.; Danese, S.; Gisbert, J.P.; Gomollon, F.; Iqbal, T.; Katsanos, K.; Koutroubakis, I.; et al. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J. Crohn’s Colitis 2015, 9, 211–222. [Google Scholar] [CrossRef]
- Kumar, A.; Brookes, M.J. Iron therapy in inflammatory bowel disease. Nutrients 2020, 3478. [Google Scholar] [CrossRef]
- Hartman, C.; Eliakim, R.; Shamir, R. Nutritional status and nutritional therapy in inflammatory bowel diseases. World J. Gastroenterol. 2009, 15, 2570–2578. [Google Scholar] [CrossRef]
- Seidman, E.; LeLeiko, N.; Ament, M.; Berman, W.; Caplan, D.; Evans, J.; Kocoshis, S.; Lake, A.; Motil, K.; Sutphen, J. Nutritional issues in pediatric inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 1991, 12, 424–438. [Google Scholar] [CrossRef] [PubMed]
- Dumitrescu, G.; Mihai, C.; Dranga, M.; Prelipcean, C.C. Bone mineral density in patients with inflammatory bowel disease from North-Eastern Romania. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2013, 117, 23–28. [Google Scholar]
- Laakso, S.; Valta, H.; Verkasalo, M.; Toiviainen-Salo, S.; Mäkitie, O. Compromised peak bone mass in patients with inflammatory bowel disease—A prospective study. J. Pediatr. 2014, 164. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Hong, S.J.; Jeon, Y.W.; Han, J.P.; Han, S.H.; Kang, J.H.; Tae, J.W.; Lim, H.S.; Kim, H.K.; Ko, B.M.; et al. The early onset of disease may be a risk factor for decreased bone mineral density in patients with inflammatory bowel disease. Clin. Endosc. 2013, 46, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Abraham, B.P.; Prasad, P.; Malaty, H.M. Vitamin D deficiency and corticosteroid use are risk factors for low bone mineral density in inflammatory bowel disease patients. Dig. Dis. Sci. 2014, 59, 1878–1884. [Google Scholar] [CrossRef]
- Miznerova, E.; Hlavaty, T.; Koller, T.; Toth, J.; Holociova, K.; Huorka, M.; Killinger, Z.; Payer, J. The prevalence and risk factors for osteoporosis in patients with inflammatory bowel disease. Bratisl. Lek. Listy 2013, 114, 439–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, R.v.; Trott, M.J.; Bartholomeusz, F.D.; Andrews, J.M. Systematic review: Body composition in adults with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2013, 38, 213–225. [Google Scholar] [CrossRef]
- Jahnsen, J.; Falch, J.A.; Mowinckel, P.; Aadland, E. Body composition in patients with inflammatory bowel disease: A population-based study. Am. J. Gastroenterol. 2003, 98, 1556–1562. [Google Scholar] [CrossRef]
- Yao, G.X.; Wang, X.R.; Jiang, Z.M.; Zhang, S.Y.; Ni, A.P. Role of perioperative parenteral nutrition in severely malnourished patients with Crohn’s disease. World J. Gastroenterol. 2005, 11, 5732–5734. [Google Scholar] [CrossRef] [PubMed]
- Stokes, M.A. Crohn’s disease and nutrition. Br. J. Surg. 1992, 79, 391–394. [Google Scholar] [CrossRef]
- Valentini, L.; Schaper, L.; Buning, C.; Hengstermann, S.; Koernicke, T.; Tillinger, W.; Guglielmi, F.W.; Norman, K.; Buhner, S.; Ockenga, J.; et al. Malnutrition and impaired muscle strength in patients with Crohn’s disease and ulcerative colitis in remission. Nutrition 2008, 24, 694–702. [Google Scholar] [CrossRef]
- Cederholm, T.; Bosaeus, I.; Barazzoni, R.; Bauer, J.; van Gossum, A.; Klek, S.; Muscaritoli, M.; Nyulasi, I.; Ockenga, J.; Schneider, S.M.; et al. Diagnostic criteria for malnutrition—An ESPEN consensus statement. Clin. Nutr. 2015, 34, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ney, M.; Eslamparast, T.; Vandermeer, B.; Ismond, K.P.; Kroeker, K.; Halloran, B.; Raman, M.; Tandon, P. Systematic review of nutrition screening and assessment in inflammatory bowel disease. World J. Gastroenterol. 2019, 25, 3823–3837. [Google Scholar] [CrossRef] [PubMed]
