Ameliorating Effect of Crassocephalum rabens (Asteraceae) Extract on Skin Aging: A Randomized, Parallel, Double-Blind, and Placebo-Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of C. rabens Extract
2.2. dLGG Analysis
2.3. Study Design
2.4. Efficacy Analysis
2.5. Statistical Analysis
3. Results
3.1. dLGG Analysis
3.2. Baseline Characteristics
3.3. Improvement in Collagen-Associated Parameters
3.4. Improvement in Skin Pigmentation
3.5. Other Skin Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolarsick, P.A.J.; Kolarsick, M.A.; Goodwin, C. Anatomy and physiology of the skin. J. Dermatol. Nurses. Assoc. 2011, 3, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Hogan, M.B.; Peele, K.; Wilson, N.W. Skin barrier function and its importance at the start of the atopic march. J. Allergy 2012, 2012, 901940. [Google Scholar] [CrossRef] [PubMed]
- Ganceviciene, R.; Liakou, A.I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin anti-aging strategies. Dermatoendocrinology 2012, 4, 308–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, H.J.; Jung, H.J.; Schrammek-Drusios, M.C.; Lee, S.N.; Kim, J.H.; Kwon, S.B.; An, I.S.; An, S.; Ahn, K.J. Instrumental evaluation of anti-aging effects of cosmetic formulations containing palmitoyl peptides, Silybum marianum seed oil, vitamin E and other functional ingredients on aged human skin. Exp. Ther. Med. 2016, 12, 1171–1176. [Google Scholar] [CrossRef] [Green Version]
- Cho, S. The role of functional foods in cutaneous anti-aging. J. Lifestyle Med. 2014, 4, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Puizina-Ivić, N. Skin aging. Acta Dermatovenerol. Alp. Panon. Adriat. 2008, 17, 47–54. [Google Scholar]
- Fisher, G.J.; Wang, Z.Q.; Datta, S.C.; Varani, J.; Kang, S.; Voorhees, J.J. Pathophysiology of premature skin aging induced by ultraviolet light. N. Engl. J. Med. 1997, 337, 1419–1428. [Google Scholar] [CrossRef]
- Flament, F.; Bazin, R.; Laquieze, S.; Rubert, V.; Simonpietri, E.; Piot, B. Effect of the sun on visible clinical signs of aging in Caucasian skin. Clin. Cosmet. Investig. Dermatol. 2013, 6, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.; Alexander, R.A.; Liang, C.H.; Liu, C.; Lin, Y.H.; Lin, Y.H.; Chan, L.P.; Kuan, C.M. Collagen formula with Djulis for improvement of skin hydration, brightness, texture, crow’s feet, and collagen content: A double-blind, randomized, placebo-controlled trial. J. Cosmet. Dermatol. 2021, 20, 188–194. [Google Scholar] [CrossRef]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative stress in aging human skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Guo, J.H.; Tu, X.L.; Zhang, C.; Zhao, M.; Zhang, Q.W.; Gao, F.H. Tiron inhibits UVB-induced AP-1 binding sites transcriptional activation on MMP-1 and MMP-3 promoters by MAPK signaling pathway in human dermal fibroblasts. PLoS ONE 2016, 11, e0159998. [Google Scholar] [CrossRef]
- Nafisi, S.; Maibach, H.I. Skin penetration of nanoparticles. In Emerging Nanotechnologies Immunology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 47–88. [Google Scholar]
- Jesumani, V.; Du, H.; Aslam, M.; Pei, P.; Huang, N. Potential use of seaweed bioactive compounds in skincare—A review. Mar. Drugs 2019, 17, 688. [Google Scholar] [CrossRef] [Green Version]
- Hou, C.-C.; Chen, Y.-P.; Wu, J.-H.; Huang, C.-C.; Wang, S.-Y.; Yang, N.-S.; Shyur, L.-F. A galactolipid possesses novel cancer chemopreventive effects by suppressing inflammatory mediators and mouse B16 melanoma. Cancer Res. 2007, 67, 6907–6915. [Google Scholar] [CrossRef] [Green Version]
- Apaya, M.K.; Chang, M.-T.; Shyur, L.-F. Phytomedicine polypharmacology: Cancer therapy through modulating the tumor microenvironment and oxylipin dynamics. Pharmacol. Ther. 2016, 162, 58–68. [Google Scholar] [CrossRef]
