Impact of a School-Based Gardening, Cooking, Nutrition Intervention on Diet Intake and Quality: The TX Sprouts Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Description of TX Sprouts Intervention
2.3. Outcome Measurements
2.4. Collection of Dietary Data via 24-h Dietary Recalls
2.5. Calculation of the Healthy Eating Index-2015 (HEI-2015)
2.6. Selection of Nutrients for Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; U.S. Government Printing Office: Washington, DC, USA, 2020.
- Scaglioni, S.; De Cosmi, V.; Ciappolino, V.; Parazzini, F.; Brambilla, P.; Agostoni, C. Factors influencing children’s eating behaviours. Nutrients 2018, 10, 706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Rehm, C.D.; Onopa, J.; Mozaffarian, D. Trends in diet quality among youth in the United States, 1999–2016. JAMA 2020, 323, 1161–1174. [Google Scholar] [CrossRef] [PubMed]
- Dunford, E.; Popkin, B. 37 year snacking trends for US children 1977–2014. Pediatr. Obes. 2018, 13, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Bleich, S.N.; Vercammen, K.A.; Koma, J.W.; Li, Z. Trends in beverage consumption among children and adults, 2003–2014. Obesity 2018, 26, 432–441. [Google Scholar] [CrossRef]
- Rehm, C.D.; Drewnowski, A. Trends in consumption of solid fats, added sugars, sodium, sugar-sweetened beverages, and fruit from fast food restaurants and by fast food restaurant type among US children, 2003–2010. Nutrients 2016, 8, 804. [Google Scholar] [CrossRef] [Green Version]
- Thomson, J.L.; Tussing-Humphreys, L.M.; Goodman, M.H.; Landry, A.S. Diet quality in a nationally representative sample of American children by sociodemographic characteristics. Am. J. Clin. Nutr. 2019, 109, 127–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cullen, K.W.; Chen, T.-A. The contribution of the USDA school breakfast and lunch program meals to student daily dietary intake. Prev. Med. Rep. 2017, 5, 82–85. [Google Scholar] [CrossRef]
- Division of Population Health National Center for Chronic Disease Prevention and Health Promotion. National Health Education Standards. Available online: https://www.cdc.gov/healthyschools/sher/standards/index.htm (accessed on 1 May 2021).
- Turner, L.; Eliason, M.; Sandoval, A.; Chaloupka, F.J. Increasing prevalence of US elementary school gardens, but disparities reduce opportunities for disadvantaged students. J. Sch. Health 2016, 86, 906–912. [Google Scholar] [CrossRef]
- Schneider, S.; Pharr, J.; Bungum, T. Impact of school garden participation on the health behaviors of children. Health Behav. Policy Rev. 2017, 4, 46–52. [Google Scholar] [CrossRef]
- Lam, V.; Romses, K.; Renwick, K. Exploring the relationship between school gardens, food literacy and mental well-being in youth using photovoice. Nutrients 2019, 11, 1354. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.N.; Martinez, L.C.; Spruijt-Metz, D.; Gatto, N.M. LA Sprouts: A 12-week gardening, nutrition, and cooking randomized control trial improves determinants of dietary behaviors. J. Nutr. Educ. Behav. 2016, 48, e11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatto, N.; Martinez, L.; Spruijt-Metz, D.; Davis, J. LA Sprouts randomized controlled nutrition, cooking and gardening programme reduces obesity and metabolic risk in Hispanic/Latino youth. Pediatr. Obes. 2017, 12, 28–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berezowitz, C.K.; Bontrager Yoder, A.B.; Schoeller, D.A. School gardens enhance academic performance and dietary outcomes in children. J. Sch. Health 2015, 85, 508–518. [Google Scholar] [CrossRef]
- Landry, M.J.; Markowitz, A.K.; Asigbee, F.M.; Gatto, N.M.; Spruijt-Metz, D.; Davis, J.N. Cooking and gardening behaviors and improvements in dietary intake in hispanic/latino youth. Child. Obes. 2019, 15, 162–270. [Google Scholar] [CrossRef]