- Detsky, A.S.; Baker, J.P.; Mendelson, R.A.; Wolman, S.L.; Wesson, D.E.; Jeejeebhoy, K.N.; Detsky, A.S.; Baker, J.P.; Mendelson, R.A.; Wolman, S.L.; et al. Evaluating the accuracy of nutritional assessment techniques applied to hospitalized patients: Methodology and comparisons. JPEN 1984, 8, 153–159. [Google Scholar] [CrossRef]
- Van Bokhorst-de van der Schueren, M.A.E.; Guaitoli, P.R.; Jansma, E.P.; de Vet, H.C.W. Nutrition screening tools: Does one size fit all? A systematic review of screening tools for the hospital setting. Clin. Nutr. 2014, 33, 39–58. [Google Scholar] [CrossRef]
- Sanderson, I.R.; Croft, N.M. The anti-inflammatory effects of enteral nutrition. JPEN 2005, 29, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Gassull, M.À.; Cabré, E. Nutrición y Enfermedad Inflamatoria Intestinal. In Enfermedad inflamatoria intestinal; Gassull, M.À., Gomollón, F., Hinojosa, J., Obrador, A., Eds.; ARAN: Madrid, Spain, 2007; pp. 497–508. [Google Scholar]
- Shah, N.D.; Parian, A.M.; Mullin, G.E.; Limketkai, B.N. Oral diets and nutrition support for inflammatory bowel disease: What is the evidence? Nutr. Clin. Pract. 2015, 30, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Lochs, H.; Dejong, C.; Hammarqvist, F.; Hebuterne, X.; Leon-Sanz, M.; Schütz, T.; van Gemert, W.; van Gossum, A.; Valentini, L.; Lübke, H.; et al. ESPEN guidelines on enteral nutrition: Gastroenterology. Clin. Nutr. 2006, 25, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Gomollón, F.; Dignass, A.; Annese, V.; Tilg, H.; van Assche, G.; Lindsay, J.O.; Peyrin-Biroulet, L.; Cullen, G.J.; Daperno, M.; Kucharzik, T.; et al. 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: Part 1: Diagnosis and medical management. J. Crohns Colitis 2017, 11, 3–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comeche, J.M.; Caballero, P.; Gutierrez-Hervas, A.; Garc, S.; Comino, I.; Altavilla, C.; Tuells, J. Enteral nutrition in patients with inflammatory bowel disease. Systematic review, meta-analysis, and meta-regression. Nutrients 2019, 11, 2657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Gossum, A.; Cabre, E.; Hébuterne, X.; Jeppesen, P.; Krznaric, Z.; Messing, B.; Powell-Tuck, J.; Staun, M.; Nightingale, J. ESPEN guidelines on parenteral nutrition: Gastroenterology. Clin. Nutr. 2009, 28, 415–427. [Google Scholar] [CrossRef]
- Navas-López, V.M.; van Limbergen, J.; Martín-de-Carpi, J. Nutrición enteral en el paciente pediátrico con enfermedad de Crohn. Enferm. Inflamatoria Intest. Dia 2016, 15, 112–122. [Google Scholar] [CrossRef]
- Dziechciarz, P.; Horvath, A.; Shamir, R.; Szajewska, H. Meta-analysis: Enteral nutrition in active Crohn’s disease in children. Aliment. Pharmacol. Ther. 2007, 26, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Narula, N.; Dhillon, A.; Zhang, D.; Sherlock, M.E.; Tondeur, M.; Zachos, M. Enteral nutritional therapy for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev. 2018, 2018. [Google Scholar] [CrossRef]
- Zachos, M.; Tondeur, M.; Griffiths, A.M. Enteral nutritional therapy for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev. 2007, CD000542. [Google Scholar] [CrossRef]
- Hu, D.; Ren, J.; Wang, G.; Li, G.; Liu, S.; Yan, D.; Gu, G.; Zhou, B.; Wu, X.; Chen, J.; et al. Exclusive enteral nutritional therapy can relieve inflammatory bowel stricture in Crohn’s disease. J. Clin. Gastroenterol. 2014, 48, 790–795. [Google Scholar] [CrossRef]
- Dignass, A.; van Assche, G.; Lindsay, J.O.; Lémann, M.; Söderholm, J.; Colombel, J.F.; Danese, S.; d’Hoore, A.; Gassull, M.; Gomollón, F.; et al. The second European evidence-based consensus on the diagnosis and management of Crohn’s disease: Current management. J. Crohns Colitis 2010, 4, 28–62. [Google Scholar] [CrossRef]