- Apaya, M.K.; Hsiao, P.-W.; Yang, Y.-C.; Shyur, L.-F. Deregulating the CYP2C19/epoxy-eicosatrienoic acid-associated FABP4/FABP5 signaling network as a therapeutic approach for metastatic triple-negative breast cancer. Cancers 2020, 12, 199. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-C.; Chang, C.-K.; Chang, M.-T.; Shyur, L.-F. Plant galactolipid dLGG suppresses lung metastasis of melanoma through deregulating TNF-α-mediated pulmonary vascular permeability and circulating oxylipin dynamics in mice. Int. J. Cancer 2018, 143, 3248–3261. [Google Scholar] [CrossRef] [Green Version]
- Hsan, K.-M.; Chen, C.-C.; Shyur, L.-F. Current research and development of chemotherapeutic agents for melanoma. Cancers 2010, 2, 397–419. [Google Scholar] [CrossRef] [Green Version]
- Larsen, E.; Christensen, L.P. Common vegetables and fruits as a source of 1,2-di-O-b-linolenoyl-3-O-b-D-galactopyranosyl-snglycerol, a potential anti-inflammatory and antitumor agent. J. Food Lipids 2007, 14, 272–279. [Google Scholar] [CrossRef]
- Takahashi, M.; Sugiyama, Y.; Kawabata, K.; Takahashi, Y.; Irie, K.; Murakami, A.; Kubo, Y.; Kobayashi, K.; Ohigashi, H. 1,2-Di-O-α-linolenoyl-3-O-β-galactosyl-sn-glycerol as a superoxide generation inhibitor from Perilla frutescens var. crispa. Biosci. Biotechnol. Biochem. 2011, 75, 2240–2242. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.-N.; Chen, H.-M.; Shyur, L.-F. Current advancements of plant-derived agents for triple-negative breast cancer therapy through deregulating cancer cell functions and reprogramming tumor microenvironment. Int. J. Mol. Sci. 2021, 22, 13571. [Google Scholar] [CrossRef]
- Cheng, B.C.; Fu, X.Q.; Guo, H.; Li, T.; Wu, Z.Z.; Chan, K.; Yu, Z.L. The genus Rosa and arthritis: Overview on pharmacological perspectives. Pharmacol. Res. 2016, 114, 219–234. [Google Scholar] [CrossRef]
- Winther, K.; Vinther Hansen, A.S.; Campbell-Tofte, J. Bioactive ingredients of rose hips (Rosa canina L.) with special reference to antioxidative and anti-inflammatory properties: In vitro studies. Bot. Targets Ther. 2016, 6, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Grabowska, K.; Podolak, I.; Galanty, A.; Załuski, D.; Makowska-Wąs, J.; Sobolewska, D.; Janeczko, Z.; Żmudzki, P. In vitro anti-denaturation and anti-hyaluronidase activities of extracts and galactolipids from leaves of Impatiens parviflora DC. Nat. Prod. Res. 2016, 30, 1219–1223. [Google Scholar] [CrossRef]
- El Hawary, S.S.; Abubaker, M.; Abd El-Kader, E.M.; Mahrous, E.A. Phytochemical constituents and anti-tyrosinase activity of Macadamia integrifolia leaves extract. Nat. Prod. Res. 2022, 36, 1089–1094. [Google Scholar] [CrossRef]
- Phetcharat, L.; Wongsuphasawat, K.; Winther, K. The effectiveness of a standardized rose hip powder, containing seeds and shells of Rosa canina, on cell longevity, skin wrinkles, moisture, and elasticity. Clin. Interv. Aging 2015, 10, 1849–1856. [Google Scholar]
- Winther, K.; Petcharat, L.; Wongsuphasawat, K. Rose-HIP including seeds and shells reported to reduce symptoms of osteoarthritis, improves quality of the skin by mechanisms which may involve collagen and longevity of cell membranes. Osteoarthr. Cartil. 2015, 23, A170. [Google Scholar] [CrossRef] [Green Version]
- Bizot, V.; Cestone, E.; Michelotti, A.; Nobile, V. Improving skin hydration and age-related symptoms by oral administration of wheat glucosylceramides and digalactosyl diglycerides: A human clinical study. Cosmetics 2017, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Taiwan Wild Plant Database. Available online: https://plant.tesri.gov.tw/plant106/WebPlantDetail.aspx?tno=539034010 (accessed on 15 June 2022).
