Effect of Vitamin C on Tendinopathy Recovery: A Scoping Review
Abstract
:1. Introduction
1.1. Tendon Structure and Homeostasis
1.2. Etiopathogenesis
1.2.1. Reactive Tendinopathy (Stage I)
1.2.2. Unstructured Tendon (Stage II)
1.2.3. Degenerative Tendinopathy (Stage III)
1.3. Pathophysiology
1.4. Oxidative Stress
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Higgins, J.P.; Thomas, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Inter-Ventions, 2nd ed.; John Wiley & Sons, Inc.: Chichester, UK, 2019. [Google Scholar]
- DePhillipo, N.N.; Aman, Z.S.; Kennedy, M.I.; Begley, J.P.; Moatshe, G.; Laprade, R.F. Efficacy of Vitamin C Supplementation on Collagen Synthesis and Oxidative Stress After Musculoskeletal Injuries: A Systematic Review. Orthop. J. Sports Med. 2018, 6, 2325967118804544. [Google Scholar] [CrossRef] [PubMed]
- Ömeroğlu, S.; Peker, T.; Türközkan, N.; Ömeroğlu, H. High-dose vitamin C supplementation accelerates the Achilles tendon healing in healthy rats. Arch. Orthop. Trauma. Surg. 2009, 129, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Ekrol, I.; Duckworth, A.D.; Ralston, S.H.; Court-Brown, C.M.; McQueen, M.M. The Influence of Vitamin C on the Outcome of Distal Radial Fractures: A double-blind, randomized controlled trial. J. Bone Jt. Surg. 2014, 96, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Fusini, F.; Bisicchia, S.; Bottegoni, C.; Gigante, A.; Zanchini, F.; Busilacchi, A. Nutraceutical supplement in the management of tendinopathies: A systematic review. Muscle Ligaments Tendons J. 2016, 6, 48–57. [Google Scholar] [CrossRef]
- Molnar, J.A.; Vlad, L.G.; Gumus, T. Nutrition and Chronic Wounds: Improving Clinical Outcomes. Plast. Reconstr. Surg. 2016, 138, 71S–81S. [Google Scholar] [CrossRef]
- Schwarz, R.I.; Kleinman, P.; Owens, N. Ascorbate Can Act as an Inducer of the Collagen Pathway Because Most Steps Are Tightly Coupled. Ann. N. Y. Acad. Sci. 1987, 498, 172–185. [Google Scholar] [CrossRef]
- Hung, L.-K.; Fu, S.-C.; Lee, Y.-W.; Mok, T.-Y.; Chan, K.-M. Local Vitamin-C Injection Reduced Tendon Adhesion in a Chicken Model of Flexor Digitorum Profundus Tendon Injury. J. Bone Jt. Surg. 2013, 95, e41. [Google Scholar] [CrossRef]
- Cook, J.L.; Purdam, C.R. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br. J. Sports Med. 2009, 43, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Millar, N.L.; Silbernagel, K.G.; Thorborg, K.; Kirwan, P.D.; Galatz, L.M.; Abrams, G.D.; Murrell, G.A.C.; McInnes, I.B.; Rodeo, S.A. Tendinopathy. Nat. Rev. Dis. Prim. 2021, 7, 1–21. [Google Scholar] [CrossRef]
- Benjamin, M. Tendons are dynamic structures that respond to changes in exercise levels. Scand. J. Med. Sci. Sports 2002, 12, 63–64. [Google Scholar] [CrossRef]
- Kirchgesner, T.; Larbi, A.; Omoumi, P.; Malghem, J.; Zamali, N.; Manelfe, J.; Lecouvet, F.; Berg, B.V.; Djebbar, S.; Dallaudière, B. Drug-induced tendinopathy: From physiology to clinical applications. Jt. Bone Spine 2014, 81, 485–492. [Google Scholar] [CrossRef]
- Speed, C. Inflammation in tendon disorders. In Metabolic Influences on Risk for Tendon Disorders; Ackermann, P.W., Hart, D.A., Eds.; Springer International Publishing: New York, NY, USA, 2016; pp. 209–220. [Google Scholar]
