The Effects of Increasing Fruit and Vegetable Intake in Children with Asthma on the Modulation of Innate Immune Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Outcomes
2.3. Clinical Assessment
2.4. Asthma Exacerbations and Upper Respiratory Tract Infection
2.5. Laboratory Methods
2.5.1. Carotenoid Analysis
2.5.2. Identification of Respiratory Viruses in Nasal Samples
2.5.3. PBMC Isolation and Culture
2.5.4. Cytokine Assays
2.6. Statistical Analysis
3. Results
3.1. Subjects’ Characteristics
3.2. Changes in Fruit and Vegetable Intake and Plasma Carotenoids
3.3. Frequency and Severity of Asthma-Related Events
3.4. Viral Detection in Nasal Swabs Collected during Asthma-Related Events
3.5. In Vitro PBMC Cytokine Production
3.6. Associations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Aalderen, W.M. Childhood asthma: Diagnosis and treatment. Scientifica 2012, 2012, 674204. [Google Scholar] [PubMed] [Green Version]
- Contoli, M.; Message, S.D.; Laza-Stanca, V.; Edwards, M.R.; Wark, P.A.; Bartlett, N.W.; Kebadze, T.; Mallia, P.; Stanciu, L.A.; Parker, H.L.; et al. Role of deficient type III interferon-lambda production in asthma exacerbations. Nat. Med. 2006, 12, 1023–1026. [Google Scholar] [CrossRef] [PubMed]
- Xepapadaki, P.; Papadopoulos, N.G. Childhood asthma and infection: Virus-induced exacerbations as determinants and modifiers. Eur. Respir. J. 2010, 36, 438–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinke, J.W.; Borish, L. Immune Responses in Rhinovirus-Induced Asthma Exacerbations. Curr. Allergy Asthma. Rep. 2016, 16, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beale, J.; Jayaraman, A.; Jackson, D.J.; Macintyre, J.D.; Edwards, M.R.; Walton, R.P.; Zhu, J.; Man, Y.; Betty, C.; Edwards, S.M.; et al. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci. Transl. Med. 2014, 6, 256ra134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanchongkittiphon, W.; Mendell, M.J.; Gaffin, J.M.; Wang, G.; Phipatanakul, W. Indoor environmental exposures and exacerbation of asthma: An update to the 2000 review by the Institute of Medicine. Environ. Health Perspect. 2015, 123, 6–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, A.; Dash, D.; Singh, R. Lipopolysaccharide (LPS) exposure differently affects allergic asthma exacerbations and its amelioration by intranasal curcumin in mice. Cytokine 2015, 76, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Rabinovitch, N.; Liu, A.H.; Zhang, L.; Rodes, C.E.; Foarde, K.; Dutton, S.J.; Murphy, J.R.; Gelfand, E.W. Importance of the personal endotoxin cloud in school-age children with asthma. J. Allergy Clin. Immunol. 2005, 116, 1053–1057. [Google Scholar] [CrossRef] [PubMed]
- Thorne, P.S.; Kulhankova, K.; Yin, M.; Cohn, R.; Arbes, S.J., Jr.; Zeldin, D.C. Endotoxin exposure is a risk factor for asthma: The national survey of endotoxin in United States housing. Am. J. Respir. Crit. Care Med. 2005, 172, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Asthma. Global Strategy for the Asthma Manangement and Prevention; National Institutes of Health, National Heart, Lung, and Blood Institute: Bethesda, MD, USA, 2018. [Google Scholar]
- Leung, T.F.; Chan, P.K.; Wong, G.W.; Fok, T.F.; Ng, P.C. Respiratory viruses and atypical bacteria triggering severe asthma exacerbation in children. Hong Kong Med. J. Xianggang Yi Xue Za Zhi 2013, 19 (Suppl. S4), 11–14. [Google Scholar] [PubMed]