- Hsu, P.-K.; Tsai, Y.-T.; Lin, Y.-C.; Kuan, C.-M. Assessment of the acute and sub-acute toxicity of the ethanolic extract of the aerial parts of Crassocephalum rabens (Asteraceae) in rats. Toxicol. Rep. 2021, 9, 58–63. [Google Scholar] [CrossRef]
- Dorne, J.L.; Renwick, A.G. The refinement of uncertainty/safety factors in risk assessment by the incorporation of data on toxicokinetic variability in humans. Toxicol. Sci. 2005, 86, 20–26. [Google Scholar] [CrossRef]
- Kim, M.; Park, H. Molecular mechanisms of skin aging and rejuvenation. In Molecular Mechanism of the Aging Process and Rejuvenation; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinology 2012, 4, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Moon, S.H.; Hong, Y.; Ahn, D.U.; Paik, H.D. Anti-elastase and anti-hyaluronidase activity of phosvitin isolated from hen egg yolk. Br. Poult. Sci. 2020, 61, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Haddad, A.L.; Matos, L.F.; Brunstein, F.; Ferreira, L.M.; Silva, A.; Costa, D., Jr. A clinical, prospective, randomized, double-blind trial comparing skin whitening complex with hydroquinone vs. placebo in the treatment of melasma. Int. J. Dermatol. 2003, 42, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, N.; Yamada, W.; Miyasaka, K.; Shimoda, H. Ameliorating effects of Delphinol®, anthocyanin standardized maqui berry extract, on skin brightness and redness in Japanese females: A randomized double-blind placebo-controlled pilot study. J. Cosmet. Dermatol. Sci. Appl. 2020, 10, 149–162. [Google Scholar] [CrossRef]
Placebo (n = 20) | Treatment (n = 20) | p-Value | |
---|---|---|---|
Male/female participants | 2/18 | 2/18 | N/A |
Mean age (years) | 46.4 ± 13.22 | 43.9 ± 11.9 | 0.533 |
Index | Group | Measurement | Week 0 | Week 4 | p-Value |
---|---|---|---|---|---|
Pores | Placebo | Original | 718.4 ± 419.4 | 708.4 ± 394.8 | 0.72 a |
Δ | −10.1 ± 127.0 | ||||
Treatment | Original | 731.1 ± 371.7 | 696.5 ± 335.6 | 0.18 a, 0.92 b | |
Δ | −34.6 ± 111.1 | 0.52 b | |||
Elasticity | Placebo | Original | 50.5 ± 3.0 | 51.3 ± 2.7 *** | <0.001 a |
Δ | 0.8 ± 1.1 | ||||
Treatment | Original | 50.3 ± 2.8 | 51.4 ± 3.1 *** | <0.001 a, 0.91 b | |
Δ | 1.1 ± 1.4 | 0.52 b | |||
Texture | Placebo | Original | 548.4 ± 402.5 | 567.6 ± 446.8 | 0.38 a |
Δ | 19.2 ± 96.5 | ||||
Treatment | Original | 434.2 ± 319.8 | 421.4 ± 304.9 | 0.40 a, 0.25 b | |
Δ | −12.8 ± 66.4 | 0.23 b | |||
Wrinkles | Placebo | Original | 16.7 ± 13.3 | 16.8 ± 13.8 | 0.94 a |
Δ | 0.1 ± 6.2 | ||||
Treatment | Original | 12.7 ± 9.6 | 9.0 ± 8.4 *** | 0.002 a, 0.04 b | |
Δ | −3.8 ± 4.6 # | 0.03 b | |||
Collagen content | Placebo | Original | 58.3 ± 20.8 | 60.2 ± 20.1 * | 0.04 a |
