Investigating the Role of Functional Polymorphism of Maternal and Neonatal Vitamin D Binding Protein in the Context of 25-Hydroxyvitamin D Cutoffs as Determinants of Maternal-Neonatal Vitamin D Status Profiles in a Sunny Mediterranean Region
Abstract
:1. Introduction
2. Methods
2.1. Inclusion and Exclusion Criteria
2.2. Demographic and Dietary Data—Biochemical and Hormonal Assays
2.3. Neonatal and Maternal Vitamin D Status Cut-Offs and Combined VDBP Polymorphisms Evaluation
2.4. VDBP Analysis
2.5. UVB Measurements
2.6. Statistical Analysis
3. Results
3.1. Distribution of Neonatal and Maternal Vitamin D Status According to VDBP Polymorphisms
3.2. Neonatal Cut-Offs at Birth (≥50 nmol/L vs. ≤50 nmol/L and ≥25 vs. ≤25 nmol/L), According to Neonatal VDBP Polymorphisms
3.3. Maternal Vitamin D Status at Birth (Cut-Offs at Birth ≤25 vs. ≥25 nmol/L, ≤50 vs. ≥50 nmol/L and ≥75 nmol/L vs. ≤75 nmol/L) According to Maternal VDBP Polymorphisms
3.4. Neonatal Vitamin D Status at Birth, According to Maternal VDBP Polymorphisms
4. Discussion
- (i)
- maternal VDBP polymorphisms do not affect neonatal vitamin D concentrations at birth, in any given internationally adopted maternal or neonatal cut-off for 25(OH)D concentrations;
- (ii)
- neonatal VDBP polymorphisms are not implicated in the regulation of neonatal vitamin D status at birth;
- (iii)
- in a maternal cohort not affected by vitamin D supplementation during pregnancy, mothers with CC genotype for rs2298850 and CC genotype for rs4588 tended to demonstrate higher 25(OH)D (≥75 nmol/L) concentrations, after adjustments for biofactors that affect vitamin D equilibrium, including UVB, BMI and weeks of gestation. The fact that this finding was evident in a small cohort implies that a biologically plausible basis, which could explain the profound differences of maternal vitamin D status, was observed in our region [25,26], as well as adding to existing genetic influences on maternal hypovitaminosis D during pregnancy [31].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dusso, A.S.; Brown, A.J.; Slatopolsky, E. Vitamin D. Am. J. Physiol. Ren. Physiol. 2005, 289, F8F28. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Rajakumar, K.; Greenspan, S.L.; Thomas, S.B.; Holick, F.M. Solar ultraviolet radiation and vitamin D: A historical perspective. Am. J. Public Health 2007, 97, 17461754. [Google Scholar] [CrossRef]
- Palacios, C.; Kostiuk, L.K.; Peña-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2019, 7, CD008873. [Google Scholar] [CrossRef]
- Pilz, S.; Zittermann, A.; Obeid, R.; Hahn, A.; Pludowski, P.; Trummer, C.; Lerchbaum, E.; Pérez-López, F.R.; Karras, S.N.; März, W. The Role of Vitamin D in Fertility and during Pregnancy and Lactation: A Review of Clinical Data. Int. J. Environ. Res. Public Health 2018, 15, 2241. [Google Scholar] [CrossRef] [Green Version]