- Lehner, C.; Spitzer, G.; Langthaler, P.; Jakubecova, D.; Klein, B.; Weissenbacher, N.; Wagner, A.; Gehwolf, R.; Trinka, E.; Iglseder, B.; et al. Allergy-induced systemic inflammation impairs tendon quality. EBioMedicine 2022, 75, 103778. [Google Scholar] [CrossRef]
- Del Buono, A.; Battery, L.; Denaro, V.; Maccauro, G.; Maffulli, N. Tendinopathy and Inflammation: Some Truths. Int. J. Immunopathol. Pharmacol. 2011, 24, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Abate, M.; Salini, V.; Andia, I. How obesity affects tendons. In Metabolic Influences on Risk for Tendon Disorders; Ackermann, P.W., Hart, D.A., Eds.; Springer International Publishing: New York, NY, USA, 2016; pp. 167–177. [Google Scholar]
- Collins, K.H.; Herzog, W.; Macdonald, G.Z.; Reimer, R.A.; Rios, J.L.; Smith, I.C.; Zernicke, R.F.; Hart, D.A. Obesity, Metabolic Syndrome, and Musculoskeletal Disease: Common Inflammatory Pathways Suggest a Central Role for Loss of Muscle Integrity. Front. Physiol. 2018, 9, 112. [Google Scholar] [CrossRef]
- O’Brien, M. Structure and metabolism of tendons. Scand. J. Med. Sci. Sports 2007, 7, 55–61. [Google Scholar] [CrossRef]
- Mienaltowski, M.J.; Birk, D.E. Structure, physiology, and biochemistry of collagens. In Progress in Heritable Soft Connective Tissue Diseases; Halper, J., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 5–29. [Google Scholar] [CrossRef]
- Subramanian, A.; Kanzaki, L.F.; Galloway, J.L.; Schilling, T.F. Mechanical force regulates tendon extracellular matrix organization and tenocyte morphogenesis through TGFbeta signaling. eLife 2018, 7, e38069. [Google Scholar] [CrossRef]
- Kjaer, M.; Langberg, H.; Miller, B.; Boushel, R.; Crameri, R.; Koskinen, S.; Heinemeier, K.; Olesen, J.; Døssing, S.; Hansen, M.; et al. Metabolic activity and collagen turnover in human tendon in response to physical activity. J. Musculoskelet. Neuronal Interact. 2005, 5, 41–52. [Google Scholar]
- Millar, N.L.; Hueber, A.J.; Reilly, J.H.; Xu, Y.; Fazzi, U.G.; Murrell, G.A.C.; McInnes, I.B. Inflammation is Present in Early Human Tendinopathy. Am. J. Sports Med. 2010, 38, 2085–2091. [Google Scholar] [CrossRef]
- Garret, W.; Speer, K.; Kirkendall, D. Principles and Practice of Orthopaedic Sports Medicine; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000; p. 1062. [Google Scholar]
- Maffulli, N.; Barrass, V.; Ewen, S.W.B. Light Microscopic Histology of Achilles Tendon Ruptures. Am. J. Sports Med. 2000, 28, 857–863. [Google Scholar] [CrossRef]
- Cook, J.L.; Rio, E.; Purdam, C.R.; Docking, S.I. Revisiting the continuum model of tendon pathology: What is its merit in clinical practice and research? Br. J. Sports Med. 2016, 50, 1187–1191. [Google Scholar] [CrossRef]
- Samiric, T.; Ilic, M.Z.; Handley, C.J. Characterisation of proteoglycans and their catabolic products in tendon and explant cultures of tendon. Matrix Biol. 2004, 23, 127–140. [Google Scholar] [CrossRef]
- Magnusson, S.P.; Narici, M.V.; Maganaris, C.N.; Kjaer, M. Human tendon behaviour and adaptation, in vivo. J. Physiol. 2008, 586, 71–81. [Google Scholar] [CrossRef]
