Secular Trends in Time-of-Day of Energy Intake in a Chinese Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Dietary Assessment
2.3. Energy Proportion of Each Eating Occasion
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Study Sample in the CHNS 1991–2018
3.2. Secular Trends of Energy Proportion of Eating Occasions
3.3. Interactions between Time Variable and Demographic Variables
3.4. Secular Trends of Energy Proportion of Eating Occasions by Demographic Subgroups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- St-Onge, M.P.; Ard, J.; Baskin, M.L.; Chiuve, S.E.; Johnson, H.M.; Kris-Etherton, P.; Varady, K. Meal Timing and Frequency: Implications for Cardiovascular Disease Prevention: A Scientific Statement From the American Heart Association. Circulation 2017, 135, e96–e121. [Google Scholar] [CrossRef] [PubMed]
- De, C.J.M. The Time of Day of Food Intake Influences Overall Intake in Humans. J. Nutr. 2004, 34, 104. [Google Scholar]
- Bo, S.; Musso, G.; Beccuti, G.; Fadda, M.; Fedele, D.; Gambino, R.; Gentile, L.; Durazzo, M.; Ghigo, E.; Cassader, M. Consuming More of Daily Caloric Intake at Dinner Predisposes to Obesity. A 6-Year Population-Based Prospective Cohort Study. PLoS ONE 2014, 9, e108467. [Google Scholar] [CrossRef]
- Ren, X.; Yang, X.; Jiang, H.; Han, T.; Sun, C. The Association of Energy and Macronutrient Intake at Dinner Versus Breakfast With The Incidence of Type 2 Diabetes Mellitus in Cohort Study: The China Health and Nutrition Survey, 1997–2011. J. Diabetes 2021, 13, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.J.; Chuang, S.Y.; Chang, H.Y.; Pan, W.H. Energy intake at different times of the day: Its association with elevated total and LDL cholesterol levels. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 390–397. [Google Scholar] [CrossRef]
- Almoosawi, S.; Prynne, C.J.; Hardy, R.; Stephen, A.M. Time-of-day and nutrient composition of eating occasions: Prospective association with the metabolic syndrome in the 1946 British birth cohort. Int. J. Obes. 2013, 37, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Huseinovic, E.; Winkvist, A.; Slimani, N.; Park, M.K.; Freisling, H.; Boeing, H.; Buckland, G.; Schwingshackl, L.; Weiderpass, E.; Rostgaard-Hansen, A.L.; et al. Meal patterns across ten European countries—results from the European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study. Public Health Nutr. 2016, 19, 2769–2780. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.; Panda, S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metab. 2015, 22, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Kant, A.K.; Graubard, B.I. Secular trends in patterns of self-reported food consumption of adult Americans: NHANES 1971–1975 to NHANES 1999–2002. Am. J. Clin. Nutr. 2006, 84, 1215–1233. [Google Scholar] [CrossRef]
- Almoosawi, S.; Winter, J.; Prynne, C.J.; Hardy, R.; Stephen, A.M. Daily profiles of energy and nutrient intakes: Are eating profiles changing over time? Eur. J. Clin. Nutr. 2012, 66, 678–686. [Google Scholar] [CrossRef] [Green Version]
