Role of Beta Cell Function and Insulin Resistance in the Development of Gestational Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anthropometric Data
2.3. Biochemical Analysis
2.4. Adverse Pregnancy Outcomes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Association, A.D. Gestational Diabetes Mellitus; American Diabetes Association: Alexandria, VA, USA, 2004; p. S88. [Google Scholar]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newbern, D.; Freemark, M. Placental hormones and the control of maternal metabolism and fetal growth. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hou, W.; Meng, X.; Zhao, W.; Pan, J.; Tang, J.; Huang, Y.; Tao, M.; Liu, F. Heterogeneity of insulin resistance and beta cell dysfunction in gestational diabetes mellitus: A prospective cohort study of perinatal outcomes. J. Transl. Med. 2018, 16, 289. [Google Scholar] [CrossRef]
- Langer, O.; Yogev, Y.; Most, O.; Xenakis, E.M. Gestational diabetes: The consequences of not treating. Am. J. Obstet. Gynecol. 2005, 192, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.; Rumbold, A.R.; Willson, K.J.; Crowther, C.A. Borderline gestational diabetes mellitus and pregnancy outcomes. BMC Pregnancy Childbirth 2008, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Foretz, M.; Guigas, B.; Bertrand, L.; Pollak, M.; Viollet, B. Metformin: From Mechanisms of Action to Therapies. Cell Metab. 2014, 20, 953–966. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.; Hosker, J.; Rudenski, A.; Naylor, B.; Treacher, D.; Turner, R. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Knopp, J.L.; Holder-Pearson, L.; Chase, J.G. Insulin Units and Conversion Factors: A Story of Truth, Boots, and Faster Half-Truths. J. Diabetes Sci. Technol. 2019, 13, 597–600. [Google Scholar] [CrossRef]
- Das, S.; Behera, M.K.; Misra, S.; Baliarsihna, A.K. β-Cell Function and Insulin Resistance in Pregnancy and Their Relation to Fetal Development. Metab. Syndr. Relat. Disord. 2010, 8, 25–32. [Google Scholar] [CrossRef]
- Ellerbrock, J.; Bohnen, J.M.H.A.; Van Balen, V.A.L.; Mulder, E.G.; Aardenburg, R.; Spaanderman, M.E.A. Homeostatic model assessment of beta cell function predicting abnormal oral glucose tolerance testing in pregnancy: A systematic review and meta-analysis. Gynecol. Endocrinol. 2017, 33, 911–917. [Google Scholar] [CrossRef]
- Metzger, B.E.; Gabbe, S.G.; Persson, B.; Buchanan, T.A.; Catalano, P.A.; Damm, P.; Dyer, A.R.; Leiva, A.D.; Hod, M.; Kitzmiler, J.L.; et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hypergly-cemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Li, W.; Zhang, S.; Liu, H.; Wang, L.; Zhang, C.; Leng, J.; Yu, Z.; Yang, X.; Tian, H.; Hu, G. Different Associations of Diabetes With β-Cell Dysfunction and Insulin Resistance Among Obese and Nonobese Chinese Women with Prior Gestational Diabetes Mellitus. Diabetes Care 2014, 37, 2533–2539. [Google Scholar] [CrossRef] [Green Version]
- Kahn, B.B.; Flier, J.S. Obesity and insulin resistance. J. Clin. Investig. 2000, 106, 473–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dandona, P.; Aljada, A.; Bandyopadhyay, A. Inflammation: The link between insulin resistance, obesity and diabetes. Trends Immunol. 2004, 25, 4–7. [Google Scholar] [CrossRef]
- Cohn, G.; Valdes, G.; Capuzzi, D.M. Pathophysiology and treatment of the dyslipidemia of insulin resistance. Curr. Cardiol. Rep. 2001, 3, 416–423. [Google Scholar] [CrossRef]