- Cook, J.L.; Khan, K.M. Etiology of tendinopathy. In Tendinopathy in Athletes; Woo, S.L.Y., Renstrm, P.A.F.H., Arnoczky, S.P., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2007; pp. 10–28. [Google Scholar]
- Yao, L.; Bestwick, C.S.; Bestwick, L.A.; Aspden, R.M.; Maffulli, N. Non-Immortalized Human Tenocyte Cultures as a Vehicle for Understanding Cellular Aspects to Tendinopathy. Transl. Med. UniSa 2011, 1, 173–194. [Google Scholar]
- Semis, H.S.; Gur, C.; Ileriturk, M.; Kandemir, F.M.; Kaynar, O. Evaluation of Therapeutic Effects of Quercetin Against Achilles Tendinopathy in Rats via Oxidative Stress, Inflammation, Apoptosis, Autophagy, and Metalloproteinases. Am. J. Sports Med. 2021, 50, 486–498. [Google Scholar] [CrossRef]
- Wang, M.-X.; Wei, A.; Yuan, J.; Clippe, A.; Bernard, A.; Knoops, B.; Murrell, G.A. Antioxidant Enzyme Peroxiredoxin 5 Is Upregulated in Degenerative Human Tendon. Biochem. Biophys. Res. Commun. 2001, 284, 667–673. [Google Scholar] [CrossRef]
- Yuan, J.; Murrell, G.A.; Trickett, A.; Landtmeters, M.; Knoops, B.; Wang, M.-X. Overexpression of antioxidant enzyme peroxiredoxin 5 protects human tendon cells against apoptosis and loss of cellular function during oxidative stress. Biochim. Biophys. Acta Mol. Cell Res. 2004, 1693, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Pouzaud, F.; Bernard-Beaubois, K.; Thevenin, M.; Warnet, J.M.; Hayem, G.; Rat, P. In vitro discrimination of fluoroquin-olones toxicity on tendon cells: Involvement of oxidative stress. J. Pharmacol. Exp. Ther. 2004, 308, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Arbiser, J.L.; Klauber, N.; Rohan, R.; Van Leeuwen, R.; Huang, M.-T.; Fisher, C.; Flynn, E.; Byers, H.R. Curcumin Is an In Vivo Inhibitor of Angiogenesis. Mol. Med. 1998, 4, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Sajithlal, G.; Chithra, P.; Chandrakasan, G. Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochem. Pharmacol. 1998, 56, 1607–1614. [Google Scholar] [CrossRef]
- Minaguchi, J.; Koyama, Y.-I.; Meguri, N.; Hosaka, Y.; Ueda, H.; Kusubata, M.; Hirota, A.; Irie, S.; Mafune, N.; Takehana, K. Effects of Ingestion of Collagen Peptide on Collagen Fibrils and Glycosaminoglycans in Achilles Tendon. J. Nutr. Sci. Vitaminol. 2005, 51, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Lippiello, L. Collagen Synthesis in Tenocytes, Ligament Cells and Chondrocytes Exposed to a Combination of Glucosamine HCl and Chondroitin Sulfate. Evid. Based Complement. Altern. Med. 2007, 4, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A.; Goodship, A.E.; Silver, I.A. Response of a Collagenase-Induced Tendon Injury to Treatment with a Polysulphated Glycosaminoglycan (Adequan). Connect. Tissue Res. 2008, 49, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Buhrmann, C.; Mobasheri, A.; Busch, F.; Aldinger, C.; Stahlmann, R.; Montaseri, A.; Shakibaei, M. Curcumin Modulates Nuclear Factor κB (NF-κB)-mediated Inflammation in Human Tenocytes in Vitro: Role of the phosphatidylinositol 3-kinase/Akt pathway. J. Biol. Chem. 2011, 286, 28556–28566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harbour, R.; Miller, J. A new system for grading recommendations in evidence based guidelines. BMJ 2001, 323, 334–336. [Google Scholar] [CrossRef] [Green Version]