- Pendergast, F.J.; Livingstone, K.M.; Worsley, A.; McNaughton, S.A. Examining the correlates of meal skipping in Australian young adults. Nutr. J. 2019, 18, 24. [Google Scholar] [CrossRef] [Green Version]
- Giskes, K.; Turrell, G.; van Lenthe, F.J.; Brug, J.; Mackenbach, J.P. A multilevel study of socio-economic inequalities in food choice behaviour and dietary intake among the Dutch population: The GLOBE study. Public Health Nutr. 2006, 9, 75–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendergast, F.J.; Livingstone, K.M.; Worsley, A.; McNaughton, S.A. Correlates of meal skipping in young adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 125. [Google Scholar] [CrossRef] [Green Version]
- Krok-Schoen, J.L.; Jonnalagadda, S.S.; Luo, M.; Kelly, O.J.; Taylor, C.A. Nutrient Intakes from Meals and Snacks Differ with Age in Middle-Aged and Older Americans. Nutrients 2019, 11, 1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, F.Y.; Du, S.F.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Popkin, B.M. Dynamics of the Chinese diet and the role of urbanicity, 1991–2011. Obes. Rev. 2014, 15 (Suppl. 1), 16–26. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.; Hu, X.; Luan, D.; Li, Y.; Zhai, F.; Yang, Y. The eating practice of people in China [in Chinese]. Acta Nutr. Sin. 2005, 27, 272–275. [Google Scholar]
- Chang, J.; Yu, W. Comprehensive Report on the Monitoring of Nutrition and Health Status of Chinese Residents from 2010 to 2013 [in Chinese]; Peking University Medical Press: Beijing, China, 2016. [Google Scholar]
- Wang, Z.; Zhai, F.; Zhang, B.; Popkin, B.M. Trends in Chinese snacking behaviors and patterns and the social-demographic role between 1991 and 2009. Asia Pac. J. Clin. Nutr. 2012, 21, 253–262. [Google Scholar]
- Zhang, B.; Zhai, F.Y.; Du, S.F.; Popkin, B.M. The China Health and Nutrition Survey, 1989–2011. Obes. Rev. 2014, 15 (Suppl. 1), 2–7. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Song, X.; Hu, H.; Du, W.; Wang, H.; Zhang, B. Longitudinal Association between Urbanicity and Total Dietary Fat Intake in Adults in Urbanizing China from 1991 to 2015: Findings from the CHNS. Nutrients 2020, 12, 1597. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [Green Version]
- Twisk, J.; Rijmen, F. Longitudinal tobit regression: A new approach to analyze outcome variables with floor or ceiling effects. J. Clin. Epidemiol. 2009, 62, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Howarth, N.C.; Huang, T.T.; Roberts, S.B.; Lin, B.H.; McCrory, M.A. Eating patterns and dietary composition in relation to BMI in younger and older adults. Int. J. Obes. 2007, 31, 675–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brombach, C. The EVA-study: Meal patterns of women over 65 years. J. Nutr. Health Aging 2001, 5, 263–265. [Google Scholar] [PubMed]