- Uchino, M.; Ikeuchi, H.; Matsuoka, H.; Matsumoto, T.; Takesue, Y.; Tomita, N. Clinical features and management of duodenal fistula in patients with Crohn’s disease. Hepato Gastroenterol. 2012, 59, 171–174. [Google Scholar] [CrossRef]
- Mowat, C.; Cole, A.; Windsor, A.; Ahmad, T.; Arnott, I.; Driscoll, R.; Mitton, S.; Orchard, T.; Rutter, M.; Younge, L.; et al. Guidelines for the management of inflammatory bowel disease in adults. Gut 2011, 60, 571–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravindran, P.; Ansari, N.; Young, C.J.; Solomon, M.J. Definitive surgical closure of enterocutaneous fistula: Outcome and factors predictive of increased postoperative morbidity. Colorectal Dis. 2014, 16, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Triantafillidis, J.K.; Papalois, A.E. The role of total parenteral nutrition in inflammatory bowel disease: Current aspects. Scand. J. Gastroenterol. 2014, 49, 3–14. [Google Scholar] [CrossRef]
- Weimann, A.; Braga, M.; Carli, F.; Higashiguchi, T.; Hübner, M.; Klek, S.; Laviano, A.; Ljungqvist, O.; Lobo, D.N.; Martindale, R.; et al. ESPEN guideline: Clinical nutrition in surgery. Clin. Nutr. 2017, 36, 623–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pironi, L.; Arends, J.; Bozzetti, F.; Cuerda, C.; Gillanders, L.; Jeppesen, P.B.; Joly, F.; Kelly, D.; Lal, S.; Staun, M.; et al. ESPEN guidelines on chronic intestinal failure in adults. Clin. Nutr. 2016, 35, 247–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frolkis, A.D.; Dykeman, J.; Negrón, M.E.; Debruyn, J.; Jette, N.; Fiest, K.M.; Frolkis, T.; Barkema, H.W.; Rioux, K.P.; Panaccione, R.; et al. Risk of surgery for inflammatory bowel diseases has decreased over time: A systematic review and meta-analysis of population-based studies. Gastroenterology 2013, 145, 996–1006. [Google Scholar] [CrossRef]
- Alós, R.; Hinojosa, J. Timing of surgery in Crohn’s disease: A key issue in the management. World J. Gastroenterol. 2008, 14, 5532–5539. [Google Scholar] [CrossRef] [PubMed]
- Gillis, C.; Carli, F. Promoting perioperative metabolic and nutritional care. Anesthesiology 2015, 123, 1455–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainous, M.R.; Deitch, E.A. Nutrition and infection. Surg. Clin. North Am. 1994, 74, 659–676. [Google Scholar] [CrossRef]
- Santos, J.I. Nutrition, infection, and immunocompetence. Infect. Dis. Clin. North Am. 1994, 8, 243–267. [Google Scholar] [CrossRef]
- Stechmiller, J.K. Understanding the role of nutrition and wound healing. Nutr. Clin. Pract. 2010, 25, 61–68. [Google Scholar] [CrossRef]
- Brennan, G.T.; Ha, I.; Hogan, C.; Nguyen, E.; Jamal, M.M.; Bechtold, M.L.; Nguyen, D.L. Does preoperative enteral or parenteral nutrition reduce postoperative complications in Crohn’s disease patients: A meta-analysis. Eur. J. Gastroenterol. Hepatol. 2018, 30, 997–1002. [Google Scholar] [CrossRef]
- Brady, M.; Kinn, S.; Stuart, P. Preoperative fasting for adults to prevent perioperative complications. Cochrane Database Syst. Rev. 2003, CD004423. [Google Scholar] [CrossRef]
- Osland, E.; Yunus, R.M.; Khan, S.; Memon, M.A. Early versus traditional postoperative feeding in patients undergoing resectional gastrointestinal surgery: A meta-analysis. JPEN 2011, 35, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Ljungqvist, O. Insulin resistance in surgery. Cir. Cir. 2016, 84, 51–54. [Google Scholar]
