Analysis of Dietary Habits and Nutritional Status of Children with Down Syndrome in the Context of Lipid and Oxidative Stress Parameters
Abstract
:1. Introduction
2. Material and Methods
- Age ≥ 9 years and <18 years,
- Signed informed child–carer consent for participation in the study,
- No obesogenic drugs in the medical interview,
- Lack of severe concomitant diseases,
- A willingness to cooperate.
- Mosaic Down syndrome,
- No consent for the study,
- Steroid treatment or other drugs affecting body weight,
- Severe associated diseases.
2.1. Anthropometry and Body Composition
2.2. Assessment of Dietary Habits
2.3. Biochemistry
2.4. Statistical Analysis
3. Results
3.1. Anthropometry and Body Composition
3.2. Biochemistry
3.3. Assessment of Dietary Habits
3.4. The results of the Food Frequency Questionnaire
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Graaf, G.; Buckley, F.; Skotko, B. Estimates of the live births, natural losses, and elective terminations with Down syndrome in the United States. Am. J. Med. Genet. Part A 2015, 167, 756–767. [Google Scholar] [CrossRef] [PubMed]
- Bull, M. Down syndrome. New Engl. J. Med. 2020, 382, 2344–2352. [Google Scholar] [CrossRef] [PubMed]
- O’ Shea, M.; O’ Shea, C.; Gibson, L.; Leo, J.; Carty, C. The prevalence of obesity in children and young people with Down syndrome. J. Appl. Res. Intellect. Disabil. 2018, 31, 1225–1229. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, D.; Wyka, J. Down syndrome—Genetic and nutritional aspects of accompanying disorders. Rocz. Panstw. Zakl. Hig. 2015, 66, 189–194. [Google Scholar]
- Soler Marín, A.; Xandri Graupera, J.M. Nutritional status of intellectual disabled persons with Down syndrome. Nutr. Hosp. 2011, 26, 1059–1066. [Google Scholar]
- Grammatikopoulou, M.; Manai, A.; Tsigga, M.; Tsiligiroglou-Fachantidou, A.; Galli-Tsinopoulou, A.; Zakas, A. Nutrient intake and anthropometry in children and adolescents with Down syndrome—A preliminary study. Dev. Neurorehabilit. 2008, 11, 260–267. [Google Scholar] [CrossRef]
- Wardle, J.; Guthrie, C.; Sanderson, S.; Rapoport, L. Development of the children’s eating behaviour questionnaire. J. Child Psychol. Psychiatry Allied Discip. 2001, 42, 963–970. [Google Scholar] [CrossRef] [Green Version]
- Wadolowska, L. Validation of food frequency questionnaire-FFQ Reproducibility assessment. Bromat Chem. Toksykol. 2005, 38, 27–33. [Google Scholar]
- Yokode, M.; Kita, T.; Kikawa, Y.; Ogorochi, T.; Narumiya, S.; Kawai, C. Stimulated arachidonate metabolism during foam cell transformation of mouse peritoneal macrophages with oxidized low density lipoprotein. J. Clin. Investig. 1988, 81, 720–729. [Google Scholar] [CrossRef]
- Witko-Sarsat, V.; Friedlander, M.; Capeillère-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar] [CrossRef] [Green Version]