- Cumpston, M.; Li, T.; Page, M.J.; Chandler, J.; Welch, V.A.; Higgins, J.P.; Thomas, J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst. Rev. 2019, 10, ED000142. [Google Scholar] [CrossRef] [Green Version]
- Hutton, B.; Catalá-López, F.; Moher, D. La extensión de la declaración PRISMA para revisiones sistemáticas que incorporan metaanálisis en red: PRISMA-NMA. Med. Clín. 2016, 147, 262–266. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J.; GRADE Working Group. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef] [Green Version]
- Arquer, A.; García, M.; Laucirica, J.A.; Rius, M.; Blàvia, M.; Fontserè, J.; Hernández, C.; Boluda, J.; Kranjcec, T.; de la Torre, A.; et al. Eficacia y seguridad de un tratamiento oral a base de mucopolisacáridos, colágeno tipo i y vitamina C en pacientes con tendinopatías. Apunt. Med. L’Esport 2014, 49, 31–36. [Google Scholar] [CrossRef]
- Notarnicola, A.; Pesce, V.; Vicenti, G.; Tafuri, S.; Forcignanò, M.; Moretti, B. SWAAT Study: Extracorporeal Shock Wave Therapy and Arginine Supplementation and Other Nutraceuticals for Insertional Achilles Tendinopathy. Adv. Ther. 2012, 29, 799–814. [Google Scholar] [CrossRef]
- Balius, R.; Álvarez, G.; Baró, F.; Jiménez, F.; Pedret, C.; Costa, E.; Martínez-Puig, D. A 3-Arm Randomized Trial for Achilles Tendinopathy: Eccentric Training, Eccentric Training Plus a Dietary Supplement Containing Mucopolysaccharides, or Passive Stretching Plus a Dietary Supplement Containing Mucopolysaccharides. Curr. Ther. Res. Clin. Exp. 2016, 78, 1–7. [Google Scholar] [CrossRef]
- Shaw, G.; Lee-Barthel, A.; Ross, M.L.; Wang, B.; Baar, K. Vitamin C–enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am. J. Clin. Nutr. 2016, 105, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Martel, M.; Laumonerie, P.; Girard, M.; Dauzere, F.; Mansat, P.; Bonnevialle, N. Does vitamin C supplementation improve rotator cuff healing? A preliminary study. Eur. J. Orthop. Surg. Traumatol. 2021, 32, 63–70. [Google Scholar] [CrossRef]
- Lui, P.P.Y.; Wong, O.T.; Lee, Y.W. Transplantation of tendon-derived stem cells pre-treated with connective tissue growth factor and ascorbic acid in vitro promoted better tendon repair in a patellar tendon window injury rat model. Cytotherapy 2016, 18, 99–112. [Google Scholar] [CrossRef]
- Kang, K.-K.; Lee, E.-J.; Kim, Y.-D.; Chung, M.-J.; Kim, J.-Y.; Kim, S.-Y.; Hwang, S.-K.; Jeong, K.-S. Vitamin C Improves Therapeutic Effects of Adipose-derived Stem Cell Transplantation in Mouse Tendonitis Model. In Vivo 2017, 31, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Dincel, Y.M.; Adanir, O.; Arikan, Y.; Caglar, A.K.; Dogru, S.C.; Arslan, Y.Z. Effects of high-dose vitamin C and hyaluronic acid on tendon healing. Acta Ortop. Bras. 2018, 26, 82–85. [Google Scholar] [CrossRef]
- Gemalmaz, H.C.; Sarıyılmaz, K.; Ozkunt, O.; Gurgen, S.G.; Silay, S. Role of a combination dietary supplement containing mucopolysaccharides, vitamin C, and collagen on tendon healing in rats. Acta Orthop. Traumatol. Turc. 2018, 52, 452–458. [Google Scholar] [CrossRef]