- Karras, S.N.; Wagner, C.L.; Castracane, V.D. Understanding vitamin D metabolism in pregnancy: From physiology to pathophysiology and clinical outcomes. Metabolism 2018, 86, 112–123. [Google Scholar] [CrossRef]
- Karras, S.N.; Shah, I.; Petroczi, A.; Goulis, D.G.; Bili, H.; Papadopoulou, F.; Harizopoulou, V.; Tarlatzis, B.C.; Naughton, D.P. An observational study reveals that neonatal vitamin D is primarily determined by maternal contributions: Implications of a new assay on the roles of vitamin D forms. Nutr. J. 2013, 12, 77. [Google Scholar] [CrossRef] [Green Version]
- Markestad, T.; Aksnes, L.; Ulstein, M.; Aarskog, D. 25-Hydroxyvitamin D and 1,25-dihydroxyvitamin D of D2 and D3 origin in maternal and umbilical cord serum after vitamin D2 supplementation in human pregnancy. Am. J. Clin. Nutr. 1984, 40, 1057–1063. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J. Clin. Endocrinol. Metab. 2016, 101, 394–415. [Google Scholar] [CrossRef] [PubMed]
- Karras, S.N.; Anagnostis, P.; Naughton, D.; Annweiler, C.; Petroczi, A.; Goulis, D.G. Vitamin D during pregnancy: Why observational studies suggest deficiency and interventional studies show no improvement in clinical outcomes? A narrative review. J. Endocrinol. Investig. 2015, 38, 1265–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, C.L.; Hollis, B.W.; Kotsa, K.; Fakhoury, H.; Karras, S.N. Vitamin D administration during pregnancy as prevention for pregnancy, neonatal and postnatal complications. Rev. Endocr. Metab. Disord. 2017, 18, 307–322. [Google Scholar] [CrossRef]
- Karras, S.N.; Dursun, E.; Alaylıoğlu, M.; Gezen-Ak, D.; Annweiler, C.; Skoutas, D.; Evangelidis, D.; Kiortsis, D. Diverse Effects of Combinations of Maternal-Neonatal VDR Polymorphisms and 25-Hydroxyvitamin D Concentrations on Neonatal Birth Anthropometry: Functional Phenocopy Variability Dependence, Highlights the Need for Targeted Maternal 25-Hydroxyvitamin D Cut-Offs during Pregnancy. Nutrients 2021, 13, 443. [Google Scholar] [CrossRef] [PubMed]
- Anastasiou, S.N.; Karras, A.; Bais, W.B.; Grant, K.; Kotsa, K.; Goulis, D.G. Ultraviolet radiation and effects on humans: The paradigm of maternal vitamin D productionduring pregnancy. Eur. J. Clin. Nutr. 2017, 71, 1268–1272. [Google Scholar] [CrossRef]
- Karras, S.N.; Anagnostis, P.; Paschou, S.A.; Kandaraki, E.; Goulis, D.G. Vitamin D statusduring pregnancy: Time for a more unified approach beyond borders? Eur. J. Clin. Nutr. 2015, 69, 874–877. [Google Scholar] [CrossRef]
- Karras, S.N.; Koufakis, T.; Fakhoury, H.; Kotsa, K. Deconvoluting the Biological Roles of Vitamin D-Binding Protein During Pregnancy: A Both Clinical and Theoretical Challenge. Front. Endocrinol. 2018, 9, 259. [Google Scholar] [CrossRef] [PubMed]