- Ljungqvist, O. ERAS—Enhanced recovery after surgery: Moving evidence-based perioperative care to practice. JPEN 2014, 38, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Dutheil, F.; Lac, G.; Lesourd, B.; Chapier, R.; Walther, G.; Vinet, A.; Sapin, V.; Verney, J.; Ouchchane, L.; Duclos, M.; et al. Different modalities of exercise to reduce visceral fat mass and cardiovascular risk in metabolic syndrome: The RESOLVE randomized trial. Int. J. Cardiol. 2013, 168, 3634–3642. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Escher, J.; Hébuterne, X.; Kłęk, S.; Krznaric, Z.; Schneider, S.; Shamir, R.; Stardelova, K.; Wierdsma, N.; Wiskin, A.E.; et al. ESPEN practical guideline: Clinical nutrition in inflammatory bowel disease. Clin. Nutr. 2020, 39, 632–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pironi, L.; Arends, J.; Baxter, J.; Bozzetti, F.; Peláez, R.B.; Cuerda, C.; Forbes, A.; Gabe, S.; Gillanders, L.; Holst, M.; et al. ESPEN endorsed recommendations: Definition and classification of intestinal failure in adults. Clin. Nutr. 2015, 34, 171–180. [Google Scholar] [CrossRef]
- Joly, F.; Baxter, J.; Staun, M.; Kelly, D.G.; Hwa, Y.L.; Corcos, O.; de Francesco, A.; Agostini, F.; Klek, S.; Santarpia, L.; et al. Five-year survival and causes of death in patients on home parenteral nutrition for severe chronic and benign intestinal failure. Clin. Nutr. 2018, 37, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Massironi, S.; Cavalcoli, F.; Rausa, E.; Invernizzi, P.; Braga, M.; Vecchi, M. Understanding short bowel syndrome: Current status and future perspectives. Dig. Liver Dis. 2020, 52, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Kelly, D.G.; Tappenden, K.A.; Winkler, M.F. Short bowel syndrome: Highlights of patient management, quality of life, and survival. JPEN 2014, 38, 427–437. [Google Scholar] [CrossRef]
- Messing, B.; Pigot, F.; Rongier, M.; Morin, M.C.; Ndeïndoum, U.; Rambaud, J.C. Intestinal absorption of free oral hyperalimentation in the very short bowel syndrome. Gastroenterology 1991, 100, 1502–1508. [Google Scholar] [CrossRef]
- Nightingale, J.M.D.; Kamm, M.A.; van der Sijp, J.R.M.; Ghatei, M.A.; Bloom, S.R.; Lennard-Jones, J.E. Gastrointestinal hormones in short bowel syndrome. Peptide YY may be the “colonic brake” to gastric emptying. Gut 1996, 39, 267–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crenn, P.; Coudray-Lucas, C.; Thuillier, F.; Cynober, L.; Messing, B. Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology 2000, 119, 1496–1505. [Google Scholar] [CrossRef] [PubMed]
- Crenn, P.; Vahedi, K.; Lavergne-Slove, A.; Cynober, L.; Matuchansky, C.; Messing, B. Plasma citrulline: A marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology 2003, 124, 1210–1219. [Google Scholar] [CrossRef]
- Nightingale, J.; Woodward, J.M. Guidelines for management of patients with a short bowel. Gut 2006, 55, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pironi, L. Definitions of intestinal failure and the short bowel syndrome. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Kowlgi, N.G.; Chhabra, L. D-lactic acidosis: An underrecognized complication of short bowel syndrome. Gastroenterol. Res. Pract. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. Vitamin D insufficiency/deficiency in gastrointestinal disorders. J. Bone Miner. Res. 2007, 22. [Google Scholar] [CrossRef] [PubMed]
- Khaodhiar, L.; Keane-Ellison, M.; Tawa, N.E.; Thibault, A.; Burke, P.A.; Bistrian, B.R. Iron deficiency anemia in patients receiving home total parenteral nutrition. JPEN 2002, 26, 114–119. [Google Scholar] [CrossRef]
- Hwa, Y.L.; Rashtak, S.; Kelly, D.G.; Murray, J.A. Iron deficiency in long-term parenteral nutrition therapy. JPEN 2016, 40, 869–876. [Google Scholar] [CrossRef]
- Nightingale, J.M.D.; Lennard-Jones, J.E.; Gertner, D.J.; Wood, S.R.; Bartram, C.I. Colonic preservation reduces need for parenteral therapy, increases incidence of renal stones, but does not change high prevalence of gall stones in patients with a short bowel. Gut 1992, 33, 1493–1497. [Google Scholar] [CrossRef]