- Morikawa, D.; Nojiri, H.; Itoigawa, Y.; Ozawa, Y.; Kaneko, K.; Shimizu, T. Antioxidant treatment with vitamin C attenuated rotator cuff degeneration caused by oxidative stress in Sod1-deficient mice. JSES Open Access 2018, 2, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Souza, M.; Moraes, S.; de Paula, D.R.; Maciel, A.A.; Batista, E.; Silva, D.; Bahia, C.P.; Oliveira, K.; Herculano, A.M. Local treatment with ascorbic acid accelerates recovery of post-sutured Achilles tendon in male Wistar rats. Braz. J. Med. Biol. Res. 2019, 52, e8290. [Google Scholar] [CrossRef] [Green Version]
- Turkmen, H.O.; Kalender, A.M.; Tekin, S.B. Retendo (mucopolygen complex) effects on achille tendon healing. J. Orthop. 2020, 20, 190–194. [Google Scholar] [CrossRef]
- Çelik, M.; Bayrak, A.; Duramaz, A.; Başaran, S.H.; Kızılkaya, C.; Kural, C.; Kural, A.; Sar, M.; Kaymakçı, O. The effect of fibrin clot and C vitamin on the surgical treatment of Achilles tendon injury in the rat model. Foot Ankle Surg. 2020, 27, 681–687. [Google Scholar] [CrossRef]
- Oliva, F.; Maffulli, N.; Gissi, C.; Veronesi, F.; Calciano, L.; Fini, M.; Brogini, S.; Gallorini, M.; Passeri, C.A.L.; Bernardini, R.; et al. Combined ascorbic acid and T3 produce better healing compared to bone marrow mesenchymal stem cells in an Achilles tendon injury rat model: A proof of concept study. J. Orthop. Surg. Res. 2019, 14, 54. [Google Scholar] [CrossRef]
- Corti, A.; Casini, A.F.; Pompella, A. Cellular pathways for transport and efflux of ascorbate and dehydroascorbate. Arch. Biochem. Biophys. 2010, 500, 107–115. [Google Scholar] [CrossRef]
- Bestwick, C.S. Reactive oxygen species and tendinopathy: Do they matter? Br. J. Sports Med. 2004, 38, 672–674. [Google Scholar] [CrossRef] [Green Version]
- Murrell, G.A. Oxygen free radicals and tendon healing. J. Shoulder Elb. Surg. 2007, 16, S208–S214. [Google Scholar] [CrossRef]
- DI Giacomo, V.; Berardocco, M.; Gallorini, M.; Oliva, F.; Colosimo, A.; Cataldi, A.; Maffulli, N.; Berardi, A.C. Combined supplementation of ascorbic acid and thyroid hormone T3 affects tenocyte proliferation. The effect of ascorbic acid in the production of nitric oxide. Muscle Ligaments Tendons J. 2017, 7, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Tuero, B. Funciones de la vitamina C en el metabolismo del colágeno. Rev. Cuba. Aliment. Nutr. 2000, 1, 46–54. [Google Scholar]
- Kipp, D.E.; McElvain, M.; Kimmel, D.B.; Akhter, M.P.; Robinson, R.G.; Lukert, B.P. Scurvy results in decreased collagen synthesis and bone density in the guinea pig animal model. Bone 1996, 18, 281–288. [Google Scholar] [CrossRef]
- Spanheimer, R.G.; Bird, T.A.; Peterkofsky, B. Regulation of collagen synthesis and mRNA levels in articular cartilage of scorbutic guinea pigs. Arch. Biochem. Biophys. 1986, 246, 33–41. [Google Scholar] [CrossRef]
- Bird, T.A.; Spanheimer, R.G.; Peterkofsky, B. Coordinate regulation of collagen and proteoglycan synthesis in costal cartilage of scorbutic and acutely fasted, vitamin C-supplemented guinea pigs. Arch. Biochem. Biophys. 1986, 246, 42–51. [Google Scholar] [CrossRef]