- Wells, N.M.; Myers, B.M.; Henderson, C.R., Jr. School gardens and physical activity: A randomized controlled trial of low-income elementary schools. Prev. Med. 2014, 69, S27–S33. [Google Scholar] [CrossRef]
- Van den Berg, A.; Warren, J.L.; McIntosh, A.; Hoelscher, D.; Ory, M.G.; Jovanovic, C.; Lopez, M.; Whittlesey, L.; Kirk, A.; Walton, C. Impact of a gardening and physical activity intervention in Title 1 schools: The TGEG study. Child. Obes. 2020, 16, S44–S54. [Google Scholar] [CrossRef]
- Robinson-O’Brien, R.; Story, M.; Heim, S. Impact of garden-based youth nutrition intervention programs: A review. J. Am. Diet. Assoc. 2009, 109, 273–280. [Google Scholar] [CrossRef]
- Ozer, E.J. The effects of school gardens on students and schools: Conceptualization and considerations for maximizing healthy development. Health Educ. Behav. 2007, 34, 846–863. [Google Scholar] [CrossRef] [Green Version]
- Savoie-Roskos, M.R.; Wengreen, H.; Durward, C. Increasing fruit and vegetable intake among children and youth through gardening-based interventions: A systematic review. J. Acad. Nutr. Diet. 2017, 117, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Skelton, K.R.; Lowe, C.; Zaltz, D.A.; Benjamin-Neelon, S.E. Garden-based interventions and early childhood health: An umbrella review. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 121. [Google Scholar] [CrossRef] [PubMed]
- Christian, M.S.; Evans, C.E.; Nykjaer, C.; Hancock, N.; Cade, J.E. Evaluation of the impact of a school gardening intervention on children’s fruit and vegetable intake: A randomised controlled trial. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouwer, R.J.N.; Neelon, S.E.B. Watch Me Grow: A garden-based pilot intervention to increase vegetable and fruit intake in preschoolers. BMC Public Health 2013, 13, 363. [Google Scholar]
- Davis, J.N.; Pérez, A.; Asigbee, F.M.; Landry, M.J.; Vandyousefi, S.; Ghaddar, R.; Hoover, A.; Jeans, M.; Nikah, K.; Fischer, B. School-based gardening, cooking and nutrition intervention increased vegetable intake but did not reduce BMI: Texas sprouts-a cluster randomized controlled trial. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.N.; Nikah, K.; Asigbee, F.M.; Landry, M.J.; Vandyousefi, S.; Ghaddar, R.; Hoover, A.; Jeans, M.; Pont, S.J.; Richards, D. Design and participant characteristics of TX sprouts: A school-based cluster.randomized gardening, nutrition, and cooking intervention. Contemp. Clin. Trials 2019, 85, 105834. [Google Scholar] [CrossRef]
- McLeroy, K.R.; Bibeau, D.; Steckler, A.; Glanz, K. An ecological perspective on health promotion programs. Health Educ. Q 1988, 15, 351–377. [Google Scholar] [CrossRef] [PubMed]
- Martinez, L.C.; Gatto, N.M.; Spruijt-Metz, D.; Davis, J.N. Design and methodology of the LA Sprouts nutrition, cooking and gardening program for Latino youth: A randomized controlled intervention. Contemp. Clin. Trials 2015, 42, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Texas A&M Agrilife Extension Service. Learn, Grow, Eat, and Go! Texas A&M Agrilife Extension Service: Bryan, TX, USA, 2015; p. 203. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). School health guidelines to promote healthy eating and physical activity. MMWR. Recomm. Rep. Morb. Mortal. Wkly. Report. Recomm. Rep. 2011, 60, 1–76. [Google Scholar]
- Feskanich, D.; Sielaff, B.H.; Chong, K.; Buzzard, I.M. Computerized collection and analysis of dietary intake information. Comput. Methods Programs Biomed. 1989, 30, 47–57. [Google Scholar] [CrossRef]
- Johnson, R.K.; Driscoll, P.; Goran, M.I. Comparison of multiple-pass 24-hour recall estimates of energy intake with total energy expenditure determined by the doubly labeled water method in young children. J. Am. Diet. Assoc. 1996, 96, 1140–1144. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. Dietary Guidelines for Americans 2015–2020, 8th ed.; U.S. Government Printing Office: Washington, DC, USA, 2015.