- Schlettwein-gsell, D.; Decarli, B.; de Groot, L. Meal patterns in the SENECA study of nutrition and the elderly in Europe: Assessment method and preliminary results on the role of the midday meal. Appetite 1999, 32, 15–22. [Google Scholar] [CrossRef]
- Lafay, L.; Vray, M.; Boute, D.; Basdevant, A. Food and nutritional data for a population from northern France: The Fleurbaix Laventie Ville Sante (FLVS) Study. Revue D’epidemiologie Sante Publique 1998, 46, 263–275. [Google Scholar]
- Lhuissier, A.; Tichit, C.; Caillavet, F.; Cardon, P.; Masullo, A.; Martin-Fernandez, J.; Parizot, I.; Chauvin, P. Who still eats three meals a day? Findings from a quantitative survey in the Paris area. Appetite 2013, 63, 59–69. [Google Scholar] [CrossRef]
- de Castro, J.M. Physiological, environmental, and subjective determinants of food intake in humans: A meal pattern analysis. Physiol. Behav. 1988, 44, 651–659. [Google Scholar] [CrossRef]
- Wang, J.B.; Patterson, R.E.; Ang, A.; Emond, J.A.; Shetty, N.; Arab, L. Timing of energy intake during the day is associated with the risk of obesity in adults. J. Hum. Nutr. Diet. 2014, 27, 255–262. [Google Scholar] [CrossRef]
- Xiao, Q.; Garaulet, M.; Scheer, F. Meal timing and obesity: Interactions with macronutrient intake and chronotype. Int. J. Obes. 2019, 43, 1701–1711. [Google Scholar] [CrossRef]
- Song, X.; Wang, H.; Su, C.; Wang, Z.; Du, W.; Huang, F.; Zhang, J.; Jia, X.; Jiang, H.; Ouyang, Y.; et al. Trajectories of Energy Intake Distribution and Risk of Dyslipidemia: Findings from the China Health and Nutrition Survey (1991–2018). Nutrients 2021, 13, 3488. [Google Scholar] [CrossRef]
- Song, X.; Wang, H.; Su, C.; Wang, Z.; Du, W.; Hu, H.; Huang, F.; Zhang, J.; Jia, X.; Jiang, H.; et al. Trajectories of energy intake distribution and subsequent risk of hyperglycemia among Chinese adults: Findings from the China Health and Nutrition Survey (1997–2018). Eur. J. Nutr. 2021, 61, 1417–1427. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, X.; Du, X.; Liu, W.; Du, J.; Guo, L.; Xia, S.; Yuan, Y.; Zheng, Y.; Wu, S.; et al. Cross-sectional association of meal skipping with lipid profiles and blood glucose in Chinese adults. Nutrition 2021, 90, 111245. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.E. Food habits of the majority: Evolution of the current UK pattern. Proc. Nutr. Soc. 1982, 41, 211–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kant, A.K.; Graubard, B.I. 40-year trends in meal and snack eating behaviors of American adults. J. Acad. Nutr. Diet. 2015, 115, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, Z.; Du, W.; Huang, F.; Jiang, H.; Bai, J.; Zhang, X.; Zhang, B.; Wang, H. Twenty-Five-Year Trends in Dietary Patterns among Chinese Adults from 1991 to 2015. Nutrients 2021, 13, 1327. [Google Scholar] [CrossRef]
- Westenhoefer, J. Age and gender dependent profile of food choice. Forum Nutr. 2005, 57, 44–51. [Google Scholar] [CrossRef]
- Baric, I.C.; Satalic, Z.; Lukesic, Z. Nutritive value of meals, dietary habits and nutritive status in Croatian university students according to gender. Int. J. Food Sci. Nutr. 2003, 54, 473–484. [Google Scholar] [CrossRef]