- Banach, M.; Burchardt, P.; Chlebus, K.; Dobrowolski, P.; Dudek, D.; Dyrbuś, K.; Gąsior, M.; Jankowski, P.; Jóźwiak, J.; Kłosiewicz-Latoszek, L.; et al. Wytyczne PTL/KLRwP/PTK/ PTDL/PTD/PTNT Diagnostyki i Leczenia Zaburzeń Lipidowych w Polsce 2021. Diagn. Lab. Wiadomości PTDL 2021, 57, 113–222. [Google Scholar]
- Pierce, M.; Ramsey, K.; Pinter, J. Trends in obesity and overweight in oregon children with down syndrome. Glob. Pediatric Health 2019, 6. [Google Scholar] [CrossRef]
- Wrzochal, A.; Gładyś-Jakubczyk, A.; Suliga, E. Evaluation of diet in preschool-age children with Down syndrome—Preliminary examination. Med. Stud. 2019, 35, 128–138. [Google Scholar] [CrossRef]
- Seo, Y.-G.; Kim, J.H.; Kim, Y.; Lim, H.; Ju, Y.-S.; Kang, M.J.; Lee, K.; Lee, H.-J.; Jang, H.B.; Park, S.I.; et al. Validation of body composition using bioelectrical impedance analysis in children according to the degree of obesity. Scand. J. Med. Sci. Sports 2018, 28, 2207–2215. [Google Scholar] [CrossRef]
- Manzoni, P.; Brambilla, P.; Pietrobelli, A.; Beccaria, L.; Bianchessi, A.; Mora, S.; Chiumello, G. Influence of body composition on bone mineral content in children and adolescents. Am. J. Clin. Nutr. 1996, 64, 603–607. [Google Scholar] [CrossRef] [Green Version]
- Mendonca, G.; Pereira, F.; Fernhall, B. Reduced exercise capacity in persons with Down syndrome: Cause, effect, and management. Ther. Clin. Risk Manag. 2010, 6, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Moreau, M.; Benhaddou, S.; Dard, R.; Tolu, S.; Hamzé, R.; Vialard, F.; Movassat, J.; Janel, N. Metabolic diseases and down syndrome: How are they linked together? Biomedicines 2021, 9, 221. [Google Scholar] [CrossRef]
- Pitchford, E.A.; Adkins, C.; Hasson, R.E.; Hornyak, J.E.; Ulrich, D.A. Association between Physical activity and adiposity in adolescents with Down syndrome. Med. Sci. Sports Exerc. 2018, 50, 667–674. [Google Scholar] [CrossRef]
- Fonseca, C.T.; Amaral, D.M.; Ribeiro, M.G.; Beserra, I.C.R.; Guimarães, M.M. Insulin resistance in adolescents with Down syndrome: A cross-sectional study. BMC Endocr. Disord. 2005, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Golec, J.; Kmiotek, E.K.; Czechowska, D.; Szczygieł, E.; Masłoń, A.; Tomaszewski, K.A.; Golec, E.B. Analysis of body composition among children and adolescents—A cross-sectional study of the Polish population and comparison of body fat measurement methods. J. Pediatric Endocrinol. Metab. JPEM 2014, 27, 603–609. [Google Scholar] [CrossRef]
- Artioli, T. Understanding obesity in Down’s syndrome children. J. Obes. Metab. 2017, 1, 1–3. [Google Scholar]
- Foerste, T.; Sabin, M.; Reid, S.; Reddihough, D. Understanding the causes of obesity in children with trisomy 21: Hyperphagia vs physical inactivity. J. Intellect. Disabil. Res. JIDR 2016, 60, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Dierssen, M.; Fructuoso, M.; De Lagrán, M.M.; Perluigi, M.; Barone, E. Down syndrome is a metabolic disease: Altered insulin signaling mediates peripheral and brain dysfunctions. Front. Neurosci. 2020, 14, 670. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.T.A.; Longui, C.A.; Ferone, E.A.; Kawaguti, F.S.; Monte, O.; Calliari, L.E.P. Evaluation of the hypothalamic-pituitary-thyroid axis in children with Down syndrome. J. De Pediatr. 2002, 78, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Ek, A.; Sorjonen, K.; Eli, K.; Lindberg, L.; Nyman, J.; Marcus, C.; Nowicka, P. Associations between parental concerns about preschoolers’ weight and eating and parental feeding practices: Results from analyses of the child eating behavior questionnaire, the child feeding questionnaire, and the lifestyle behavior checklist. PLoS ONE 2016, 11, e0147257. [Google Scholar] [CrossRef] [Green Version]
- Fidler, D. The emergence of a syndrome-specific personality profile in young children with Down syndrome. Down’s syndrome research and practice. J. Sarah Duffen Cent. 2006, 10, 53–60. [Google Scholar]
- Dykens, E.; Kasari, C. Maladaptive behavior in children with Prader-Willi syndrome, Down syndrome, and nonspecific mental retardation. Am. J. Ment. Retard. AJMR 1997, 102, 228–237. [Google Scholar] [CrossRef]
- Vioque, J.; Gimenez-Monzo, D.; Navarrete-Muñoz, E.M.; Garcia-De-La-Hera, M.; Gonzalez-Palacios, S.; Rebagliato, M.; Ballester, F.; Murcia, M.; Iñiguez, C.; Granado, F.; et al. Reproducibility and validity of a food frequency questionnaire designed to assess diet in children aged 4–5 years. PLoS ONE 2016, 11, e0167338. [Google Scholar] [CrossRef] [Green Version]
- Hennequin, M.; Allison, P.; Veyrune, J. Prevalence of oral health problems in a group of individuals with Down syndrome in France. Dev. Med. Child Neurol. 2000, 42, 691–698. [Google Scholar] [CrossRef]
- Klop, B.; Elte, J.; Cabezas, M. Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients 2013, 5, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Castellani, L.W.; Nguyen, C.N.; Charugundla, S.; Weinstein, M.M.; Doan, C.X.; Blaner, W.S.; Wongsiriroj, N.; Lusis, A.J. Apolipoprotein AII is a regulator of very low density lipoprotein metabolism and insulin resistance. J. Biol. Chem. 2008, 283, 11633–11644. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Liu, X.Q.; Rall, S.C., Jr.; Taylor, J.M.; von Eckardstein, A.; Assmann, G.; Mahley, R.W. Overexpression and accumulation of apolipoprotein E as a cause of hypertriglyceridemia. J. Biol. Chem. 1998, 273, 26388–26393. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Peng, D. The exchangeable apolipoproteins in lipid metabolism and obesity. Clin. Chim. Acta Int. J. Clin. Chem. 2020, 503, 128–135. [Google Scholar] [CrossRef]
- Whitacre, B.E.; Howles, P.; Street, S.; Morris, J.; Swertfeger, D.; Davidson, W.S. Apolipoprotein E content of VLDL limits LPL-mediated triglyceride hydrolysis. J. Lipid Res. 2022, 63. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, L.; Zhou, H.; Ma, Q.; Zhou, X.; Lei, T.; Hu, J.; Xu, W.; Yi, N.; Lei, S. Atherogenic index of plasma is a novel and better biomarker associated with obesity: A population-based cross-sectional study in China. Lipids Health Dis. 2018, 17. [Google Scholar] [CrossRef] [Green Version]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.G.; Parisi, E.; di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: A critical component in human diseases. Int. J. Mol. Sci. 2014, 16, 378–400. [Google Scholar] [CrossRef] [Green Version]