- Reedy, J.; Lerman, J.L.; Krebs-Smith, S.M.; Kirkpatrick, S.I.; Pannucci, T.E.; Wilson, M.M.; Subar, A.F.; Kahle, L.L.; Tooze, J.A. Evaluation of the healthy eating index—2015. J. Acad. Nutr. Diet. 2018, 118, 1622–1633. [Google Scholar] [CrossRef]
- Kirkpatrick, S.I.; Reedy, J.; Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Wilson, M.M.; Lerman, J.L.; Tooze, J.A. Applications of the healthy eating index for surveillance, epidemiology, and intervention research: Considerations and caveats. J. Acad. Nutr. Diet. 2018, 118, 1603–1621. [Google Scholar] [CrossRef] [PubMed]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the healthy eating index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nutrition Coordinating Center. Healthy Eating Index. Available online: http://www.ncc.umn.edu/healthy-eating-index-hei/ (accessed on 1 May 2018).
- Dietary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2020.
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, D.M.; Blitstein, J.L. Methods to reduce the impact of intraclass correlation in group-randomized trials. Eval. Rev. 2003, 27, 79–103. [Google Scholar] [CrossRef]
- Landry, M.; Ranjit, N.; Hoelscher, D.; Asigbee, F.; Vandyousefi, S.; Ghaddar, R.; Davis, J. Validity and reliability of an expanded vegetable questionnaire among elementary school children. Curr. Dev. Nutr. 2019, 3, nzz080. [Google Scholar] [CrossRef]
- Castro, D.C.; Samuels, M.; Harman, A.E. Growing healthy kids: A community garden–based obesity prevention program. Am. J. Prev. Med. 2013, 44, S193–S199. [Google Scholar] [CrossRef] [Green Version]
- McAleese, J.D.; Rankin, L.L. Garden-based nutrition education affects fruit and vegetable consumption in sixth-grade adolescents. J. Am. Diet. Assoc. 2007, 107, 662–665. [Google Scholar] [CrossRef]
- Duncan, M.J.; Eyre, E.; Bryant, E.; Clarke, N.; Birch, S.; Staples, V.; Sheffield, D. The impact of a school-based gardening intervention on intentions and behaviour related to fruit and vegetable consumption in children. J. Health Psychol. 2015, 20, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Ratcliffe, M.M.; Merrigan, K.A.; Rogers, B.L.; Goldberg, J.P. The effects of school garden experiences on middle school-aged students’ knowledge, attitudes, and behaviors associated with vegetable consumption. Health Promot. Pract. 2011, 12, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Parmer, S.M.; Salisbury-Glennon, J.; Shannon, D.; Struempler, B. School gardens: An experiential learning approach for a nutrition education program to increase fruit and vegetable knowledge, preference, and consumption among second-grade students. J. Nutr. Educ. Behav. 2009, 41, 212–217. [Google Scholar] [CrossRef]
- Lautenschlager, L.; Smith, C. Understanding gardening and dietary habits among youth garden program participants using the Theory of Planned Behavior. Appetite 2007, 49, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.N.; Ventura, E.E.; Cook, L.T.; Gyllenhammer, L.E.; Gatto, N.M. LA Sprouts: A gardening, nutrition, and cooking intervention for Latino youth improves diet and reduces obesity. J. Am. Diet. Assoc. 2011, 111, 1224–1230. [Google Scholar] [CrossRef]