- Neslisah, R.; Emine, A.Y. Energy and nutrient intake and food patterns among Turkish university students. Nutr. Res. Pract. 2011, 5, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Freedman, M.R. Gender, residence and ethnicity affect freshman BMI and dietary habits. Am. J. Health Behav. 2010, 34, 513–524. [Google Scholar] [CrossRef] [Green Version]
- Gemming, L.; Mhurchu, C.N. Dietary under-reporting: What foods and which meals are typically under-reported? Eur. J. Clin. Nutr. 2016, 70, 640–641. [Google Scholar] [CrossRef]
Variables | 1991 | 1993 | 1997 | 2000 | 2004 | 2006 | 2009 | 2011 | 2015 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|
N | 6915 | 7066 | 7125 | 7379 | 8022 | 8069 | 8576 | 10,411 | 11,846 | 10,249 |
Age groups (%) | ||||||||||
18–59 years | 86.12 | 83.75 | 81.39 | 79.20 | 76.58 | 74.00 | 70.98 | 68.67 | 63.64 | 55.75 |
≥60 years | 13.88 | 16.25 | 18.61 | 20.80 | 23.42 | 26.00 | 29.02 | 31.33 | 36.36 | 44.25 |
Gender (%) | ||||||||||
Male | 48.04 | 48.00 | 49.49 | 48.80 | 47.87 | 47.14 | 47.95 | 47.24 | 46.03 | 45.18 |
Female | 51.96 | 52.00 | 50.51 | 51.20 | 52.13 | 52.86 | 52.05 | 52.76 | 53.97 | 54.82 |
Geographical region (%) | ||||||||||
Urban | 31.90 | 32.17 | 33.45 | 32.69 | 34.28 | 34.06 | 33.12 | 38.28 | 38.08 | 37.00 |
Rural | 68.10 | 67.83 | 66.55 | 67.31 | 65.72 | 65.94 | 66.88 | 61.72 | 61.92 | 63.00 |
Educational level (%) | ||||||||||
Low | 56.70 | 54.53 | 53.39 | 49.70 | 44.38 | 43.02 | 42.34 | 36.82 | 33.05 | 30.88 |
Medium | 15.33 | 16.47 | 17.74 | 20.38 | 23.67 | 26.20 | 23.86 | 29.96 | 34.00 | 35.90 |
High | 27.97 | 29.00 | 28.87 | 29.92 | 31.95 | 30.78 | 33.80 | 33.22 | 32.95 | 33.22 |
Marriage status (%) | ||||||||||
Married | 82.30 | 80.88 | 81.47 | 79.25 | 83.96 | 85.30 | 85.00 | 85.13 | 88.93 | 87.58 |
Other status | 17.70 | 19.12 | 18.53 | 20.75 | 16.04 | 14.70 | 15.00 | 14.87 | 11.07 | 12.42 |
Smoking (n, %) | ||||||||||
No | 65.03 | 67.20 | 67.76 | 68.71 | 70.74 | 72.52 | 71.39 | 73.20 | 76.61 | 79.27 |
Yes | 34.97 | 32.80 | 32.24 | 31.29 | 29.26 | 27.48 | 28.61 | 26.80 | 23.39 | 20.73 |
Alcohol drinking (%) | ||||||||||
No | 61.45 | 63.64 | 63.27 | 64.66 | 66.85 | 67.89 | 66.65 | 66.13 | 72.26 | 74.75 |
Yes | 38.55 | 36.36 | 36.73 | 35.34 | 33.15 | 32.11 | 33.35 | 33.87 | 27.74 | 25.25 |
Chronic diseases (%) | ||||||||||
No | 96.17 | 95.33 | 94.29 | 91.29 | 89.06 | 87.77 | 83.97 | 79.69 | 78.83 | 75.17 |
Yes | 3.83 | 4.67 | 5.71 | 8.71 | 10.94 | 12.23 | 16.03 | 20.31 | 21.17 | 24.83 |
Physical activity (Mets/week h, Median [IQR])) | 391.75 | 318.70 | 310.50 | 247.50 | 140.99 | 139.75 | 141.5 | 139.53 | 95.03 | 108.85 |
(192.00,622.85) | (174.09, 511.25) | (128.60, 506.50) | (409.70, 105.53) | (54.78, 306.50) | (51.80, 300.34) | (56.7, 290.81) | (61.6, 265.13) | (37.00, 198.17) | (47.83, 207.73) | |
Per capita household income (Yuan, Median [IQR]) | 3470.64 | 4424.03 | 8641.98 | 9928.35 | 11,841.87 | 13,895.51 | 23,352.17 | 33,461.90 | 48,658.90 | 58,536.59 |