- Fredriksson, M.; Li, Y.; Stålman, A.; Haldosén, L.-A.; Felländer-Tsai, L. Diclofenac and triamcinolone acetonide impair tenocytic differentiation and promote adipocytic differentiation of mesenchymal stem cells. J. Orthop. Surg. Res. 2013, 8, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, N.; Kolade, O.O.; Shontz, E.; Rosenthal, Y.; Zuckerman, J.D.; Bosco, J.A.; Virk, M.S. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) and Their Effect on Musculoskeletal Soft-Tissue Healing: A Scoping Review. JBJS Rev. 2019, 7, e4. [Google Scholar] [CrossRef] [PubMed]
- Schug, S.A. Do NSAIDs Really Interfere with Healing after Surgery? J. Clin. Med. 2021, 10, 2359. [Google Scholar] [CrossRef] [PubMed]
- Duchman, K.R.; Lemmex, D.B.; Patel, S.H.; Ledbetter, L.; Garrigues, G.E.; Riboh, J.C. The effect of non-steroidal an-ti-inflammatory drugs on tendon-to-bone healing: A Systematic Review with Subgroup Meta-Analysis. Iowa. Orthop. J. 2019, 39, 107–119. [Google Scholar]
- Shakibaei, M.; Buhrmann, C.; Mobasheri, A. Anti-inflammatory and anti-catabolic effects of TENDOACTIVE on human tenocytes in vitro. Histol. Histopathol. 2011, 1173–1185. [Google Scholar] [CrossRef]
- Crimaldi, S.; Liguori, S.; Tamburrino, P.; Moretti, A.; Paoletta, M.; Toro, G.; Iolascon, G. The Role of Hyaluronic Acid in Sport-Related Tendinopathies: A Narrative Review. Med. Kaunas 2021, 57, 1088. [Google Scholar] [CrossRef]
- Chiu, C.-H.; Chen, P.; Chen, A.C.-Y.; Chan, Y.-S.; Hsu, K.-Y.; Rei, H.; Lei, K.F. Real-Time Monitoring of Ascorbic Acid-Mediated Reduction of Cytotoxic Effects of Analgesics and NSAIDs on Tenocytes Proliferation. Dose Response 2019, 17, 1559325819832143. [Google Scholar] [CrossRef]
- Kearney, R.; Costa, M.L. Insertional Achilles Tendinopathy Management: A Systematic Review. Foot Ankle Int. 2010, 31, 689–694. [Google Scholar] [CrossRef]
- Mitchell, A.W.M.; Lee, J.C.; Healy, J.C. The use of ultrasound in the assessment and treatment of Achilles tendinosis. J. Bone Jt. Surgery. Br. Vol. 2009, 91, 1405–1409. [Google Scholar] [CrossRef] [Green Version]
- Lake, J.E.; Ishikawa, S.N. Conservative Treatment of Achilles Tendinopathy: Emerging Techniques. Foot Ankle Clin. 2009, 14, 663–674. [Google Scholar] [CrossRef]
- Tumilty, S.; Munn, J.; McDonough, S.; Hurley, D.A.; Basford, J.R.; Baxter, G.D. Low Level Laser Treatment of Tendinopathy: A Systematic Review with Meta-analysis. Photomed. Laser Surg. 2010, 28, 3–16. [Google Scholar] [CrossRef]
- Fahlstrom, M.; Jonsson, P.; Lorentzon, R.; Alfredson, H. Chronic Achilles tendon pain treated with eccentric calf-muscle training. Knee Surg. Sports Traumatol. Arthrosc. 2003, 11, 327–333. [Google Scholar] [CrossRef]
- Furia, J.P. High-Energy Extracorporeal Shock Wave Therapy as a Treatment for Insertional Achilles Tendinopathy. Am. J. Sports Med. 2006, 34, 733–740. [Google Scholar] [CrossRef]
- Maier, M.; Averbeck, B.; Milz, S.; Refior, H.J.; Schmitz, C. Substance P and prostaglandin E2 release after shock wave application to the rabbit femur. Clin. Orthop. Relat. Res. 2003, 406, 237–245. [Google Scholar] [CrossRef]