- Jassil, N.K.; Sharma, A.; Bikle, D.; Wang, X. Vitamin D binding protein and 25-hydroxyvitamin D levels: Emerging clinical ap-plications. Endocr. Pract. 2017, 23, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Van Assche, F.A.; Van Baelen, H.; Heyns, W.; De Moor, P. Influence of the Vitamin D-binding Protein on the Serum Concentration of 1,25-Dihydroxyvitamin D3. J. Clin. Investig. 1981, 67, 589–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bikle, D.D.; Gee, E.; Halloran, B.; Haddad, J.G. Free 1,25-dihydroxyvitamin D levels in serum from normal subjects, pregnant subjects, and subjects with liver disease. J. Clin. Investig. 1984, 74, 1966–1971. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Gu, Y.; Zhao, S.; Sun, J.; Groome, L.J.; Wang, Y. Expressions of vitamin D metabolic components VDBP, CYP2R1, CYP27B1, CYP24A1, and VDR in placentas from normal and preeclamptic pregnancies. Am. J. Physiol. Metab. 2012, 303, E928–E935. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, I.M.; Joner, G.; Jenum, P.A.; Eskild, A.; Brunborg, C.; Torjesen, P.A.; Stene, L.C. Vitamin D-binding protein and 25-hydroxyvitamin D during pregnancy in mothers whose children later developed type 1 diabetes. Diabetes Metab. Res. Rev. 2016, 32, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, O.; Li, W.; Ma, L.; Ping, F.; Chen, L.; Nie, M. Variants in vitamin D bind-ing protein gene are associated with gestational diabetes mellitus. Medicine 2015, 94, e1693. [Google Scholar] [CrossRef]
- Blanton, D.; Han, Z.; Bierschenk, L.; Linga-Reddy, M.P.; Wang, H.; Clare-Salzler, M.; Haller, M.; Schatz, D.; Myhr, C.; She, J.X.; et al. Reduced serum vitamin D-binding protein levels are associated with type 1 diabetes. Diabetes 2011, 60, 2566–2570. [Google Scholar] [CrossRef] [Green Version]
- Kodama, K.; Zhao, Z.; Toda, K.; Yip, L.; Fuhlbrigge, R.; Miao, N.; Fathman, C.G.; Yamada, S.; Butte, A.J.; Yu, L. Expression-Based Genome-Wide Association Study Links Vitamin D–Binding Protein With Autoantigenicity in Type 1 Diabetes. Diabetes 2016, 65, 1341–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karras, S.; Paschou, S.A.; Kandaraki, E.; Anagnostis, P.; Annweiler, C.; Tarlatzis, B.C.; Hollis, B.W.; Grant, W.B.; Goulis, D. Hypovitaminosis D in pregnancy in the Mediterranean region: A systematic review. Eur. J. Clin. Nutr. 2016, 70, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Karras, S.; Anagnostis, P.; Annweiler, C.; Naughton, D.P.; Petroczi, A.; Bili, E.; Harizopoulou, V.; Tarlatzis, B.C.; Persinaki, A.; Papadopoulou, F.; et al. Maternal vitamin D status during pregnancy: The Mediterranean reality. Eur. J. Clin. Nutr. 2014, 68, 864–869. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Georga, K. Composition Tables of Foods and Greek Dishes; Parisianos: Athens, Greece, 2004. [Google Scholar]
- Connelly, R.; Platt, L. Cohort profile: UK millennium cohort study (MCS). Int. J. Epidemiol. 2014, 43, 1719–1725. [Google Scholar] [CrossRef] [PubMed]