- Pironi, L.; Sasdelli, A.S. Intestinal failure-associated liver disease. Clin. Liver Dis. 2019, 23, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Bond, A.; Huijbers, A.; Pironi, L.; Schneider, S.M.; Wanten, G.; Lal, S. Review article: Diagnosis and management of intestinal failure-associated liver disease in adults. Aliment. Pharmacol. Ther. 2019, 50, 640–653. [Google Scholar] [CrossRef] [PubMed]
- Amiot, A.; Messing, B.; Corcos, O.; Panis, Y.; Joly, F. Determinants of home parenteral nutrition dependence and survival of 268 patients with non-malignant short bowel syndrome. Clin. Nutr. 2013, 32, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, S.C.; Austin, P.; Boeykens, K.; Chourdakis, M.; Cuerda, C.; Jonkers-Schuitema, C.; Lichota, M.; Nyulasi, I.; Schneider, S.M.; Stanga, Z.; et al. ESPEN guideline on home enteral nutrition. Clin. Nutr. 2020, 39, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Pironi, L.; Boeykens, K.; Bozzetti, F.; Joly, F.; Klek, S.; Lal, S.; Lichota, M.; Mühlebach, S.; van Gossum, A.; Wanten, G.; et al. ESPEN guideline on home parenteral nutrition. Clin. Nutr. 2020, 39, 1645–1666. [Google Scholar] [CrossRef]
- Buchman, A.L.; Fryer, J.; Wallin, A.; Ahn, C.W.; Polensky, S.; Zaremba, K. Clonidine reduces diarrhea and sodium loss in patients with proximal jejunostomy: A controlled study. JPEN 2006, 30, 487–491. [Google Scholar] [CrossRef]
- Sato, D.; Morino, K.; Ohashi, N.; Ueda, E.; Ikeda, K.; Yamamoto, H.; Ugi, S.; Yamamoto, H.; Araki, S.; Maegawa, H. Octreotide improves early dumping syndrome potentially through incretins: A case report. Endocr. J. 2013, 60, 847–853. [Google Scholar] [CrossRef] [Green Version]
- Nightingale, J.M.; Walker, E.R.; Farthing, M.J.; Lennard-Jones, J.E. Effect of omeprazole on intestinal output in the short bowel syndrome. Aliment. Pharmacol. Ther. 1991, 5, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, P.B.; Sanguinetti, E.L.; Buchman, A.; Howard, L.; Scolapio, J.S.; Ziegler, T.R.; Gregory, J.; Tappenden, K.A.; Holst, J.; Mortensen, P.B. Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant qlucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients. Gut 2005, 54, 1224–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeppesen, P.B.; Pertkiewicz, M.; Messing, B.; Iyer, K.; Seidner, D.L.; O’Keefe, S.J.D.; Forbes, A.; Heinze, H.; Joelsson, B. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure. Gastroenterology 2012, 143, 1473–1481.e3. [Google Scholar] [CrossRef]
- Yannam, G.R.; Sudan, D.L.; Grant, W.; Botha, J.; Langnas, A.; Thompson, J.S. intestinal lengthening in adult patients with short bowel syndrome. J. Gastrointest. Surg. 2010, 14, 1931–1936. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S. The STEP procedure: Defining its role in the management of pediatric short bowel syndrome. J. Pediatr. Gastroenterol. Nutr. 2007, 45, 174–175. [Google Scholar] [CrossRef] [PubMed]
- Frongia, G.; Kessler, M.; Weih, S.; Nickkholgh, A.; Mehrabi, A.; Holland-Cunz, S. Comparison of LILT and STEP procedures in children with short bowel syndrome—A systematic review of the literature. J. Pediatr. Surg. 2013, 48, 1794–1805. [Google Scholar] [CrossRef] [PubMed]
- Knoyle, P.-M. Treating SBS with organoids. Nat. Rev. Gastroenterol. Hepatol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, S.; Kobayashi, E.; Fujii, M.; Ohta, Y.; Arai, K.; Matano, M.; Ishikawa, K.; Miyamoto, K.; Toshimitsu, K.; Takahashi, S.; et al. An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature 2021. [Google Scholar] [CrossRef] [PubMed]
- Cancer Stat Facts: Colorectal Cancer. Available online: https://seer.cancer.gov/statfacts/html/colorect.html (accessed on 1 March 2020).