- Manna, P.; Jain, S. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: Causes and therapeutic strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef] [Green Version]
- Jan, M.I.; Khan, R.A.; Fozia; Ahmad, I.; Khan, N.; Urooj, K.; Shah, A.U.H.A.; Khan, A.U.; Ali, T.; Ishtiaq, A.; et al. C-reactive protein and high-sensitive cardiac troponins correlate with oxidative stress in valvular heart disease patients. Oxidative Med. Cell. Longev. 2022, 2022, 5029853. [Google Scholar] [CrossRef]
- Gariballa, S.; Nemmar, A.; Elzaki, O.; Zaaba, N.E.; Yasin, J. Urinary oxidative damage markers and their association with obesity-related metabolic risk factors. Antioxidants 2022, 11, 844. [Google Scholar] [CrossRef]
- Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-González, A.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Veladez-Vega, C.; Jose Morales, A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 2011, 12, 3117–3132. [Google Scholar] [CrossRef] [Green Version]
Parameters | All n = 39 | Normal Weight n = 24 | Overweight/Obesity n = 15 | p-Value |
---|---|---|---|---|
Girls/boys | 24/15 | 13/11 | 11/4 | 0.317 |
Age (years) | 14.3 ± 2.4 | 14.4 ± 2.3 | 14.1 ± 2.6 | 0.873 |
Cardiac operation in the first year of life (n, %) | 19 (49%) | 13 (54%) | 6 (40%) | 0.389 |
Atrial septal defect/ventricular septal defect (n, %) | 8 (21%) | 6 (25%) | 2 (13%) | 0.450 |
Atrioventricular canal defect (n, %) | 14 (36%) | 9 (38%) | 5 (33%) | 0.792 |
Thyroid hormone replacement therapy (n, %) | 35 (90%) | 22 (92%) | 13 (87%) | 0.631 |
Thyroid Stimulating Hormone (TSH) mU/L | 2.5 (2.05;3.17) | 2.47 (2;3.4) | 2.6 (1.7;3.17) | 0.312 |
Weight (kg) | 48.9 ± 13.1 | 43.1 ± 10.6 | 57.8 ± 11.9 | <0.001 |
Height (m) | 1.46 ± 0.11 | 1.48 ± 0.12 | 1.45 ± 0.11 | 0.442 |
BMI (kg/m2) | 23.2 ± 4.3 | 20.6 ± 3.0 | 27.1 ± 3.0 | <0.001 |
Waist circumference (cm) | 75.8 ± 10.9 | 69.8 ± 7.5 | 85.4 ± 8.3 | <0.001 |
Fat mass (kg) | 16.7 ± 7.2 | 12.7 ± 3.6 | 22.9 ± 7.1 | <0.001 |
Fat mass percentile | 73.0 (44.5;90.0) | 56.5 (35.5;73) | 91.5 (81.5;94.5) | 0.001 |
Fat mass (%) | 33.6 ± 9.2 | 29.3 ± 6.4 | 40.3 ± 9.1 | <0.001 |
Fat mass/Height2 (kg/m2) | 7.2 (4.8;10.6) | 5.1 (4.6;7.3) | 10.7 (10.3;12.7) | <0.001 |
Fat mass/Height2 percentile | 53 (41.5;85.5) | 45 (30.5;53.0) | 87 (76.5;91.5) | <0.001 |
Visceral fat mass (g) | 252 (201;332) | 229 (172;272) | 331 (257;491) | 0.002 |
Fat-free mass (kg) | 32.2 ± 8.7 | 31.2 ± 9.0 | 33.7 ± 8 | 0.452 |
Bone mineral mass (g) | 1353 ± 370 | 1328 ± 411 | 1392 ± 307 | 0.629 |
Bone mineral mass (z-score) | −1.28 ± 1.55 | −1.42 ± 1.82 | −1.1 ± 1.02 | 0.530 |
Biochemical Parameters | All n = 39 | Normal Weight n = 24 | Overweight/Obesity n = 15 | p-Value |