- Shah, I.; James, B.; Barker, J.; Petroczi, A.; Naughton, D.P. Misleading measures in Vitamin D analysis: A novel LC-MS/MS assay to account for epimers and isobars. Nutr. J. 2011, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Shah, I.; Petroczi, A.; Naughton, D.P. Method for simultaneous analysis of eight analogues of vitamin D using liquid chromatography tandem mass spectrometry. Chem. Central J. 2012, 6, 112. [Google Scholar] [CrossRef] [Green Version]
- Gezen-Ak, D.; Dursun, E.; Bilgiç, B.; Hanağasi, H.; Ertan, T.; Gürvit, H.; Emre, M.; Eker, E.; Ulutin, T.; Uysal, O.; et al. Vitamin D receptor gene haplotype is associated with late-onset Alzheimer’s disease. Tohoku J. Exp. Med. 2012, 228, 189–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karras, S.N.; Koufakis, T.; Antonopoulou, V.; Goulis, D.G.; Alaylıoğlu, M.; Dursun, E.; Gezen-Ak, D.; Annweiler, C.; Pilz, S.; Fakhoury, H.; et al. Vitamin D receptor Fokl polymorphism is a determinant of both maternal and neonatal vitamin D concentrations at birth. J. Steroid Biochem. Mol. Biol. 2019, 199, 105568. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.K.; Shin, S.; Kim, M.Y.; Joung, H.; Chung, J. Effects of maternal genetic polymorphisms in vitamin D-binding protein and serum 25-hydroxyvi-tamin D concentration on infant birth weight. Nutrition 2017, 35, 36–42. [Google Scholar] [CrossRef]
- Moon, R.J.; Harvey, N.C.; Cooper, C.; D’Angelo, S.; Curtis, E.M.; Crozier, S.R.; Barton, S.J.; Robinson, S.M.; Godfrey, K.M.; Graham, N.J.; et al. Response to antenatal cholecalciferol supple-mentation is with common vitamin D-related genetic variants. J. Clin. Endocrinol. Metab. 2017, 102, 2941–2949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baca, K.M.; Govil, M.; Zmuda, J.M.; Simhan, H.N.; Marazita, M.L.; Bodnar, L.M. Vitamin D metabolic loci and vitamin D status in Black and White pregnant women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 220, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Jiang, S.; Muyiduli, X.; Wang, S.; Mo, M.; Li, M.; Wang, Z.; Yu, Y. Vitamin D pathway gene polymorphisms influenced vitamin D level among pregnant women. Clin. Nutr. 2018, 37, 2230–2237. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Lucey, A.; Horgan, R.; Kenny, L.; Kiely, M. Impact of pregnancy on vitamin D status: A longitudinal study. Br. J. Nutr. 2014, 112, 1081–1087. [Google Scholar] [CrossRef] [Green Version]
- Ganz, A.B.; Park, H.; Malysheva, O.V.; Caudill, M.A. Vitamin D binding protein rs7041 genotype alters vitamin D metabolism in pregnant women. FASEB J. 2018, 32, 2012–2020. [Google Scholar] [CrossRef] [Green Version]
- Gezen-Ak, D.; Alaylıoğlu, M.; Genç, G.; Gündüz, A.; Candaş, E.; Bilgiç, B.; Atasoy, I.L.; Apaydın, H.; Kızıltan, G.; Gürvit, H.; et al. GC and VDR SNPs and Vitamin D Levels in Parkinson’s Disease: The Relevance to Clinical Features. Neuro Mol. Med. 2017, 19, 24–40. [Google Scholar] [CrossRef]