- Zhou, E.; Rifkin, S. Colorectal cancer and diet: Risk versus prevention, is diet an intervention? Gastroenterol. Clin. North Am. 2021, 50, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Keum, N.N.; Giovannucci, E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 713–732. [Google Scholar] [CrossRef]
- Veettil, S.K.; Wong, T.Y.; Loo, Y.S.; Playdon, M.C.; Lai, N.M.; Giovannucci, E.L.; Chaiyakunapruk, N. Role of diet in colorectal cancer incidence: Umbrella review of meta-analyses of prospective observational studies. JAMA Netw. Open 2021, 4, e2037341. [Google Scholar] [CrossRef]
- Stoffel, E.M.; Murphy, C.C. Epidemiology and mechanisms of the increasing incidence of colon and rectal cancers in young adults. Gastroenterology 2020, 158, 341–353. [Google Scholar] [CrossRef]
- Paski, S.C.; Semrad, C.E. Small bowel tumors. Gastrointest. Endosc. Clin. North Am. 2009, 19, 461–479. [Google Scholar] [CrossRef]
- Barsouk, A.; Rawla, P.; Barsouk, A.; Thandra, K.C. Epidemiology of cancers of the small intestine: Trends, risk factors, and prevention. Med. Sci. 2019, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Howe, J.R.; Cardona, K.; Fraker, D.L.; Kebebew, E.; Untch, B.R.; Wang, Y.Z.; Law, C.H.; Liu, E.H.; Kim, M.K.; Menda, Y.; et al. The surgical management of small bowel neuroendocrine tumors. Pancreas 2017, 46, 715–731. [Google Scholar] [CrossRef]
- Laing, E.; Kiss, N.; Michael, M.; Krishnasamy, M.; Laing, M.E. At the cutting edge nutritional complications and the management of patients with gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology 2019. [Google Scholar] [CrossRef]
- Clement, D.S.V.M.; Tesselaar, M.E.T.; van Leerdam, M.E.; Srirajaskanthan, R.; Ramage, J.K. Nutritional and vitamin status in patients with neuroendocrine neoplasms. World J. Gastroenterol. 2019, 25, 1171–1184. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.L.; Torres-Duarte, A.; Brant, L.J.; Bhargava, P.; Marshall, J.; Wainer, I.W. The relationship between a urinary cachectic factor and weight loss in advanced cancer patients. Cancer Investig. 2004, 22, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Arends, J. The causes and consequences of cancer-associated malnutrition. Eur. J. Oncol. Nurs. 2005, 9. [Google Scholar] [CrossRef]
- Russell, S.T.; Tisdale, M.J. Effect of a tumour-derived lipid-mobilising factor on glucose and lipid metabolism in vivo. Br. J. Cancer 2002, 87, 580–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasprzak, A. The role of tumor microenvironment cells in colorectal cancer (CRC) cachexia. Int. J. Mol. Sci. 2021, 22, 1565. [Google Scholar] [CrossRef]
- Dolan, R.D.; Laird, B.J.A.; Klepstad, P.; Kaasa, S.; Horgan, P.G.; Paulsen, Ø.; McMillan, D.C. An exploratory study examining the relationship between performance status and systemic inflammation frameworks and cytokine profiles in patients with advanced cancer. Medicine 2019, 98, e17019. [Google Scholar] [CrossRef]
- Bowers, L.; Boyle, D.A. Depression in patients with advanced cancer. Clin. J. Oncol. Nurs. 2003, 7, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Nelson, K.A. The cancer anorexia-cachexia syndrome. Semin. Oncol. 2000, 27, 64–68. [Google Scholar]
- Wallengren, O.; Lundholm, K.; Bosaeus, I. Diagnostic criteria of cancer cachexia: Relation to quality of life, exercise capacity and survival in unselected palliative care patients. Support. Care Cancer 2013, 21, 1569–1577. [Google Scholar] [CrossRef]
- Barret, M.; Malka, D.; Aparicio, T.; Dalban, C.; Locher, C.; Sabate, J.-M.; Louafi, S.; Mansourbakht, T.; Bonnetain, F.; Attar, A.; et al. Nutritional status affects treatment tolerability and survival in metastatic colorectal cancer patients: Results of an AGEO prospective multicenter study. Oncology 2011, 81, 395–402. [Google Scholar] [CrossRef]
- Gallois, C.; Artru, P.; Lièvre, A.; Auclin, E.; Lecomte, T.; Locher, C.; Marthey, L.; Zaimi, Y.; Faroux, R.; Pernot, S.; et al. Evaluation of two nutritional scores’ association with systemic treatment toxicity and survival in metastatic colorectal cancer: An AGEO prospective multicentre study. Eur. J. Cancer 2019, 119, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, S.; Dogan, I.; Usul Afsar, C.; Karabulut, M.; Ak, N.; Duran, A.; Tastekin, D. Does nutritional status affect treatment tolerability, chemotherapy response and survival in metastatic gastric cancer patients? Results of a prospective multicenter study in Turkey. J. Oncol. Pharm. Pract. 2021, 1–17. [Google Scholar] [CrossRef]