(2000.0,5505.6) | (2486.6, 7570.1) | (4767.5, 14,057.6) | (4934.6, 16,838.2) | (5884.5, 21,599.3) | (6783.6, 25,516.0) | (12,186.9, 41,217.6) | (17,196.3, 57,901.2 | (21,679.7, 82,758.6) | (25,220.5, 103,982.3) | |
Urbanicity score (mean [SD]) | 46.39 | 48.38 | 52.69 | 58.21 | 62.88 | 64.83 | 67.42 | 70.80 | 72.51 | 71.43 |
(16.18) | (16.41) | (17.99) | (18.24) | (20.24) | (20.35) | (19.44) | (19.01) | (17.42) | (16.92) | |
Total energy intake (kcal, mean [SD]) | 2692. 05 | 2597.53 | 2462.54 | 2421.61 | 2378.21 | 2335.37 | 2321.11 | 2091.51 | 2009.22 | 1988.06 |
(695.24) | (698.57) | (707.00) | (735.89) | (772.79) | (765.18) | (734.32) | (716.06) | (717.43) | (692.57) | |
BMI (kg/m2, mean [SD]) | 21.67 | 21.91 | 22.35 | 22.84 | 23.11 | 23.25 | 23.39 | 23.95 | 24.22 | 24.48 |
(2.84) | (2.87) | (3.11) | (3.24) | (3.35) | (3.33) | (3.47) | (4.09) | (3.67) | (3.65) |
1991 (N = 6915) | 1993 (N = 7066) | 1997 (N = 7125) | 2000 (N = 7379) | 2004 (N = 8022) | 2006 (N = 8069) | 2009 (N = 8576) | 2011 (N = 10,411) | 2015 (N = 11,846) | 2018 (N = 10,249) | Time | Time 2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Breakfast EI% (marginal mean [SE]) 1 | 26.84 (0.11) | 26.32 (0.09) | 25.64 (0.07) | 25.43 (0.07) | 25.55 (0.07) | 25.78 (0.06) | 26.34 (0.06) | 26.86 (0.06) | 28.23 (0.07) | 29.56 (0.10) | −0.28 *** | 0.014 *** |
Lunch EI% (marginal mean [SE]) 1 | 36.86 (0.11) | 36.97 (0.09) | 37.05 (0.07) | 36.98 (0.07) | 36.72 (0.07) | 36.52 (0.06) | 36.12 (0.06) | 35.80 (0.06) | 35.02 (0.07) | 34.31 (0.09) | 0.07 *** | −0.006 *** |
Dinner EI% (marginal mean [SE]) 1 | 37.19 (0.10) | 37.31 (0.08) | 37.40 (0.06) | 37.35 (0.06) | 37.13 (0.06) | 36.94 (0.06) | 36.58 (0.06) | 36.28 (0.05) | 35.54 (0.06) | 34.86 (0.08) | 0.07 *** | −0.006 *** |
Moring snack EI% (marginal mean [SE]) 2 | 0.01 (0.001) | 0.01 (0.001) | 0.03 (0.001) | 0.04 (0.002) | 0.07 (0.002) | 0.10 (0.003) | 0.14 (0.003) | 0.18 (0.004) | 0.27 (0.005) | 0.37 (0.008) | 0.16 *** | −0.00004 |
Afternoon snack EI% (marginal mean [SE]) 2 | 0.02 (0.002) | 0.03 (0.002) | 0.06 (0.002) | 0.09 (0.002) | 0.15 (0.003) | 0.18 (0.003) | 0.24 (0.004) | 0.28 (0.005) | 0.36 (0.006) | 0.43 (0.008) | 0.19 *** | −0.002 *** |
Evening snack EI% (marginal mean [SE]) 2 | 0.03 (0.002) | 0.05 (0.002) | 0.08 (0.002) | 0.11 (0.002) | 0.17 (0.003) | 0.20 (0.004) | 0.25 (0.004) | 0.29 (0.005) | 0.36 (0.006) | 0.42 (0.008) | 0.14 *** | −0.002 *** |
Moring period EI% (marginal mean [SE]) 1 | 26.98 (0.11) | 26.47 (0.09) | 25.81 (0.07) | 25.64 (0.07) | 25.83 (0.07) | 26.12 (0.07) | 26.77 (0.06) | 27.36 (0.06) | 28.90 (0.07) | 30.37 (0.10) | −0.29 *** | 0.015 *** |
Afternoon period EI% (marginal mean [SE]) 1 | 37.07 (0.11) | 37.23 (0.09) | 37.39 (0.07) | 37.40 (0.07) | 37.26 (0.07) | 37.13 (0.06) | 36.84 (0.06) | 36.59 (0.06) | 35.96 (0.07) | 35.37 (0.09) | 0.09 *** | −0.006 *** |
Evening period EI% (marginal mean [SE]) 1 | 37.46 (0.10) | 37.64 (0.08) | 37.85 (0.06) | 37.90 (0.06) | 37.80 (0.06) | 37.69 (0.06) | 37.43 (0.06) | 37.21 (0.05) | 36.62 (0.06) | 36.06 (0.08) | 0.10 *** | −0.006 *** |