- Dong, J.; Zhou, Q.; Wang, J.; Lu, Y.; Li, J.; Wang, L.; Wang, L.; Meng, P.; Li, F.; Zhou, H.; et al. As-sociation between variants in vitamin D-binding protein gene and vitamin D deficiency among pregnant women in china. J. Clin. Lab. Anal. 2020, 34, e23376. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Wang, X.; Bikle, D.D. Editorial: Vitamin D Binding Protein, Total and Free Vitamin D Levels in Different Physiological and Pathophysiological Conditions. Front. Endocrinol. 2020, 11, 317. [Google Scholar] [CrossRef]
Maternal | |
---|---|
Number (n) | 66 |
Age (years) | 31.92 ± 6.08 |
Height (cm) | 164.85 ± 5.47 |
Weight; pre-pregnancy (kg) | 67.56 ± 14.54 |
Weight; term (kg) | 85.43 ± 14.30 |
BMI; pre-pregnancy (kg/m2) | 24.91 ± 4.81 |
BMI; term (kg/m2) | 29.62 ± 5.80 |
Weeks of gestation (n) | 38.80 ± 1.56 |
Smoking [n (%)] | 10 (0.14) |
Alcohol consumption [n (%)] | 8 (0.11) |
Previous live births [n (%)] | 26 (0.37) |
Daily calcium supplementation [n (%)] | 37 (0.56) |
Daily calcium supplementation (mg) | 423.07 ± 319.07 |
Daily dietary calcium intake during 3rd trimester (mg) | 792.5 ± 334.0 |
Daily dietary vitamin D intake during 3rd trimester (mcg) | 2.9 ± 1.2 |
UVB | 0.2 ± 0.1 |
Paternal height (cm) | 177.85 ± 6.14 |
Neonatal | |
Number (n) | 66 |
Gender; Males [n (%)] | 38 (0.58) |
Height (cm) | 50.48 ± 1.96 |
Weight (g) | 3292.12 ± 414.25 |
SNP | rs2298850 | rs4588 | rs7041 | ||||||
---|---|---|---|---|---|---|---|---|---|
Genotype | CC | CG | GG | CC | CA | AA | GG | GT | TT |
Maternal (n:%) | 33 (0.47) | 32 (0.46) | 5 (0.07) | 32 (0.46) | 31 (0.44) | 7 (0.10) | 19 (0.27) | 39 (0.56) | 12 (0.17) |
Neonatal (n:%) | 35 (0.50) | 28 (0.40) | 7 (0.10) | 33 (0.47) | 30 (0.43) | 7 (0.10) | 18 (0.26) | 38 (0.54) | 14 (0.20) |
Polymorphism | Maternal Genotype | n | Maternal 25OHD Level (nmol/L) Mean ± SD | p Value | Neonatal Genotype | n | Neonatal 25OHD Level (nmol/L) Mean ± SD | p Value |
---|---|---|---|---|---|---|---|---|
rs2298850 | CC | 33 | 54.14 ± 30.6 | 0.96 | CC | 35 | 48.84 ± 31.4 | 0.70 |
CG | 32 | 51.35 ± 75.1 | CG | 28 | 58.90 ± 78.8 | |||
GG | 5 | 47.10 ± 5.9 | GG | 7 | 43.83 ± 18.4 | |||
rs4588 | CC | 32 | 55.26 ± 30.4 | 0.92 | CC | 33 | 50.86 ± 31.5 | 0.77 |
CA | 31 | 50.06 ± 76.3 | CA | 30 | 56.75 ± 76.5 | |||
AA | 7 | 49.14 ± 15.7 | AA | 7 | 40.66 ± 19.2 | |||
rs7041 | GG | 19 | 55.24 ± 34.2 | 0.67 | GG | 18 | 49.12 ± 30.8 | 0.63 |
GT | 39 | 54.97 ± 68.5 | GT | 38 | 57.75 ± 69.9 | |||
TT | 12 | 39.32 ± 18.6 | TT | 14 | 41.91 ± 20.2 |
Polymorphism | Genotype | Deficient n = 26 (37%) | Insufficient n = 29 (41.5%) | Sufficient n = 15 (21.5%) | p Value |
---|---|---|---|---|---|
rs2298850 | CC | 14 (54%) | 11 (38%) | 10 (67%) | 0.26 |
CG | 10 (38%) | 13 (45%) | 5 (33%) | ||
GG | 2 (8%) | 5 (17%) | 0 (0%) | ||