- Nakajima, N. Differential diagnosis of cachexia and refractory cachexia and the impact of appropriate nutritional intervention for cachexia on survival in terminal cancer patients. Nutrients 2021, 13, 915. [Google Scholar] [CrossRef] [PubMed]
Micronutrients | Signs/Symptoms/Consequences |
---|---|
Iron | Anemia, fatigue, weakness, brittle nails |
Vitamin D | Disturbed calcium homeostasis and bone health |
Vitamin B12 | Anemia, fatigue, neurological effects |
Zinc | Impaired healing, disturbed smell and taste, delayed growth in children |
Folate | Anemia, fatigue |
Calcium | Decreased bone density (risk bone fracture) |
Magnesium | Disturbed bone health, muscular cramps, fatigue |
FACTOR | MECHANISM |
---|---|
Poor dietary intake |
|
Increase nutrient malabsorption |
|
Increase protein loss |
|
Increased metabolism |
|
DEFICIT | RECOMMENDATION |
---|---|
Vitamin D | Supplement in case of detecting deficit |
Vitamin B12 | Supplement in case of detecting deficit and in all patients with ileal resection >20 cm |
Folate | Supplement in case of detecting deficit |
Iron | Iron deficiency anemia To supplement with oral iron if mild anemia, inactive IBD and good oral tolerance To supplement with intravenous iron if; hemoglobin <10 g/dl, active IBD or oral iron intolerance Iron deficiency without anemia: to supplement with oral iron |
Zinc | Selective cases: severe diarrhea |
ENTERAL NUTRITION | PARENTERAL NUTRITION |
---|---|
Prevent and treat malnutrition | Malnourished patients or at risk of malnutrition when it is not possible to administer oral or enteral diet |
Improve growth and development in pediatric patients | Intestinal perforation |
Perioperative nutrition in CD patients with weight loss before surgery and low albumin | Non-functioning intestine |
In pediatric CD patients, as first-line treatment to induce remission | CD with intestinal obstruction, short bowel or high-output enterocutaneous fistula |
ADULTS | CHILDREN |
---|---|
|
|
Proximal small intestine | Fat Sugars Peptides and amino acids Iron Folate Calcium Water Electrolytes |
Middle small intestine | Sugars Peptides and amino acids Calcium Water Electrolytes |
Distal small intestine | Bile acids Vitamin B12 Water Electrolytes |
Colon | Water Electrolytes Medium-chain triglycerides Calcium Amino acids |
Immediate Postresection | Early Postresection | Late Postresection |
---|---|---|
Intravenous fluid resuscitation | PN Control of diarrhea Prevention of nutrition deficiencies Progressive introduction of oral liquids and food Monitoring hydration status | Oral intake ± PN Some patients: long-term PN Control of diarrhea Prevention and correction of nutritional deficiencies Continued monitoring hydration status If appropriate: hormonal therapy If feasible: restoration of intestinal continuity If appropriate: surgical procedures to increase length or improve motility Selected patients: intestinal transplantation |
Benign Neoplasms of the Small Intestine | |||||
Location | Clinical peculiarities | Diagnosis | Various peculiarities | Nutritional peculiarities | |
Adenomas | Duodenum, ileum (less common). They are usually unique; when multiple, consider associated polyposis. | Asymptomatic, except if they obstruct the ampulla of Vater and produce obstructive colostasis/jaundice | According to location, endoscopic technics. Evident malignant potential: at diagnosis 50% malignant degeneration (invasive or not). | The most frequent. Potential association with polyposis syndromes, such as familial adenomatous polyposis. | Usually, asymptomatic. Chronic biliary obstruction (unusual) could lead to deficits in the absorption of fat and fat-soluble vitamins. |
Lipoma | Mature adipose tissue. No malignant potential. | Asymptomatic in general. | CT and MRI high diagnostic specificity. | In asymptomatic patients with a firm preoperative diagnosis, no treatment. | Not common, not specific. |
Leiomyoma | Any location, most common in the jejunum. | Asymptomatic except if they are large: obstruction or less frequently bleeding. | Sometimes they adopt radiological characteristics similar to GIST. | Second in frequency. | Not common, not specific. |
Malignant Neoplasms of the Small Intestine | |||||
Location | Clinical peculiarities | Diagnosis | Various peculiarities | Nutritional peculiarities | |