- Morgan, P.J.; Warren, J.M.; Lubans, D.R.; Saunders, K.L.; Quick, G.I.; Collins, C.E. The impact of nutrition education with and without a school garden on knowledge, vegetable intake and preferences and quality of school life among primary-school students. Public Health Nutr. 2010, 13, 1931–1940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meinen, A.; Friese, B.; Wright, W.; Carrel, A. Youth gardens increase healthy behaviors in young children. J. Hunger Environ. Nutr. 2012, 7, 192–204. [Google Scholar] [CrossRef]
- Hayes, D.; Contento, I.R.; Weekly, C. Position of the academy of nutrition and dietetics, society for nutrition education and behavior, and school nutrition association: Comprehensive nutrition programs and services in schools. J. Acad. Nutr. Diet. 2018, 118, 913–919. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Afshin, A.; Benowitz, N.L.; Bittner, V.; Daniels, S.R.; Franch, H.A.; Jacobs, D.R., Jr.; Kraus, W.E.; Kris-Etherton, P.M.; Krummel, D.A. Population approaches to improve diet, physical activity, and smoking habits: A scientific statement from the American Heart Association. Circulation 2012, 126, 1514–1563. [Google Scholar] [CrossRef] [PubMed]
- Chriqui, J.F.; Pickel, M.; Story, M. Influence of school competitive food and beverage policies on obesity, consumption, and availability: A systematic review. JAMA Pediatr. 2014, 168, 279–286. [Google Scholar] [CrossRef]
- Velazquez, C.E.; Black, J.L.; Potvin Kent, M. Food and beverage marketing in schools: A review of the evidence. Int. J. Environ. Res. Public Health 2017, 14, 1054. [Google Scholar] [CrossRef] [Green Version]
- Sildén, K.E. Impact of competitive foods in public schools on child nutrition: Effects on adolescent obesity in the United States an integrative systematic literature review. Glob. Health Action 2018, 11, 1477492. [Google Scholar] [CrossRef] [PubMed]
- Burt, K.G.; Koch, P.; Contento, I. Development of the GREEN (Garden Resources, Education, and Environment Nexus) tool: An evidence-based model for school garden integration. J. Acad. Nutr. Diet. 2017, 117, e1514. [Google Scholar] [CrossRef] [PubMed]
- Van Lippevelde, W.; Verloigne, M.; De Bourdeaudhuij, I.; Brug, J.; Bjelland, M.; Lien, N.; Maes, L. Does parental involvement make a difference in school-based nutrition and physical activity interventions? A systematic review of randomized controlled trials. Int. J. Public Health 2012, 57, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Muzaffar, H.; DiFilippo, K.N.; Fitzgerald, N.; Tidwell, D.K.; Idris, R.; Kurzynske, J.S.; Chapman-Novakofski, K. A systematic review of interventions to improve diet quality of children that included parents versus those without parental involvement. Curr. Dev. Nutr. 2020, 4, 1336. [Google Scholar] [CrossRef]
- Pearson, N.; Biddle, S.J.; Gorely, T. Family correlates of fruit and vegetable consumption in children and adolescents: A systematic review. Public Health Nutr. 2009, 12, 267–283. [Google Scholar] [CrossRef]
- Asigbee, F.M.; Davis, J.N.; Markowitz, A.K.; Landry, M.J.; Vandyousefi, S.; Ghaddar, R.; Ranjit, N.; Warren, J.; van den Berg, A. The association between child cooking involvement in food preparation and fruit and vegetable intake in a hispanic youth population. Curr. Dev. Nutr. 2020, 4, nzaa028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allirot, X.; da Quinta, N.; Chokupermal, K.; Urdaneta, E. Involving children in cooking activities: A potential strategy for directing food choices toward novel foods containing vegetables. Appetite 2016, 103, 275–285. [Google Scholar] [CrossRef]