rs4588 | CC | 13 (50%) | 10 (34%) | 10 (67%) | 0.27 |
CA | 10 (39%) | 15 (52%) | 5 (33%) | ||
AA | 3 (11%) | 4 (14%) | 0 (0%) | ||
rs7041 | GG | 7 (27%) | 8 (28%) | 3 (20%) | 0.42 |
GT | 14 (54%) | 13 (44%) | 11 (73%) | ||
TT | 5 (19%) | 8 (28%) | 1 (7%) |
Polymorphism | Genotype | Deficient n = 26 (37%) | Insufficient n = 29 (41.5%) | Sufficient n = 15 (21.5%) | p Value |
---|---|---|---|---|---|
rs2298850 | CC | 13 (50%) | 11 (38%) | 9 (60%) | 0.25 |
CG | 13 (50%) | 14 (48%) | 5 (33%) | ||
GG | 0 (0%) | 4 (14%) | 1 (7%) | ||
rs4588 | CC | 12 (46%) | 11 (38%) | 9 (60%) | 0.09 |
CA | 14 (54%) | 12 (41%) | 5 (33%) | ||
AA | 0 (0%) | 6 (21%) | 1 (7%) | ||
rs7041 | GG | 8 (31%) | 6 (21%) | 5 (33%) | 0.87 |
GT | 14 (54%) | 17 (58%) | 8 (54%) | ||
TT | 4 (15%) | 6 (21%) | 2 (13%) |
Polymorphism | Genotype | Deficient n = 18 (26%) | Insufficient n = 27 (39%) | Sufficient n = 25 (35%) | p Value |
---|---|---|---|---|---|
rs2298850 | CC | 8 (44%) | 10 (37%) | 15 (60%) | 0.28 |
CG | 10 (56%) | 14 (52%) | 8 (32%) | ||
GG | 0 (0%) | 3 (11%) | 2 (8%) | ||
rs4588 | CC | 7 (39%) | 10 (37%) | 15 (60%) | 0.14 |
CA | 11 (61%) | 13 (48%) | 7 (28%) | ||
AA | 0 (0%) | 4 (15%) | 3 (12%) | ||
rs7041 | GG | 5 (28%) | 6 (22%) | 8 (32%) | 0.87 |
GT | 10 (56%) | 15 (56%) | 14 (56%) | ||
TT | 3 (17%) | 6 (22%) | 3 (12%) |
Polymorphism | Genotype | ≤50 nmol/L n = 55 (79%) | ≥50 nmol/L n = 15 (21%) | p Value | ≤25 nmol/L n = 26 (37%) | ≥25 nmol/L n = 44 (63%) | p Value |
---|---|---|---|---|---|---|---|
rs2298850 | CC | 25 (45%) | 10 (67%) | 0.20 | 14 (54%) | 21 (48%) | 0.83 |
CG | 23 (42%) | 5 (33%) | 10 (38%) | 18 (41%) | |||
GG | 7 (13%) | 0 (0%) | 2 (8%) | 5 (11%) | |||
rs4588 | CC | 23 (42%) | 10 (67%) | 0.15 | 13 (50%) | 20 (45.5%) | 0.83 |
CA | 25 (45%) | 5 (33%) | 10 (39%) | 20 (45.5%) | |||
AA | 7 (13%) | 0 (0%) | 3 (11%) | 4 (9%) | |||
rs7041 | GG | 15 (27%) | 3 (20%) | 0.20 | 7 (27%) | 11 (25%) | 0.98 |
GT | 27 (49%) | 11 (73%) | 14 (54%) | 24 (55%) | |||
TT | 13 (24%) | 1 (7%) | 5 (19%) | 9 (20%) |
Polymorphism | Genotype | ≤25 nmol/L n = 18 (26%) | ≥25 nmol/L n = 52 (74%) | p Value | ≤50 nmol/L n = 44 (63%) | ≥50 nmol/L n = 26 (37%) | p Value | ≤75 nmol/L n = 57 (37%) | ≥75 nmol/L n = 13 (63%) | p Value |
---|---|---|---|---|---|---|---|---|---|---|
rs2298850 | CC | 8 (44%) | 25 (48%) | 0.32 | 18 (41%) | 15 (58%) | 0.35 | 23 (40%) | 10 (77%) | 0.05 |
CG | 10 (56%) | 22 (42%) | 23 (52%) | 9 (34%) | 29 (51%) | 3 (23%) | ||||
GG | 0 (0%) | 5 (10%) | 3 (7%) | 2 (8%) | 5 (9%) | 0 (0%) | ||||
rs4588 | CC | 7 (39%) | 25 (48%) | 0.12 | 17 (39%) | 15 (58%) | 0.21 | 22 (39%) | 10 (77%) | 0.04 |
CA | 11 (61%) | 20 (39%) | 23 (52%) | 8 (31%) | 29 (51%) | 2 (15%) | ||||
AA | 0 (0%) | 7 (13%) | 4 (9%) | 3 (11%) | 6 (10%) | 1 (8%) | ||||
rs7041 | GG | 5 (27%) | 14 (27%) | 0.99 | 11 (25%) | 8 (31%) | 0.61 | 13 (23%) | 6 (46%) | 0.20 |