Adenocarcinoma | Duodenum or proximal jejunum (90% in these locations), originating from an adenoma. Sometimes in the context of genetic syndromes. Consider metastasis from another adenocarcinoma. | Obstruction and/or bleeding (chronic macro or microscopic) and/or obstructive jaundice if they affect Vater’s ampulla. | Endoscopy, imaging tests (these are not specific) | Most common malignant tumor of the small intestine. Possible association with polyposis (familial adenomatous, Lynch, Peutz-Jeghers) or chronic intestinal inflammation (Crohn’s disease). | It usually involves a short intestinal segment, but wide resections with nutritional consequences may be required. |
Lymphoma | It depends on the type, different location. In our environment, it is more frequent in terminal ileum. It is considered primary intestinal lymphoma if there are no other adenopathy, except regional ones and the extension of the peripheral blood, liver and spleen are normal. | Similar to other neoplasms of the small intestine, although it has a lower tendency to occlude the intestinal lumen and more to perforate. | Classically there were 3 types, but now this classification is under review. Most frequent lymphoma B. There is lymphoid tissue lymphoma associated with mucosa (MALT, immunoproliferative disease of the small intestine (EIPID), Mediterranean lymphoma); T-cell lymphoma associated with celiac disease and other types of lymphomas, including a subtype considered benign, located in the duodenum. | Your relative risk increases in Crohn’s disease, celiac disease not following a gluten-free diet, HIV infection, or organ transplantation. | In some types, the condition is usually more extensive and can lead to greater nutritional consequences (clinically manifest intestinal malabsorption, sometimes associated with bacterial overgrowth). |
GIST (gastrointestinal stromal tumors) | Jejunum and ileum. They are derived from the interstitial cells of Cajal. | Extraluminal growth, although they tend to ulcerate. They can be large in size. Abdominal pain, bleeding, perforation, or palpable abdominal mass. | It is characterized molecularly by mutations in the KIT proto-oncogene, with overexpression of c-kit (receptor tyrosine kinase detectable by immunohistochemistry). Before knowing these molecular characteristics they were confused with leiomyosarcomas. | Technically it is a soft tissue sarcoma, but totally different from any other variety. It should always be considered as potentially malignant, especially small bowel GISTs. | Not specific. Tyrosine kinase inhibitors have been a revolution in avoiding extensive intestinal resections of the past, with potentially dire nutritional consequences. |
Tumor carcinoide | Terminal ileum, where they are the most frequent tumor. Other locations are possible | When they cause symptoms, they are the usual ones of small intestine tumors or the specific carcinoid syndrome. | They are usually small, sometimes multifocal, usually subepithelial and with a tendency to affect the serosa, with a marked desmoplastic reaction, visible on imaging techniques. | Those located in the appendix can debut as appendicitis. | They can produce carcinoid syndrome, sometimes after triggers. Vitamin deficiencies (pellagra and others) or other nutrients (see text and Table 8). |
Tumor Type | Nutritional Or Metabolic Changes |
---|---|
All | Malnutrition |
Insulinoma | Hypoglycemia, obesity |
Glucagonoma | Hyperglycemia |
Somatostatinoma | Hyperglycemia, protein deficits, Zn deficiency, fat-soluble vitamin deficiencies |
VIPoma | Diarrhea, hypokalemia, hypomagnesemia, Zn deficiency |
Gastrinoma | Diarrhea due to steatorrhea, hypomagnesemia, other electrolyte disturbances |
Carcinoid tumor | Diarrhea, dehydration, niacin deficiency (also possible in fat-soluble vitamins), hypokalemia, hypomagnesemia, protein deficits |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ber, Y.; García-Lopez, S.; Gargallo-Puyuelo, C.J.; Gomollón, F. Small and Large Intestine (II): Inflammatory Bowel Disease, Short Bowel Syndrome, and Malignant Tumors of the Digestive Tract. Nutrients 2021, 13, 2325. https://doi.org/10.3390/nu13072325
Ber Y, García-Lopez S, Gargallo-Puyuelo CJ, Gomollón F. Small and Large Intestine (II): Inflammatory Bowel Disease, Short Bowel Syndrome, and Malignant Tumors of the Digestive Tract. Nutrients. 2021; 13(7):2325. https://doi.org/10.3390/nu13072325
Chicago/Turabian StyleBer, Yolanda, Santiago García-Lopez, Carla J. Gargallo-Puyuelo, and Fernando Gomollón. 2021. "Small and Large Intestine (II): Inflammatory Bowel Disease, Short Bowel Syndrome, and Malignant Tumors of the Digestive Tract" Nutrients 13, no. 7: 2325. https://doi.org/10.3390/nu13072325