- Overcash, F.; Ritter, A.; Mann, T.; Mykerezi, E.; Redden, J.; Rendahl, A.; Vickers, Z.; Reicks, M. Impacts of a vegetable cooking skills program among low-income parents and children. J. Nutr. Educ. Behav. 2018, 50, 795–802. [Google Scholar] [CrossRef]
- Van der Horst, K.; Ferrage, A.; Rytz, A. Involving children in meal preparation. Effects on food intake. Appetite 2014, 79, 18–24. [Google Scholar] [CrossRef]
- Evans, A.; Ranjit, N.; Fair, C.N.; Jennings, R.; Warren, J.L. Previous gardening experience and gardening enjoyment is related to vegetable preferences and consumption among low-income elementary school children. J. Nutr. Educ. Behav. 2016, 48, e611. [Google Scholar] [CrossRef] [Green Version]
- Prescott, M.P.; Lohse, B.; Mitchell, D.C.; Cunningham-Sabo, L. Child assessments of vegetable preferences and cooking self-efficacy show predictive validity with targeted diet quality measures. BMC Nutr. 2019, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Quelly, S.B. Helping with meal preparation and children’s dietary intake: A literature review. J. Sch. Nurs. 2019, 35, 51–60. [Google Scholar] [CrossRef]
- Ng, C.M.; Satvinder, K.; Koo, H.C.; Yap, R.W.K.; Mukhtar, F. Influences of psychosocial factors and home food availability on healthy meal preparation. Matern. Child. Nutr. 2020, 16, e13054. [Google Scholar] [CrossRef] [PubMed]
- Van Lier, L.E.; Utter, J.; Denny, S.; Lucassen, M.; Dyson, B.; Clark, T. Home gardening and the health and well-being of adolescents. Health Promot. Pract. 2017, 18, 34–43. [Google Scholar] [CrossRef]
- Loso, J.; Staub, D.; Colby, S.E.; Olfert, M.D.; Kattelmann, K.; Vilaro, M.; Colee, J.; Zhou, W.; Franzen-Castle, L.; Mathews, A.E. Gardening experience is associated with increased fruit and vegetable intake among first-year college students: A cross-sectional examination. J. Acad. Nutr. Diet. 2018, 118, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Vasquez, A.; Sherwood, N.E.; Larson, N.; Story, M. Community-supported agriculture as a dietary and health improvement strategy: A narrative review. J. Acad. Nutr. Diet. 2017, 117, 83–94. [Google Scholar] [CrossRef]
- Sharma, S.V.; Markham, C.; Chow, J.; Ranjit, N.; Pomeroy, M.; Raber, M. Evaluating a school-based fruit and vegetable co-op in low-income children: A quasi-experimental study. Prev. Med. 2016, 91, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Prescott, M.P.; Cleary, R.; Bonanno, A.; Costanigro, M.; Jablonski, B.B.; Long, A.B. Farm to school activities and student outcomes: A systematic review. Adv. Nutr. 2020, 11, 357–374. [Google Scholar] [CrossRef]
- Poulsen, M.N.; Bailey-Davis, L.; Pollak, J.; Hirsch, A.G.; Schwartz, B.S. Household food insecurity and home food availability in relation to youth diet, body mass index, and adiposity. J. Acad. Nutr. Diet. 2019, 119, 1666–1675. [Google Scholar] [CrossRef]
- Jago, R.; Baranowski, T.; Baranowski, J.C. Fruit and vegetable availability: A micro environmental mediating variable? Public Health Nutr. 2007, 10, 681–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, L.T.; O’Reilly, G.A.; DeRosa, C.J.; Rohrbach, L.A.; Spruijt-Metz, D. Association between home availability and vegetable consumption in youth: A review. Public Health Nutr. 2015, 18, 640–648. [Google Scholar] [CrossRef] [Green Version]