GT | 10 (56%) | 29 (56%) | 24 (55%) | 15 (58%) | 33 (58%) | 6 (46%) | ||||
TT | 3 (17%) | 9 (17%) | 9 (20%) | 3 (11%) | 11 (19%) | 1 (8%) |
Polymorphism | Genotype | Neonatal Vitamin D Status | p Value | |
---|---|---|---|---|
25(OH)D ≤ 25 nmol/L n = 44 (63%) | 25(OH)D ≥ 25 nmol/L n = 26 (37%) | |||
rs2298850 | CC | 13 (50%) | 20 (46%) | 0.20 |
CG | 13 (50%) | 19 (43%) | ||
GG | 0 (0%) | 5 (11%) | ||
rs4588 | CC | 12 (46%) | 20 (46%) | 0.08 |
CA | 14 (54%) | 17 (39%) | ||
AA | 0 (0%) | 7 (16%) | ||
rs7041 | GG | 8 (31%) | 11 (25%) | 0.86 |
GT | 14 (54%) | 25 (57%) | ||
TT | 4 (15%) | 8 (138%) |
Polymorphism | Genotype | Neonatal Vitamin D Status | p Value | |
---|---|---|---|---|
25(OH)D ≤50 nmol/L n = 55 (79%) | 25(OH)D ≥ 50 nmol/L n = 15 (21%) | |||
rs2298850 | CC | 24 (44%) | 9 (60%) | 0.52 |
CG | 27 (49%) | 5 (33%) | ||
GG | 4 (7%) | 1 (7%) | ||
rs4588 | CC | 23 (42%) | 9 (60%) | 0.45 |
CA | 26 (47%) | 5 (33%) | ||
AA | 6 (11%) | 1 (7%) | ||
rs7041 | GG | 14 (26%) | 5 (33%) | 0.80 |
GT | 31 (56%) | 8 (54%) | ||
TT | 10 (18%) | 2 (13%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karras, S.N.; Dursun, E.; Alaylıoğlu, M.; Gezen-Ak, D.; Annweiler, C.; Al Anouti, F.; Fakhoury, H.M.A.; Bais, A.; Kiortsis, D. Investigating the Role of Functional Polymorphism of Maternal and Neonatal Vitamin D Binding Protein in the Context of 25-Hydroxyvitamin D Cutoffs as Determinants of Maternal-Neonatal Vitamin D Status Profiles in a Sunny Mediterranean Region. Nutrients 2021, 13, 3082. https://doi.org/10.3390/nu13093082
Karras SN, Dursun E, Alaylıoğlu M, Gezen-Ak D, Annweiler C, Al Anouti F, Fakhoury HMA, Bais A, Kiortsis D. Investigating the Role of Functional Polymorphism of Maternal and Neonatal Vitamin D Binding Protein in the Context of 25-Hydroxyvitamin D Cutoffs as Determinants of Maternal-Neonatal Vitamin D Status Profiles in a Sunny Mediterranean Region. Nutrients. 2021; 13(9):3082. https://doi.org/10.3390/nu13093082
Chicago/Turabian StyleKarras, Spyridon N., Erdinç Dursun, Merve Alaylıoğlu, Duygu Gezen-Ak, Cedric Annweiler, Fatme Al Anouti, Hana M. A. Fakhoury, Alkiviadis Bais, and Dimitrios Kiortsis. 2021. "Investigating the Role of Functional Polymorphism of Maternal and Neonatal Vitamin D Binding Protein in the Context of 25-Hydroxyvitamin D Cutoffs as Determinants of Maternal-Neonatal Vitamin D Status Profiles in a Sunny Mediterranean Region" Nutrients 13, no. 9: 3082. https://doi.org/10.3390/nu13093082
APA StyleKarras, S. N., Dursun, E., Alaylıoğlu, M., Gezen-Ak, D., Annweiler, C., Al Anouti, F., Fakhoury, H. M. A., Bais, A., & Kiortsis, D. (2021). Investigating the Role of Functional Polymorphism of Maternal and Neonatal Vitamin D Binding Protein in the Context of 25-Hydroxyvitamin D Cutoffs as Determinants of Maternal-Neonatal Vitamin D Status Profiles in a Sunny Mediterranean Region. Nutrients, 13(9), 3082. https://doi.org/10.3390/nu13093082