- Garcia-Larsen, V.; Del Giacco, S.R.; Moreira, A.; Bonini, M.; Charles, D.; Reeves, T.; Carlsen, K.-H.; Haahtela, T.; Bonini, S.; Fonseca, J.; et al. Asthma and dietary intake: An overview of systematic reviews. Allergy 2016, 71, 433–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, H.E.; Rigelhof, F.; Marquart, L.; Prakash, A.; Kanter, M. Antioxidant Content of Whole Grain Breakfast Cereals, Fruits and Vegetables. J. Am. Coll. Nutr. 2000, 19 (Suppl. S3), 312S–319S. [Google Scholar] [CrossRef]
- Guilleminault, L.; Williams, E.J.; Scott, H.A.; Berthon, B.S.; Jensen, M.; Wood, L.G. Diet and Asthma: Is It Time to Adapt Our Message? Nutrients 2017, 9, 1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahiner, U.M.; Birben, E.; Erzurum, S.; Sackesen, C.; Kalayci, O. Oxidative Stress in Asthma. World Allergy Organ. J. 2011, 4, 151–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, L.G.; Gibson, P.G. Dietary factors lead to innate immune activation in asthma. Pharmacol. Ther. 2009, 123, 37–53. [Google Scholar] [CrossRef]
- La Vecchia, C.; Decarli, A.; Pagano, R. Vegetable consumption and risk of chronic disease. Epidemiology 1998, 9, 208–210. [Google Scholar] [CrossRef] [PubMed]
- Troisi, R.J.; Willett, W.C.; Weiss, S.T.; Trichopoulis, D.; Rosner, B.; Speizer, F.E. A prospective study of diet and adult-onset asthma. Am. J. Respir. Crit. Care Med. 1995, 151, 1401–1408. [Google Scholar] [CrossRef]
- Butland, B.K.; Strachan, D.P.; Anderson, H.R. Fresh fruit intake and asthma symptoms in young British adults: Confounding or effect modification by smoking? Eur. Resp. J. 1999, 13, 744–750. [Google Scholar] [CrossRef]
- Ellwood, P.; Asher, M.I.; Bjorksten, B.; Burr, M.; Pearce, N.; Robertson, C.F. Diet and asthma, allergic rhinoconjunctivitis and atopic eczema symptom prevalence: An ecological analysis of the International Study of Asthma and Allergies in Childhood (ISAAC) data. Eur. Respir. J. 2001, 17, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Hijazi, N.; Abalkhail, B.; Seaton, A. Diet and childhood asthma in a society in transition: A study in urban and rural Saudi Arabia. Thorax 2000, 55, 775–779. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.G.; Carey, I.M.; Whincup, P.H.; Papacosta, O.; Chirico, S.; Bruckdorfer, K.R.; Walker, M. Effect of fresh fruit consumption on lung function and wheeze in children. Thorax 1997, 52, 628–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carey, I.; Strachan, D.; Cook, D. Effects of changes in fresh fruit consumption on ventilatory function in healthy British adults. Am. J. Respir. Crit. Care Med. 1998, 158, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, B.; Berthon, B.S.; Wark, P.; Wood, L.G. Effects of Fruit and Vegetable Consumption on Risk of Asthma, Wheezing and Immune Responses: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 341. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.G.; Garg, M.L.; Smart, J.M.; Scott, H.A.; Barker, D.; Gibson, P.G. Manipulating antioxidant intake in asthma: A randomized controlled trial. Am. J. Clin. Nutr. 2012, 96, 534–543. [Google Scholar] [CrossRef] [Green Version]
- Berthon, B.S.; McLoughlin, R.F.; Jensen, M.E.; Hosseini, B.; Williams, E.J.; Baines, K.J.; Taylor, S.L.; Rogers, G.B.; Ivey, K.L.; Morten, M. The effects of increasing fruit and vegetable intake in children with asthma: A randomized controlled trial. Clin. Exp. Allergy 2021, 51, 1144–1156. [Google Scholar] [CrossRef]