- Howard, B.V.; Ruotolo, G.; Robbins, D.C. Obesity and dyslipidemia. Endocrinol. Metab. Clin. N. Am. 2003, 32, 855–867. [Google Scholar] [CrossRef]
- Ginsberg, H.N.; Zhang, Y.-L.; Hernandez-Ono, A. Regulation of Plasma Triglycerides in Insulin Resistance and Diabetes. Arch. Med. Res. 2005, 36, 232–240. [Google Scholar] [CrossRef]
- Vergès, B. Pathophysiology of diabetic dyslipidaemia: Where are we? Diabetologia 2015, 58, 886–899. [Google Scholar] [CrossRef] [Green Version]
- Major, C.A.; Henry, M.J.; DE Veciana, M.; Morgan, M.A. The Effects of Carbohydrate Restriction in Patients with Diet-Controlled Gestational Diabetes. Obstet. Gynecol. 1998, 91, 600–604. [Google Scholar] [CrossRef]
- Gui, J.; Liu, Q.; Feng, L. Metformin vs Insulin in the Management of Gestational Diabetes: A Meta-Analysis. PLoS ONE 2013, 8, e64585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, D.; Wang, X. Metformin vs insulin in the management of gestational diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2014, 104, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Ma, J.; Tang, J.; Hu, D.; Zhang, W.; Zhao, X. Comparative Efficacy and Safety of Metformin, Glyburide, and Insulin in Treating Gestational Diabetes Mellitus: A Meta-Analysis. J. Diabetes Res. 2019, 2019, 9804708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitwitee, P.; Limwattananon, S.; Limwattananon, C.; Waleekachonlert, O.; Ratanachotpanich, T.; Phimphilai, M.; Nguyen, T.V.; Pongchaiyakul, C. Metformin for the treatment of gestational diabetes: An updated meta-analysis. Diabetes Res. Clin. Pract. 2015, 109, 521–532. [Google Scholar] [CrossRef]
- Rowan, J.A.; Hague, W.M.; Gao, W.; Battin, M.R.; Moore, M.P. Metformin versus Insulin for the Treatment of Gestational Diabetes. N. Engl. J. Med. 2008, 358, 2003–2015. [Google Scholar] [CrossRef] [Green Version]
- Gray, S.; McGuire, T.; Cohen, N.; Little, P.J. The emerging role of metformin in gestational diabetes mellitus. Diabetes Obes. Metab. 2017, 19, 765–772. [Google Scholar] [CrossRef]
- van Weelden, W.; Wekker, V.; de Wit, L.; Limpens, J.; Ijäs, H.; van Wassenaer-Leemhuis, A.G.; Roseboom, T.J.; van Rijn, B.B.; DeVries, J.H.; Painter, R.C. Long-Term Effects of Oral Antidiabetic Drugs During Pregnancy on Offspring: A Systematic Review and Meta-analysis of Follow-up Studies of RCTs. Diabetes Ther. 2018, 9, 1811–1829. [Google Scholar] [CrossRef] [Green Version]
- Hedderson, M.M.; Darbinian, J.A.; Ferrara, A. Disparities in the risk of gestational diabetes by race-ethnicity and country of birth. Paediatr. Périnat. Epidemiol. 2010, 24, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Mørkrid, K.; Jenum, A.K.; Sletner, L.; Vårdal, M.H.; Waage, C.W.; Nakstad, B.; Vangen, S.; Birkeland, I.K. Failure to increase insulin secretory capacity during pregnancy-induced insulin resistance is associated with ethnicity and gestational diabetes. Eur. J. Endocrinol. 2012, 167, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Jang, E.-H.; Kwon, H.-S. β-Cell dysfunction and insulin resistance in gestational glucose intolerance. Korean J. Intern. Med. 2013, 28, 294–296. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, X.; Zhao, H.; Ding, H.; Tan, J.; Chen, J.; Zhang, R.; Azziz, R.; Yang, N. Risks for Gestational Diabetes Mellitus and Pregnancy-Induced Hypertension Are Increased in Polycystic Ovary Syndrome. BioMed Res. Int. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, P.; Fauser, B.C.J.M. PCOS: A heterogeneous condition with multiple faces for multiple doctors. Eur. J. Endocrinol. 2014, 171, E1–E2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laven, J.S.; Mulders, A.G.; Van Santbrink, E.J.; Eijkemans, M.J.; Fauser, B.C. PCOS: Backgrounds, evidence and problems in diagnosing the syndrome. Int. Congr. Ser. 2005, 1279, 10–15. [Google Scholar] [CrossRef]
- Cibula, D. Is insulin resistance an essential component of PCOS? The influence of confounding factors. Hum. Reprod. 2004, 19, 757–759. [Google Scholar] [CrossRef] [Green Version]
OGTT | |||
---|---|---|---|
Normal | Abnormal | p | |
n = 1536 | n = 576 | ||
Age (y) | 31.1 ± 4.7 | 32.5 ± 5.4 | <0.001 |
Pre-pregnancy Weight (kg) | 74.4 ± 16.7 | 80.7 ± 17.5 | <0.001 |
Pre-pregnancy BMI (kg/m2) | 26.7 ± 5.7 | 29.3 ± 5.8 | <0.001 |
Nulliparous (%) | 49.7 | 45.1 | 0.058 |
Singleton pregnancy (%) | 97.1 | 97.9 | 0.283 |
Northern European Ancestry (%) | 79.4 | 76.3 | 0.129 |
History of GDM (%) | 2.9 | 4.3 | 0.122 |
Family history of DM (%) | 18.8 | 15.8 | 0.094 |
History of macrosomia (%) | 7.2 | 6.8 | 0.791 |
PCOS (%) | 6.1 | 2.3 | <0.001 |
Gestational age OGTT (wk+d) | 25+2 ± 1+0 | 25+2 ± 1+1 | 0.838 |
Weight (kg) | 80.7 ± 16.2 | 87.0 ± 16.8 | <0.001 |
BMI (kg/m2) | 29.0 ± 5.4 | 31.6 ± 5.8 | <0.001 |
MAP (mmHg) | 80 ± 7 | 83 ± 7 | <0.001 |
Cholesterol (mmol/L) | 6.2 ± 1.1 | 6.0 ± 1.1 | 0.002 |
HDL (mmol/L) | 2.1 ± 0.5 | 1.9 ± 0.4 | <0.001 |
LDL (mmol/L) | 3.2 ± 1.0 | 3.2 ± 1.0 | 0.107 |
Triglycerides (mmol/L) | 1.98 ± 0.73 | 2.26 ± 0.82 | <0.001 |
HbA1c (mmol/mol) | 4.8 ± 0.3 | 5.0 ± 0.4 | <0.001 |
OGTT | |||
Fasting glucose (mmol/L) | 4.7 ± 0.3 | 5.3 ± 0.5 | <0.001 |
Glucose load 1 h (mmol/L) | 7.0 ± 1.4 | 9.3 ± 1.8 | <0.001 |
Glucose load 2 h (mmol/L) | 5.9 ± 1.1 | 7.7 ± 1.6 | <0.001 |
Fasting insulin (pmol/L) | 52.7 ± 39.9 | 79.4 ± 51.5 | <0.001 |
HOMA-IR | 11.1 ± 8.5 | 19.2 ± 13.9 | <0.001 |
HOMA-β (%) | 921 ± 707 | 878 ± 503 | 0.183 |
Insulin resistance (%) | 19.0 | 53.4 | <0.001 |
Low beta cell function (%) | 52.0 | 51.8 | 0.927 |
Insulin Resistance (HOMA-IR) | |||||
---|---|---|---|---|---|
<0.5 MoM | 0.5–1.5 MoM | >1.5 MoM | |||
Beta cell function (HOMA-β) | <0.5 MoM | 36/372 | 190/642 | 64/64 | 290/1078 * |
(9.7%) | (29.6%) | (100%) | (26.9%) | ||
0.5–1.5 MoM | 0/17 | 35/454 | 226/480 | 261/951 * | |
(0%) | (7.7%) | (47.1%) | (27.4%) | ||
>1.5 MoM | 0/0 | 0/3 | 9/43 | 9/46 | |
(0%) | (0%) | (20.9%) | (19.6%) | ||
36/389 * | 225/1099 * | 299/587 * | 560/2075 | ||
(9.3%) | (20.5%) | (39.0%) | (27.0%) |
Insulin Resistance (HOMA-IR) | |||||||
---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | |||
Beta cell function (HOMA-β) | Q1 | 35/306 | 30/83 | 11/11 | 10/10 | 3/3 | 89/413 * |
(11.4%) | (36.1%) | (100%) | (100%) | (100%) | (21.5%) | ||
Q2 | 5/79 | 24/183 | 48/104 | 34/34 | 7/7 | 118/407 * | |
(6.3%) | (13.1%) | (46.2%) | (100%) | (100%) | (29.0%) | ||
Q3 | 0/14 | 4/93 | 19/150 | 68/106 | 49/49 | 140/412 * | |
(0%) | (4.3%) | (12.7%) | (64.2%) | (100%) | (34.0%) | ||
Q4 | 0/13 | 1/33 | 6/108 | 27/152 | 78/108 | 112/414 * | |
(0%) | (3%) | (5.6%) | (17.8%) | (72.2%) | (27.1%) | ||
Q5 | 0/3 | 1/15 | 1/39 | 8/111 | 87/244 | 97/412 * | |
(0%) | (6.7%) | (2.6%) | (7.2%) | (35.7%) | (23.5%) | ||