- Mook, K.; Laraia, B.A.; Oddo, V.M.; Jones-Smith, J.C. Food security status and barriers to fruit and vegetable consumption in two economically deprived communities of Oakland, California, 2013–2014. Prev. Chronic Dis. 2016, 13, E21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, N.M.; Meyers, B.M.; Todd, L.E.; Henderson, C.R., Jr.; Barale, K.; Gaolach, B.; Ferenz, G.; Aitken, M.; Caroline, C.T.; Pattison, K.O. The carry-over effects of school gardens on fruit and vegetable availability at home: A randomized controlled trial with low-income elementary schools. Prev. Med. 2018, 112, 152–159. [Google Scholar] [CrossRef]
- Landry, M.J.; Burgermaster, M.; van den Berg, A.E.; Asigbee, F.M.; Vandyousefi, S.; Ghaddar, R.; Jeans, M.R.; Yau, A.; Davis, J.N. Barriers to preparing and cooking vegetables are associated with decreased home availability of vegetables in low-income households. Nutrients 2020, 12, 1823. [Google Scholar] [CrossRef] [PubMed]
- Prochaska, J.O.; Johnson, S.; Lee, P. The transtheoretical model of behavior change. Am. J. Health Promot. 2009, 12, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, J.; Melo, G.R.-I.; Toral, N. Transtheoretical model-based nutritional interventions in adolescents: A systematic review. BMC Public Health 2020, 20, 1543. [Google Scholar] [CrossRef] [PubMed]
- Thompson, F.E.; Subar, A.F. Dietary assessment methodology. In Nutrition in the Prevention and Treatment of Disease, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 5–48. [Google Scholar]
- Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.; Potischman, N.; Guenther, P.M.; Tarasuk, V. Addressing current criticism regarding the value of self-report dietary data. J. Nutr. 2015, 145, 2639–2645. [Google Scholar] [CrossRef] [Green Version]
- McPherson, R.S.; Hoelscher, D.M.; Alexander, M.; Scanlon, K.S.; Serdula, M.K. Dietary assessment methods among school-aged children: Validity and reliability. Prev. Med. 2000, 31, S11–S33. [Google Scholar] [CrossRef]
- Foster, E.; Bradley, J. Methodological considerations and future insights for twenty-four hour dietary recall assessment in children. Nutr. Res. 2018, 51, 1–11. [Google Scholar] [CrossRef]
- Livingstone, M.; Robson, P. Measurement of dietary intake in children. Proc. Nutr. Soc. 2000, 59, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, M.; Robson, P.; Wallace, J. Issues in dietary intake assessment of children and adolescents. Br. J. Nutr. 2004, 92, S213–S222. [Google Scholar] [CrossRef]
- Ray, R.; Fisher, D.R.; Fisher-Maltese, C. School gardens in the city: Does environmental equity help close the achievement gap? Du Bois Rev. 2016, 13, 379–395. [Google Scholar] [CrossRef] [Green Version]
- Ogden, C.L.; Fryar, C.D.; Martin, C.B.; Freedman, D.S.; Carroll, M.D.; Gu, Q.; Hales, C.M. Trends in obesity prevalence by race and hispanic origin—1999–2000 to 2017–2018. JAMA 2020, 324, 1208–1210. [Google Scholar] [CrossRef] [PubMed]
- Coleman-Jensen, A.; Rabbitt, M.P.; Gregory, C.A.; Singh, A. Household Food Security in the United States in 2019; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2020.