- Moretti, B.; Iannone, F.; Notarnicola, A.; Lapadula, G.; Moretti, L.; Patella, V.; Garofalo, R. Extracorporeal shock waves down-regulate the expression of interleukin-10 and tumor necrosis factor-alpha in osteoarthritic chondrocytes. BMC Musculoskelet. Disord. 2008, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Bosch, G.; de Mos, M.; van Binsbergen, R.; van Schie, H.T.; van de Lest, C.H.; van Weeren, P.R. The effect of focused extracorporeal shock wave therapy on collagen matrix and gene expression in normal tendons and ligaments. Equine Veter. J. 2009, 41, 335–341. [Google Scholar] [CrossRef]
- Ma, H.-Z.; Zeng, B.-F.; Li, X.-L. Upregulation of VEGF in Subchondral Bone of Necrotic Femoral Heads in Rabbits with Use of Extracorporeal Shock Waves. Calcif. Tissue Int. 2007, 81, 124–131. [Google Scholar] [CrossRef]
Main Criteria | Details |
---|---|
Use of vitamin C | Alone or as a supplement with other products |
Therapeutic results | Restoration of tendon tissue |
Methodology | Study design: randomized/double-blind controlled/parallel Animal samples Human Beings |
Language | Only in English |
Reference | Compounds/Intervention | VC Dosage | Route | d | Placebo/Control | n (M/F) | Sample/Gender/Sport Practice | Site/Cause of Injury | Tests | Impact on Resolution | |
---|---|---|---|---|---|---|---|---|---|---|---|
Arquer et al. [45] | VC, collagen I, MCPg | 60 mg | Oral | 90 | - | 70 (NS) | Human | Elbow, Achilles, Knee tendinopathy | VISA-A, VISA-P, PRTEE, US | ⊕ VISA-A, VISA-P, PRTEE (p < 0.001); ⊕ Tendon diameter (p < 0.05); ⊕ Pain perception | |
Notarmicola et al. [46] | Arginine & combination of VC, MSM, collagen, bromelain/Shock wave T | 60 mg | Oral | 60 & 180 | Placebo | 32 (16/16) | Human | VAS, Ankle-Hindfoot Scale Roles & Maudsley score | ⊕ Ankle food scale, ≈ VAS, Better PS | ||
Balius et al. [47] | VC, collagen I, MCPg/Passive stretching or Eccentric exercise | 60 mg | Oral | 84 | - | 59 (47/12) | Human | Achilles tendinopathy | VISA-A, US | ⊕ VISA-A, Pain perception (p < 0.05); ⊕ Tendon diameter, Better PS with supplement | |
Shaw et al. [48] | VC | 48 mg VC + 5 g Gelatin | Culture media | 3 | Control | 8 (8/0) | In vitro/Human tissue | Ligament | Histology and biomechanical tests | ⊕ Biomechanical properties (p < 0.05); | - |
48 mg VC + 15 g Gelatin | 8 (8/0) | ⊕ Collagen I, (p < 0.05); collagen synthesis, AA | |||||||||
Martel et al. [49] | VC | 500 mg | Oral | 45 | Control | 98 (48/50) | Human | Rotator cuff arthroscopy repair | ⊕ Tendency to a better repair. ⊕ Oximetry |
Reference | Compounds | VC Dosage | Route | Days | Placebo/Control | n | Animal | Injury | Tests | Impact on Resolution | |
---|---|---|---|---|---|---|---|---|---|---|---|
Ömeroğlu et al. [3] | VC | 150 mg– 1.5 mL | Peritoneal injection all days | 3–10–21 | Control | 42 | Rodents | Achilles C/R | Histology | ⊕ Collagen I, fiber diameter and alignment, Better initial angiogenesis (p < 0.001) | |
Hung et al. [8] | VC | 5 mg/mL | Local injection | 1 | Control | 22 | Chicken | FxDP C/R | Histology and biomechanical tests | ⊕ GSH (p < 0.05); ⊕ GSSG (p < 0.05); ⊕ Adhesion (p < 0.05); ⊕ Gliding resistance, Better flexor angle (p < 0.05) | ⊕ Fibrotic size (p < 0.05); |
50 mg/mL | 22 | - | |||||||||