---|---|---|---|---|
TC (mg/dL) | 170 ± 32 | 163 ± 31 | 181 ± 31 | 0.088 |
LDL-C (mg/dL) | 101 ± 29 | 97 ± 27 | 109 ± 31 | 0.204 |
HDL-C (mg/dL) | 54 ± 12 | 53 ± 12 | 54 ± 12 | 0.964 |
Non-HDL-C (mg/dL) | 117 ± 30 | 110 ± 27 | 128 ± 32 | 0.065 |
TG (mg/dL) | 70 (52;94) | 61 (49;76) | 94 (64;123) | 0.007 |
AIP | −0.25 (−0.35;−0.08) | −0.30 (−0.36;−0.23) | −0.19 (−0.28;0.08) | 0.016 |
ApoB (mg/dL) | 66 ± 11 | 64 ± 10 | 67 ± 12 | 0.130 |
ApoA1 (mg/dL) | 141 ± 21 | 140 ± 21 | 143 ± 20 | 0.617 |
ApoA2 (mg/dL) | 32 (29;36) | 30 (28;34) | 36 (31;37) | 0.023 |
ApoE (mg/dL) | 4.06 (3.55;4.72) | 3.77 (3.29;4.12) | 4.64 (4.05;5.10) | 0.011 |
TBARS (µmol/L) | 1.83 ± 0.53 | 1.83 ± 0.59 | 1.83 ± 0.43 | 0.986 |
AOPP (µmol/L) | 142 ± 38 | 133 ± 34 | 156 ± 40 | 0.069 |
BMI | Waist Circumference | Fat Mass (kg) | Fat Mass/Height2 (kg/m2) | Visceral Fat Mass (g) | |
---|---|---|---|---|---|
TG | 0.405 (p = 0.011) | 0.310 (p = 0.054) | 0.357 (p = 0.041) | 0.370 (p = 0.036) | 0.216 (p = 0.234) |
ApoE | 0.515 (p < 0.001) | 0.246 (p = 0.131) | 0.417 (p = 0.016) | 0.438 (p = 0.012) | 0.280 (p = 0.120) |
AIP | 0.377 (p = 0.019) | 0.399 (p = 0.012) | 0.331 (p = 0.060) | 0.266 (p = 0.140) | 0.227 (p = 0.211) |
TBARS | 0.091 (p = 0.588) | −0.071 (p = 0.667) | 0.344 (p = 0.050) | 0.374 (p = 0.035) | 0.341 (p = 0.056) |
AOPP | 0.176 (p = 0.288) | 0.240 (p = 0.146) | 0.283 (p = 0.109) | 0.396 (p = 0.025) | 0.377 (p = 0.033) |
Whole Study Group | All n = 39 | Normal Weight n = 24 | Overweight/Obesity n = 15 | p-Value |
Food interest (FI) | ||||
Emotional overeating | 1.85 ± 0.79 | 1.82 ± 0.77 | 1.90 ± 0.85 | 0.816 |
Enjoyment of food | 3.66 ± 0.73 | 3.49 ± 0.65 | 3.92 ± 0.79 | 0.041 |
Food responsivness | 2.62 ± 0.85 | 2.45 ± 0.72 | 2.87 ± 0.98 | 0.169 |
Desire to drink | 2.93 ± 1.10 | 2.80 ± 1.23 | 3.11 ± 0.87 | 0.307 |
FI all categories (mean) | 2.76 ± 0.58 | 2.64 ± 0.48 | 2.95 ± 0.68 | 0.150 |
Food avoidance (FA) | ||||
Emotional undereating | 2.12 ± 0.71 | 2.30 ± 0.75 | 1.87 ± 0.60 | 0.134 |
Satiety responsivness | 2.32 ± 0.66 | 2.45 ± 0.71 | 2.12 ± 0.56 | 0.104 |
Slowness in eating | 2.74 ± 0.52 | 2.88 ± 0.54 | 2.55 ± 0.42 | 0.066 |
Food fussiness | 2.72 ± 0.34 | 2.76 ± 0.32 | 2.67 ± 0.36 | 0.805 |
FA all categories (mean) | 2.48 ± 0.32 | 2.60 ± 0.32 | 2.30 ± 0.23 | 0.004 |
Girls | All n = 24 | Normal Weight n = 13 | Overweight/Obesity n = 11 | p-Value |
Food interest (FI) | ||||
Emotional overeating | 1.78 ± 0.65 | 2.02 ± 0.78 | 1.55 ± 0.40 | 0.158 |
Enjoyment of food | 3.53 ± 0.72 | 3.34 ± 0.60 | 3.73 ± 0.80 | 0.149 |
Food responsivness | 2.36 ± 0.76 | 2.15 ± 0.59 | 2.58 ± 0.87 | 0.264 |
Desire to drink | 2.50 ± 0.81 | 2.09 ± 0.60 | 2.91 ± 0.82 | 0.017 |
FI all categories (mean) | 2.55 ± 0.48 | 2.40 ± 0.47 | 2.69 ± 0.46 | 0.115 |
Food avoidance (FA) | ||||
Emotional undereating | 2.17 ± 0.81 | 2.61 ± 0.75 | 1.73 ± 0.61 | 0.014 |
Satiety responsivness | 2.38 ± 0.55 | 2.48 ± 0.61 | 2.27 ± 0.49 | 0.450 |