- Landry, M.J.; van den Berg, A.E.; Asigbee, F.M.; Vandyousefi, S.; Ghaddar, R.; Davis, J.N. Child-report of food insecurity is associated with diet quality in children. Nutrients 2019, 11, 1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoover, A.; Vandyousefi, S.; Martin, B.; Nikah, K.; Cooper, M.H.; Muller, A.; Marty, E.; Duswalt-Epstein, M.; Burgermaster, M.; Waugh, L. Barriers, Strategies, and Resources to Thriving School Gardens. J. Nutr. Educ. Behav. 2021, 53, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Burt, K.G.; Luesse, H.B.; Rakoff, J.; Ventura, A.; Burgermaster, M. School gardens in the United States: Current barriers to integration and sustainability. Am. J. Public Health 2018, 108, 1543–1549. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.N.; Spaniol, M.R.; Somerset, S. Sustenance and sustainability: Maximizing the impact of school gardens on health outcomes. Public Health Nutr. 2015, 18, 2358–2367. [Google Scholar] [CrossRef]
Dietary Components | Control (n = 234) | Intervention (n = 234) | ||||||
---|---|---|---|---|---|---|---|---|
Baseline Mean ± SD | Post Intervention Mean ± SD | Absolute Change Mean ± SD | Baseline Mean ± SD | Post Intervention Mean ± SD | Absolute Change Mean ± SD | Intention to Treat p-Value | Intention to Treat x Ethnicity 1 Interaction p-Value | |
Macronutrients | ||||||||
Total Energy, kcal | 1470 ± 463 | 1474 ± 486 | 4.5 | 1459 ± 641 | 1476 ± 504 | 17.6 | 0.966 | 0.353 |
Protein, g/day | 58.3 ± 19.1 | 58.5 ± 21.7 | 0.1 | 58.6 ± 26.8 | 60.6 ± 21.3 | 1.9 | 0.305 | 0.213 |
Protein % of Energy | 16.5 ± 3.9 | 16.2 ± 3.9 | −0.3 | 16.7 ± 4.0 | 17.1 ± 4.3 | 0.4 | 0.021 | 0.863 |
Fat, g/day | 57.5 ± 23.2 | 57.1 ± 23.9 | −0.4 | 56.3 ± 31.2 | 56.7 ± 22.4 | 0.4 | 0.951 | 0.632 |
Fat % of Energy | 34.0 ± 5.9 | 33.2 ± 6.3 | −0.8 | 32.9 ± 7.4 | 33.5 ± 5.6 | 0.5 | 0.428 | 0.991 |
Carbohydrates, g/day | 183.9 ± 63.4 | 185.8 ± 23.9 | 1.9 | 183.9 ± 80.5 | 185.9 ± 22.4 | 2.0 | 0.641 | 0.690 |
Carbohydrates % of Energy | 49.5 ± 7.6 | 50.6 ± 7.7 | 1.1 | 50.3 ± 8.2 | 49.4 ± 6.8 | −0.9 | 0.051 | 0.874 |
Shortfall Micronutrients | ||||||||
Vitamin A (Retinol Activity Equivalents), mcg/day | 433.5 ± 217.5 | 403.2 ± 188.4 | −30.3 | 389.9 ± 232.5 | 415.3 ± 198.8 | 25.5 | 0.210 | 0.849 |
Vitamin E (total alpha-tocopherol), mg/day | 5.3 ± 2.7 | 5.7 ± 2.8 | 0.4 | 6.3 ± 8.1 | 5.8 ± 2.8 | −0.5 | 0.353 | 0.882 |
Vitamin C, mg/day | 59.3 ± 42.9 | 62.0 ± 44.8 | 2.7 | 68.5 ± 58.1 | 73.9 ± 63.3 | 5.4 | 0.090 | 0.683 |
Folate, mcg/day | 336.9 ± 161.9 | 327.1 ± 178.3 | −9.8 | 313.4 ± 181.2 | 333.2 ± 159.7 | 19.8 | 0.384 | 0.942 |
Magnesium, mg/day | 183.3 ± 63.0 | 186.6 ± 60.2 | 3.2 | 186.1 ± 109.6 | 195.0 ± 82.0 | 8.9 | 0.198 | 0.721 |
Iron, mg/day | 12.1 ± 5.2 | 11.7 ± 4.8 | −0.4 | 11.7 ± 5.8 | 11.8 ± 4.7 | 0.2 | 0.563 | 0.931 |
Micronutrients of Public Health Concern | ||||||||
Dietary Fiber, g/day | 12.5 ± 5.0 | 12.5 ± 5.6 | 0.0 | 12.8 ± 7.5 | 13.5 ± 7.1 | 0.7 | 0.069 | 0.592 |
Calcium, mg/day | 803.2 ± 329.8 | 826.9 ± 358.8 | 23.7 | 783.7 ± 485.2 | 841.4 ± 375.3 | 57.7 | 0.679 | 0.746 |
Vitamin D (calciferol), mcg/day | 5.1 ± 3.1 | 5.1 ± 2.8 | −0.1 | 4.4 ± 2.6 | 5.1 ± 3.0 | 0.7 | 0.359 | 0.494 |
Potassium, mg/day | 1728 ± 580 | 1744 ± 584 | 16.3 | 1782 ± 807 | 1859 ± 674.3 | 77.2 | 0.089 | 0.118 |
Nutrients to Reduce or Limit Consumption | ||||||||
Added Sugar, g/day | 38.1 ± 26.4 | 40.7 ± 25.5 | 2.6 | 38.0 ± 23.9 | 38.4 ± 25.9 | 0.3 | 0.050 | 0.087 |
Saturated Fat, g/day | 20.3 ± 9.3 | 19.6 ± 9.5 | −0.6 | 19.0 ± 10.8 | 19.8 ± 8.8 | 0.7 | 0.271 | 0.145 |
Sodium, mg/day | 2513 ± 878 | 2557 ± 1102 | 44 | 2556 ± 1343 | 2554 ± 955 | −1 | 0.468 | 0.505 |