Interaction Terms | Breakfast EI% 1 | Lunch EI% 1 | Dinner EI% 1 | Morning Snack EI% 2 | Afternoon Snack EI% 2 | Evening Snack EI% 2 |
---|---|---|---|---|---|---|
Gender (male = 0, female = 1) | ||||||
Gender × time | 0.07 * | −0.03 | −0.03 | 0.05 * | 0.02 | 0.006 |
Gender × time 2 | −0.002 | 0.0005 | 0.00004 | −0.0006 | −0.0001 | −0.000001 |
Age group (18–59 years = 0, ≥60 years = 1) | ||||||
Age group × time | 0.09 * | −0.02 | −0.09 ** | 0.03 | 0.12 *** | 0.07 *** |
Age group × time 2 | −0.002 | 0.0008 | 0.001 | 0.0003 | −0.004 *** | −0.002 *** |
Geographic region (urban = 0, rural = 1) | ||||||
Geographic region × time | −0.24 *** | 0.23 *** | 0.02 | −0.07 ** | 0.04 | 0.01 |
Geographic region × time 2 | 0.005 *** | −0.006 *** | 0.003 ** | 0.002 * | −0.001 * | 0.0007 |
Breakfast EI% 1 | Lunch EI% 1 | Dinner EI% 1 | Morning Snack EI% 2 | Afternoon Snack EI% 2 | Evening Snack EI% 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | Time 2 | Time | Time 2 | Time | Time 2 | Time | Time 2 | Time | Time 2 | Time | Time 2 | |
Gender | ||||||||||||
Male | −0.31 *** | 0.015 *** | 0.08 *** | −0.006 *** | 0.08 *** | −0.005 *** | 0.14 *** | −0.00002 | 0.19 *** | −0.003 *** | 0.14 *** | −0.002 *** |
Female | −0.26 *** | 0.014 *** | 0.05 ** | −0.006 *** | 0.06 ** | −0.006 *** | 0.17 *** | −0.0001 | 0.20 *** | −0.002 *** | 0.15 *** | −0.001 *** |
Age group | ||||||||||||
18–59 years | −0.27 *** | 0.014 *** | 0.05 ** | −0.006 *** | 0.07 *** | −0.006 *** | 0.17 *** | 0.0001 | 0.18 *** | −0.001 *** | 0.13 *** | −0.001 *** |
≥60 years | −0.26 *** | 0.014 *** | 0.07 | −0.006 *** | 0.04 | −0.005 *** | 0.13 *** | −0.00005 | 0.25 *** | −0.004 *** | 0.19 *** | −0.003 *** |
Geographic region | ||||||||||||
Urban | −0.21 *** | 0.012 *** | −0.06 * | −0.003 ** | 0.18 *** | −0.010 *** | 0.17 *** | −0.0006 | 0.15 *** | −0.001 *** | 0.11 *** | −0.001 *** |
Rural | −0.34 *** | 0.016 *** | 0.14 *** | −0.008 *** | 0.04 ** | −0.004 *** | 0.14 *** | 0.0007 | 0.23 *** | −0.003 *** | 0.18 *** | −0.002 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Wang, H.; Su, C.; Wang, Z.; Zhang, J.; Ding, G.; Zhang, B. Secular Trends in Time-of-Day of Energy Intake in a Chinese Cohort. Nutrients 2022, 14, 2019. https://doi.org/10.3390/nu14102019
Song X, Wang H, Su C, Wang Z, Zhang J, Ding G, Zhang B. Secular Trends in Time-of-Day of Energy Intake in a Chinese Cohort. Nutrients. 2022; 14(10):2019. https://doi.org/10.3390/nu14102019
Chicago/Turabian StyleSong, Xiaoyun, Huijun Wang, Chang Su, Zhihong Wang, Jiguo Zhang, Gangqiang Ding, and Bing Zhang. 2022. "Secular Trends in Time-of-Day of Energy Intake in a Chinese Cohort" Nutrients 14, no. 10: 2019. https://doi.org/10.3390/nu14102019
APA StyleSong, X., Wang, H., Su, C., Wang, Z., Zhang, J., Ding, G., & Zhang, B. (2022). Secular Trends in Time-of-Day of Energy Intake in a Chinese Cohort. Nutrients, 14(10), 2019. https://doi.org/10.3390/nu14102019