Slowness in eating | 2.72 ± 0.54 | 2.87 ± 0.59 | 2.56 ± 0.45 | 0.224 |
Food fussiness | 2.68 ± 0.38 | 2.74 ± 0.39 | 2.62 ± 0.39 | 0.742 |
FA all categories (mean) | 2.49 ± 0.34 | 2.68 ± 0.30 | 2.30 ± 0.26 | 0.011 |
Boys | All n = 15 | Normal Weight n = 11 | Overweight/Obesity n = 4 | p-Value |
Food interest (FI) | ||||
Emotional overeating | 1.95 ± 0.98 | 1.61 ± 0.74 | 2.88 ± 1.05 * | 0.058 |
Enjoyment of food | 3.85 ± 0.72 | 3.64 ± 0.68 | 4.44 ± 0.52 | 0.078 |
Food responsivness | 2.99 ± 0.86 * | 2.75 ± 0.74 | 3.65 ± 0.91 * | 0.050 |
Desire to drink | 3.56 ± 1.18 * | 3.52 ± 1.31 * | 3.67 ± 0.86 | 0.999 |
FI all categories (mean) | 3.09 ± 0.59 * | 2.88 ± 0.38 * | 3.66 ± 0.75 * | 0.031 |
Food avoidance (FA) | ||||
Emotional undereating | 2.05 ± 0.57 | 1.98 ± 0.62 | 2.25 ± 0.41 | 0.296 |
Satiety responsivness | 2.23 ± 0.82 | 2.43 ± 0.82 | 1.69 ± 0.55 | 0.117 |
Slowness in eating | 2.79 ± 0.51 | 2.89 ± 0.52 | 2.50 ± 0.38 | 0.214 |
Food fussiness | 2.78 ± 0.26 | 2.77 ± 0.26 | 2.79 ± 0.28 | 0.999 |
FA all categories (mean) | 2.46 ± 0.30 | 2.52 ± 0.32 | 2.31 ± 0.15 | 0.117 |
BMI | Waist Circumference | Fat Mass (kg) | Fat Mass/Height2 (kg/m2) | Visceral Fat Mass (g) | |
---|---|---|---|---|---|
Food interest (FI) | |||||
Emotional overeating | 0.230 (p = 0.2) | 0.115 (p = 0.5) | 0.058 (p = 0.7) | −0.091 (p = 0.6) | 0.035 (p = 0.8) |
Enjoyment of food | 0.334 (p = 0.047) | 0.394 (p = 0.016) | 0.186 (p = 0.3) | 0.118 (p = 0.5) | 0.334 (p = 0.071) |
Food responsivness | 0.217 (p = 0.2) | 0.380 (p = 0.020) | 0.140 (p = 0.4) | 0.031 (p = 0.9) | 0.246 (p = 0.2) |
Desire to drink | 0.161 (p = 0.3) | 0.354 (p = 0.032) | 0.069 (p = 0.7) | −0.130 (p = 0.5) | −0.027 (p = 0.9) |
Food interest in all categories (mean) | 0.244 (p = 0.2) | 0.387 (p = 0.018) | 0.065 (p = 0.7) | −0.125 (p = 0.5) | 0.105 (p = 0.6) |
Food avoidance (FA) | |||||
Emotional undereating | −0.013 (p = 0.9) | −0.115 (p = 0.5) | −0.161 (p = 0.4) | −0.181 (p = 0.3) | −0.092 (p = 0.6) |
Satiety responsivness | −0.280 (p = 0.1) | −0.214 (p = 0.2) | −0.404 (p = 0.024) | −0.277 (p = 0.1) | −0.450 (p = 0.013) |
Slowness in eating | −0.415 (p = 0.012) | −0.373 (p = 0.023) | −0.388 (p = 0.031) | −0.372 (p = 0.043) | −0.261 (p = 0.2) |
Food fussiness | −0.130 (p = 0.5) | −0.026 (p = 0.9) | −0.105 (p = 0.6) | −0.099 (p = 0.6) | 0.066 (p = 0.7) |
Food avoidance in all categories (mean) | −0.383 (p = 0.021) | −0.414 (p = 0.011) | −0.510 (p = 0.003) | −0.447 (p = 0.013) | −0.436 (p = 0.016) |
All (n = 39) | |||
---|---|---|---|
% of Children Who Met the Requirements (Ate Products Several Times a Day) | % of Children Who Never, Rarely, Once a Month or Less Often Consumed Nourishing Products **** | ||
Products that should be eaten several times a day * | Vegetables | 7% | 8% |
Whole grain products | 2.5% | 20% | |
Natural dairy products | 7% | 27% | |
Products that should be eaten every day ** | Vegetable oils and/or seeds nuts | 20% | Oils 5% Nuts/seeds 61% |
Fruits | 51% | 10% | |