Variable | Control (n = 234) | Intervention (n = 234) | ||||||
---|---|---|---|---|---|---|---|---|
Baseline Mean ± SD | Post Intervention Mean ± SD | Absolute Change Mean ± SD | Baseline Mean ± SD | Post Intervention Mean ± SD | Absolute Change Mean ± SD | Intention to Treat p-Value | Intention to Treat x Ethnicity 1 Interaction p-Value | |
HEI Total Score | 53 (13.1) | 54 (12.9) | 1 (16.1) | 52.8 (11.8) | 54.9 (13.4) | 2 (14.8) | 0.380 | 0.633 |
Total Vegetables | 2.5 (1.4) | 2.4 (1.5) | −0.1 (1.8) | 2.7 (1.6) | 2.9 (1.5) | 0.2 (2.0) | 0.003 | 0.033 |
Greens and Beans | 1.9 (2.1) | 1.6 (2.1) | −0.3 (2.7) | 1.8 (2.1) | 1.9 (2.2) | 0.1 (2.7) | 0.061 | 0.421 |
Total Fruit | 2.4 (1.7) | 2.6 (1.8) | 0.2 (2.3) | 2.7 (1.9) | 2.8 (1.9) | 0.1 (2.1) | 0.490 | 0.184 |
Whole Fruit | 2.5 (1.9) | 2.6 (2.0) | 0.1 (2.5) | 2.7 (2.1) | 2.7 (2.1) | −0.1 (2.5) | 0.932 | 0.924 |
Whole Grains | 4.8 (3.6) | 5.2 (3.5) | 0.3 (4.9) | 4.1 (3.4) | 4.6 (3.6) | 0.4 (4.6) | 0.090 | 0.432 |
Total Dairy | 7.5 (2.7) | 7.5 (2.8) | −0.1 (3.5) | 6.9 (3.2) | 7.6 (2.7) | 0.6 (3.5) | 0.498 | 0.500 |
Total Protein | 4.3 (1.1) | 4.4 (1.1) | 0.1 (1.6) | 4.5 (1.0) | 4.5 (1.0) | 0.0 (1.3) | 0.269 | 0.304 |
Seafood and Plant Proteins | 2 (2.2) | 2.1 (2.3) | 0.1 (2.9) | 2.2 (2.3) | 2.4 (2.3) | 0.3 (2.8) | 0.125 | 0.312 |
Fatty Acids | 3.7 (3.2) | 4.2 (3.3) | 0.5 (4.3) | 4.1 (3.4) | 3.8 (3.1) | −0.3 (4.2) | 0.171 | 0.681 |
Sodium 2 | 3.6 (3.1) | 3.8 (3.1) | 0.2 (4.1) | 3.4 (3.0) | 3.5 (3.0) | 0.1 (3.9) | 0.308 | 0.396 |
Refined Grains 2 | 4.6 (3.6) | 4.7 (3.5) | 0.1 (4.7) | 4.2 (3.5) | 5.1 (3.6) | 0.9 (4.5) | 0.100 | 0.641 |
Added Sugar 2 | 7.9 (2.4) | 7.3 (2.8) | −0.5 (3.5) | 7.7 (2.3) | 7.8 (2.3) | 0.1 (2.8) | 0.068 | 0.087 |
Saturated Fat 2 | 5.1 (3.1) | 5.6 (3.3) | 0.5 (4.2) | 5.8 (3.2) | 5.4 (3.0) | −0.4 (4.2) | 0.400 | 0.563 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landry, M.J.; van den Berg, A.E.; Hoelscher, D.M.; Asigbee, F.M.; Vandyousefi, S.; Ghaddar, R.; Jeans, M.R.; Waugh, L.; Nikah, K.; Sharma, S.V.; et al. Impact of a School-Based Gardening, Cooking, Nutrition Intervention on Diet Intake and Quality: The TX Sprouts Randomized Controlled Trial. Nutrients 2021, 13, 3081. https://doi.org/10.3390/nu13093081
Landry MJ, van den Berg AE, Hoelscher DM, Asigbee FM, Vandyousefi S, Ghaddar R, Jeans MR, Waugh L, Nikah K, Sharma SV, et al. Impact of a School-Based Gardening, Cooking, Nutrition Intervention on Diet Intake and Quality: The TX Sprouts Randomized Controlled Trial. Nutrients. 2021; 13(9):3081. https://doi.org/10.3390/nu13093081
Chicago/Turabian StyleLandry, Matthew J., Alexandra E. van den Berg, Deanna M. Hoelscher, Fiona M. Asigbee, Sarvenaz Vandyousefi, Reem Ghaddar, Matthew R. Jeans, Lyndsey Waugh, Katie Nikah, Shreela V. Sharma, and et al. 2021. "Impact of a School-Based Gardening, Cooking, Nutrition Intervention on Diet Intake and Quality: The TX Sprouts Randomized Controlled Trial" Nutrients 13, no. 9: 3081. https://doi.org/10.3390/nu13093081
APA StyleLandry, M. J., van den Berg, A. E., Hoelscher, D. M., Asigbee, F. M., Vandyousefi, S., Ghaddar, R., Jeans, M. R., Waugh, L., Nikah, K., Sharma, S. V., & Davis, J. N. (2021). Impact of a School-Based Gardening, Cooking, Nutrition Intervention on Diet Intake and Quality: The TX Sprouts Randomized Controlled Trial. Nutrients, 13(9), 3081. https://doi.org/10.3390/nu13093081