40/415 * | 60/407 * | 85/412 * | 147/413 * | 224/411 * | 556/2058 | ||
(9.6%) | (14.7%) | (20.6%) | (35.6%) | (54.5%) | (27.0%) |
Insulin Resistance (HOMA-IR) | |||||||
---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | |||
Beta cell function (HOMA-β) | Q1 | 17/89 (19%) ** | |||||
M: 0 (0%) | M: 3 (10%) | M: 4 (36%) | M: 1 (10%) | M: 1 (33%) | M: 9 (10%) | ||
I: 0 (0%) | I: 1 (3%) | I: 4 (36%) | I: 0 (0%) | I: 1 (33%) | I: 6 (7%) | ||
MI: 0 (0%) | MI: 0 (0%) | MI: 0 (0%) | MI: 1 (10%) | MI: 1 (33%) | MI: 2 (2%) | ||
Q2 | 23/118 (19%) ** | ||||||
M: 0 (0%) | M: 2 (8%) | M: 6 (13%) | M: 3 (9%) | M: 0 (0%) | M: 11 (9%) | ||
I: 0 (0%) | I: 0 (0%) | I: 2 (4%) | I: 4 (12%) | I: 2 (29%) | I: 8 (7%) | ||
MI: 0 (0%) | MI: 1 (4%) | MI: 0 (0%) | MI: 2 (6%) | MI: 1 (14%) | MI: 4 (3%) | ||
Q3 | 28/140 (20%) ** | ||||||
M: 0 (0%) | M: 0 (0%) | M: 1 (5%) | M: 2 (3%) | M: 10 (20%) | M: 13 (9%) | ||
I: 0 (0%) | I: 0 (0%) | I: 2 (11%) | I: 6 (9%) | I: 5 (10%) | I: 13 (9%) | ||
MI: 0 (0%) | MI: 0 (0%) | MI: 0 (0%) | MI: 0 (0%) | MI: 2 (4%) | MI: 2 (1%) | ||
Q4 | 22/112 (20%) | ||||||
M: 0 (0%) | M: 1 (100%) | M: 0 (0%) | M: 4 (15%) | M: 11 (14%) | M: 16 (14%) | ||
I: 0 (0%) | I: 0 (0%) | I: 1 (17%) | I: 0 (0%) | I: 4 (5%) | I: 5 (4%) | ||
MI: 0 (0%) | MI: 0 (0%) | MI: 0 (0%) | MI: 0 (0%) | MI: 1 (1%) | MI: 1 (1%) | ||
Q5 | 16/97 (16%) | ||||||
M: 0 (0%) | M: 0 (0%) | M: 0 (0%) | M: 1 (13%) | M: 13 (15%) | M: 14 (14%) | ||
I: 0 (0%) | I: 0 (0%) | I: 0 (0%) | I: 0 (0%) | I: 2 (2%) | I: 2 (2%) | ||
MI: 0 (0%) | MI: 0 (0%) | MI: 0 (0%) | MI: 0 (0%) | MI: 0 (0%) | MI: 0 (0%) | ||
0/40 (0%) | 8/60 (13%) | 20/85 (24%) | 24/147 (16%) | 54/224 (24%) * | 106/556 (19%) | ||
M: 0 (0%) | M: 6 (10%) | M: 11 (13%) | M: 11 (7%) | M: 35 (16%) | M: 63 (11%) | ||
I: 0 (0%) | I: 1 (2%) | I: 9 (11%) | I: 10 (7%) | I: 14 (6%) | I: 34 (6%) | ||
MI: 0 (0%) | MI: 1 (2%) | MI: 0 (0%) | MI: 3 (2%) | MI: 5 (2%) | MI: 9 (2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellerbrock, J.; Spaanderman, B.; Drongelen, J.v.; Mulder, E.; Lopes van Balen, V.; Schiffer, V.; Jorissen, L.; Alers, R.-J.; Leenen, J.; Ghossein-Doha, C.; et al. Role of Beta Cell Function and Insulin Resistance in the Development of Gestational Diabetes Mellitus. Nutrients 2022, 14, 2444. https://doi.org/10.3390/nu14122444
Ellerbrock J, Spaanderman B, Drongelen Jv, Mulder E, Lopes van Balen V, Schiffer V, Jorissen L, Alers R-J, Leenen J, Ghossein-Doha C, et al. Role of Beta Cell Function and Insulin Resistance in the Development of Gestational Diabetes Mellitus. Nutrients. 2022; 14(12):2444. https://doi.org/10.3390/nu14122444
Chicago/Turabian StyleEllerbrock, Jonas, Benthe Spaanderman, Joris van Drongelen, Eva Mulder, Veronica Lopes van Balen, Veronique Schiffer, Laura Jorissen, Robert-Jan Alers, Jeanine Leenen, Chahinda Ghossein-Doha, and et al. 2022. "Role of Beta Cell Function and Insulin Resistance in the Development of Gestational Diabetes Mellitus" Nutrients 14, no. 12: 2444. https://doi.org/10.3390/nu14122444
APA StyleEllerbrock, J., Spaanderman, B., Drongelen, J. v., Mulder, E., Lopes van Balen, V., Schiffer, V., Jorissen, L., Alers, R.-J., Leenen, J., Ghossein-Doha, C., & Spaanderman, M. (2022). Role of Beta Cell Function and Insulin Resistance in the Development of Gestational Diabetes Mellitus. Nutrients, 14(12), 2444. https://doi.org/10.3390/nu14122444