Lui et al. [50] | VC CTGF TDSC | - | Transplant pretreated connective tissue | 14 | Control | 153 | Rodents | Patellar tendon C/R | Histology, US, CT imaging, and biomechanical tests | ⊕ Cellularity, ⊕ Collagen fibers alignment ⊕ Ossified depot. (p < 0.05) | |
Kang et al. [51] | VC | 1.5 g/L | “ad libitum” | 28 | Control | 7 | Rodents | Achilles tendonitis | Histology, BS | Second Better BS, ⊕ Serum VC | |
VC ASC | “ad libitum” & Local Injection (ASC) | 7 | ⊕ BS, ⊕ Serum VC (p < 0.01) | ||||||||
ASC | - | Local Injection (ASC) | 7 | BS better than control group (p < 0.01) | |||||||
Dincel et al. [52] | Hyaluronic acid | 0.075 mg/kg | Local injection | 1 | Control | 16 | Rodents | Achilles C/R | BS, Moving Test, Histology, and biomechanical tests | ⊕ BS ⊕ Moving Test | ⊕ Mean force day 15th (p < 0.05) |
VC | 150 mg | Peritoneal alternate days | 15 & 30 | 16 | ⊕ Mean forcé day 30th (p < 0.05) | ||||||
Gemalmaz et al. [53] | VC Collagen I MCPSg | 7.2 mg/kg | Gastric lavage | 21 | Placebo | 16 | Rodents | Achilles C/R | Histology and biomechanical tests | ⊕ PCNA, ⊕TGF-β1 (endotendon). ⊕ biomechanical properties, collagen strength (p < 0.05) | |
Morikawa et al. [54] | VC | 1% | “ad libitum” | 56 | Control | 56 | Rodents | Rotator cuff | Histology | ⊕ histologic changes | |
Souza et al. [55] | VC | ≈0.21 mg (a) | Local injection alternate days | Until days 12 & 20 | Control | 6 | Rodents | Achilles C/R | Histology | ⊕ Achilles function index, ⊕ Collagen network | |
Turkmen et al. [56] | VC Collagen I MCPg | ≈0.15 mg (b) | Gastric lavage | Placebo | 20 | Rodents | Achilles C/R | Histology and biomechanical tests | Optimal alignment in collagen fibers, ≈ Vascularization, ≈ Inflammation, ≈ biomechanical properties, | ||
Çelik et al. [57] | VC Fibrin clot | - | Healing clots | 1 | Control | 20 | Rodents | Achilles C/R | Histology and biomechanical tests | ⊕ histologic changes, ⊕ Strength, ⊕ FGF, ⊕ VEGF (p < 0.05) | |
Oliva et al. [58] | VC, BMSC, and T3, alone and in multiple combinations | ≈2.5 μg (c) | Local injection | 1, 2 & 4 | Control | 24 | Rodents | Achilles C/R | Histology | The combination Vitamin C + T3: ⊕ fiber alignment, (p < 0.0001),⊕ Collagen I, Collagen III (p < 0.05), ⊕ Cellularity and Vascularity (p < 0.005) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noriega-González, D.C.; Drobnic, F.; Caballero-García, A.; Roche, E.; Perez-Valdecantos, D.; Córdova, A. Effect of Vitamin C on Tendinopathy Recovery: A Scoping Review. Nutrients 2022, 14, 2663. https://doi.org/10.3390/nu14132663
Noriega-González DC, Drobnic F, Caballero-García A, Roche E, Perez-Valdecantos D, Córdova A. Effect of Vitamin C on Tendinopathy Recovery: A Scoping Review. Nutrients. 2022; 14(13):2663. https://doi.org/10.3390/nu14132663
Chicago/Turabian StyleNoriega-González, David C., Franchek Drobnic, Alberto Caballero-García, Enrique Roche, Daniel Perez-Valdecantos, and Alfredo Córdova. 2022. "Effect of Vitamin C on Tendinopathy Recovery: A Scoping Review" Nutrients 14, no. 13: 2663. https://doi.org/10.3390/nu14132663
APA StyleNoriega-González, D. C., Drobnic, F., Caballero-García, A., Roche, E., Perez-Valdecantos, D., & Córdova, A. (2022). Effect of Vitamin C on Tendinopathy Recovery: A Scoping Review. Nutrients, 14(13), 2663. https://doi.org/10.3390/nu14132663