Δ | 1.9 ± 3.9 | ||||
Treatment | Original | 53.1 ± 23.4 | 58.2 ± 22.8 *** | <0.001 a, 0.78 b | |
Δ | 5.2 ± 1.5 ### | 0.001 b |
Index | Group | Measurement | Week 0 | Week 4 | p-Value |
---|---|---|---|---|---|
Spots | Placebo | Original | 120.6 ± 48.4 | 120.8 ± 51.2 | 0.96 a |
Δ | 0.2 ± 14.9 | ||||
Treatment | Original | 101.6 ± 30.9 | 97.5 ± 28.2 | 0.21 a, 0.08 b | |
Δ | −4.2 ± 14.3 | 0.36 b | |||
UV spots | Placebo | Original | 349.9 ± 56.9 | 357.4 ± 58.3 | 0.15 a |
Δ | 7.5 ± 22.3 | ||||
Treatment | Original | 347.7 ± 51.2 | 335.5 ± 50.6 | 0.08 a, 0.21 b | |
Δ | −12.2 ± 29.2 # | 0.02 a | |||
Brown spots | Placebo | Original | 320.5 ± 101.7 | 320.5 ± 100.5 | 1.00 a |
Δ | 0 ± 17.0 | ||||
Treatment | Original | 321.1 ± 78.4 | 311.9 ± 77.9 | 0.06 a, 0.76 b | |
Δ | −9.2 ± 20.6 | 0.13 b |
Index | Group | Measurement | Week 0 | Week 4 | p-Value |
---|---|---|---|---|---|
Brightness | Placebo | Original | 57.9 ± 3.1 | 58.0 ± 3.1 *** | <0.001 a |
Δ | 0.2 ± 0.1 | ||||
Treatment | Original | 58.3 ± 2.6 | 59.5 ± 2.7 *** | <0.001 a, 0.12 b | |
Δ | 1.2 ± 1.0 ### | <0.001 b | |||
Hydration | Placebo | Original | 40.4 ± 8.8 | 40.7 ± 8.1 | 0.29 a |
Δ | 0.4 ± 1.4 | ||||
Treatment | Original | 39.8 ± 8.5 | 40.9 ± 8.4 *** | 0.02 a, 0.95 b | |
Δ | 1.1 ± 1.8 | 0.18 b | |||
Red areas | Placebo | Measurement | 190.1 ± 78.2 | 183.1 ± 74.9 | 189.2 ± 92.2 |
Δ | −7.0 ± 25.1 | −0.9 ± 27.3 | |||
Treatment | Measurement | 157.9 ± 64.6 | 146.3 ± 59.6 | 153.5 ± 61.0 | |
Δ | −11.6 ± 18.1 | −4.4 ± 28.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuan, C.-M.; Liang, C.-H.; Chuang, W.-H.; Lin, T.-Y.; Hsu, P.-K. Ameliorating Effect of Crassocephalum rabens (Asteraceae) Extract on Skin Aging: A Randomized, Parallel, Double-Blind, and Placebo-Controlled Study. Nutrients 2022, 14, 2655. https://doi.org/10.3390/nu14132655
Kuan C-M, Liang C-H, Chuang W-H, Lin T-Y, Hsu P-K. Ameliorating Effect of Crassocephalum rabens (Asteraceae) Extract on Skin Aging: A Randomized, Parallel, Double-Blind, and Placebo-Controlled Study. Nutrients. 2022; 14(13):2655. https://doi.org/10.3390/nu14132655
Chicago/Turabian StyleKuan, Chen-Meng, Chia-Hua Liang, Wei-Hsiu Chuang, Ting-Yu Lin, and Pang-Kuei Hsu. 2022. "Ameliorating Effect of Crassocephalum rabens (Asteraceae) Extract on Skin Aging: A Randomized, Parallel, Double-Blind, and Placebo-Controlled Study" Nutrients 14, no. 13: 2655. https://doi.org/10.3390/nu14132655
APA StyleKuan, C. -M., Liang, C. -H., Chuang, W. -H., Lin, T. -Y., & Hsu, P. -K. (2022). Ameliorating Effect of Crassocephalum rabens (Asteraceae) Extract on Skin Aging: A Randomized, Parallel, Double-Blind, and Placebo-Controlled Study. Nutrients, 14(13), 2655. https://doi.org/10.3390/nu14132655