At least one a week *** | Fatty fish | 43.6% | 56.4% |
All | p | Obesity/Overweight | p | Normal Body Mass | p | |
---|---|---|---|---|---|---|
Fruits vs. sweets | 4.1 ± 1.2 vs. 2.9 ± 0.7 | <0.001 | 4.3 ± 1.5 vs. 2.8 ± 0.6 | 0.01 | 3.9 ± 1 vs. 3 ± 0.8 | 0.002 |
Fruits vs. vegetables | 4.1 ± 1.2 vs. 4.4 ± 1.2 | 0.18 | 4.3 ± 1.5 vs. 4.5 ± 1 | 0.78 | 3.9 ± 1 vs. 4.3 ± 1.2 | 0.12 |
* PUFA, MUFA sources vs. ** SFA sources | 2.3 ± 0.6 vs. 3.1 ± 0.7 | <0.001 | 2.25 ± 0.6 vs. 3 ± 0.6 | 0.01 | 2.4 ± 0.6 vs. 3.2 ± 0.7 | <0.001 |
Whole grain products vs. refined grain products | 3.5 ± 1.5 vs. 3.9 ± 1.4 | 0.22 | 3.7 ± 1.4 vs. 4 ± 1.4 | 0.72 | 3.3 ± 1.6 vs. 3.9 ± 1.4 | 0.23 |
Red meat vs. white meat | 3.1 ± 0.8 vs. 3.6 ± 0.7 | 0.01 | 3.3 ± 0.4 vs. 3.7 ± 0.9 | 0.06 | 3 ± 0.9 vs. 3.6 ± 0.4 | 0.08 |
Red meat vs. fatty fishes | 3.1 ± 0.8 vs. 2.3 ± 0.9 | <0.001 | 3.3 ± 0.4 vs. 2 ± 0.8 | 0.001 | 3 ± 0.9 vs. 2.4 ± 0.8 | 0.06 |
Red meat vs. lean fishes | 3.1 ± 0.8 vs. 2.5 ± 0.8 | <0.001 | 3.3 ± 0.4 vs. 2.5 ± 0.8 | 0.01 | 3 ± 0.9 vs. 2.6 ± 0.7 | 0.03 |
Potatoes vs. group of groats, pasta, rice | 3.9 ± 0.9 vs. 2.8 ± 0.9 | <0.001 | 3.9 ± 0.9 vs. 3 ± 0.8 | 0.03 | 3.8 ± 1 vs. 2.7 ± 0.9 | 0.001 |
Fruit juices, nectars vs. sweetened beverages | 3.5 ± 1.2 vs. 1.9 ± 1.1 | <0.001 | 3.4 ± 1.4 vs. 2.1 ± 0.1 | 0.007 | 3.5 ± 1.2 vs. 1.9 ± 1.7 | <0.001 |
Vegetable juices vs. sweetened beverages | 2.5 ± 1.1 vs. 1.9 ± 1.1 | 0.04 | 2.7 ± 1.6 vs. 2.1 ± 0.1 | 0.2 | 2.4 ± 1 vs. 1.9 ± 1.1 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wernio, E.; Kłosowska, A.; Kuchta, A.; Ćwiklińska, A.; Sałaga-Zaleska, K.; Jankowski, M.; Kłosowski, P.; Wiśniewski, P.; Wierzba, J.; Małgorzewicz, S. Analysis of Dietary Habits and Nutritional Status of Children with Down Syndrome in the Context of Lipid and Oxidative Stress Parameters. Nutrients 2022, 14, 2390. https://doi.org/10.3390/nu14122390
Wernio E, Kłosowska A, Kuchta A, Ćwiklińska A, Sałaga-Zaleska K, Jankowski M, Kłosowski P, Wiśniewski P, Wierzba J, Małgorzewicz S. Analysis of Dietary Habits and Nutritional Status of Children with Down Syndrome in the Context of Lipid and Oxidative Stress Parameters. Nutrients. 2022; 14(12):2390. https://doi.org/10.3390/nu14122390
Chicago/Turabian StyleWernio, Edyta, Anna Kłosowska, Agnieszka Kuchta, Agnieszka Ćwiklińska, Kornelia Sałaga-Zaleska, Maciej Jankowski, Przemysław Kłosowski, Piotr Wiśniewski, Jolanta Wierzba, and Sylwia Małgorzewicz. 2022. "Analysis of Dietary Habits and Nutritional Status of Children with Down Syndrome in the Context of Lipid and Oxidative Stress Parameters" Nutrients 14, no. 12: 2390. https://doi.org/10.3390/nu14122390
APA StyleWernio, E., Kłosowska, A., Kuchta, A., Ćwiklińska, A., Sałaga-Zaleska, K., Jankowski, M., Kłosowski, P., Wiśniewski, P., Wierzba, J., & Małgorzewicz, S. (2022). Analysis of Dietary Habits and Nutritional Status of Children with Down Syndrome in the Context of Lipid and Oxidative Stress Parameters. Nutrients, 14(12), 2390. https://doi.org/10.3390/nu14122390