- National Health and Medical Research Council. Australian Dietary Guidelines; National Health and Medical Research Council: Canberra, Australia, 2013. [Google Scholar]
- Ducharme, F.M.; Jensen, M.E.; Mendelson, M.J.; Parkin, P.C.; Desplats, E.; Zhang, X.; Platt, R. Asthma Flare-up Diary for Young Children to monitor the severity of exacerbations. J. Allergy Clin. Immunol. 2016, 137, 744–749.e6. [Google Scholar] [CrossRef] [Green Version]
- Barua, A.B.; Kostic, D.; Olson, J.A. New simplified procedures for the extraction and simultaneous high-performance liquid chromatographic analysis of retinol, tocopherols and carotenoids in human serum. J. Chromatogr. B Biomed. Sci. Appl. 1993, 617, 257–264. [Google Scholar] [CrossRef]
- Wood, L.G.; Garg, M.L.; Blake, R.J.; Garcia-Caraballo, S.; Gibson, P.G. Airway and circulating levels of carotenoids in asthma and healthy controls. J. Am. Coll. Nutr. 2005, 24, 448–455. [Google Scholar] [CrossRef]
- QIAGEN Viral RNA Mini Kit Handbook. Available online: https://www.qiagen.com/au/resources/resourcedetail?id=c80685c0-4103-49ea-aa72-8989420e3018&lang=en (accessed on 1 June 2021).
- Gunawardhana, L.P.; Gibson, P.G.; Simpson, J.L.; Powell, H.; Baines, K.J. Activity and expression of histone acetylases and deacetylases in inflammatory phenotypes of asthma. Clinical and experi-mental allergy. J. Br. Soc. Allergy Clin. Immunol. 2014, 44, 47–57. [Google Scholar] [CrossRef]
- Carroll, W.D.; Wildhaber, J.; Brand, P.L. Parent misperception of control in childhood/adolescent asthma: The Room to Breathe survey. Eur. Respir. J. 2012, 39, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.J.; Disantostefano, R.; Peden, D.B. Is Johnny wheezing? Parent-child agreement in the Childhood Asthma in America survey. Pediatric Allergy Immunol. 2011, 22 Pt 1, 31–35. [Google Scholar] [CrossRef]
- Khetsuriani, N.; Kazerouni, N.N.; Erdman, D.D.; Lu, X.; Redd, S.C.; Anderson, L.J.; Gerald Teague, W. Prevalence of viral respiratory tract infections in children with asthma. J. Allergy Clin. Immunol. 2007, 119, 314–321. [Google Scholar] [CrossRef]
- Bizzintino, J.; Lee, W.M.; Laing, I.A.; Vang, F.; Pappas, T.; Zhang, G.; Martin, A.C.; Khoo, S.-K.; Cox, D.; Geelhoed, G.C.; et al. Association between human rhinovirus C and severity of acute asthma in children. Eur. Respir. J. 2011, 37, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Vlachiotis, S.; Andreakos, E. Lambda interferons in immunity and autoimmunity. J. Autoimmun. 2019, 104, 102319. [Google Scholar] [CrossRef] [PubMed]
- Varma, T.K.; Lin, C.Y.; Toliver-Kinsky, T.E.; Sherwood, E.R. Endotoxin-induced gamma interferon production: Contributing cell types and key regulatory factors. Clin. Diagn. Lab. Immunol. 2002, 9, 530–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini, B.; Berthon, B.S.; Starkey, M.R.; Collison, A.; McLoughlin, R.F.; Williams, E.J.; Nichol, K.; Wark, P.A.; Jensen, M.E.; Sena, C.R.D.; et al. Children With Asthma Have Impaired Innate Immunity and Increased Numbers of Type 2 Innate Lymphoid Cells Compared With Healthy Controls. Front. Immunol. 2021, 12, 664668. [Google Scholar] [CrossRef]
- Durrani, S.R.; Montville, D.J.; Pratt, A.S.; Sahu, S.; DeVries, M.K.; Rajamanickam, V.; Gangnon, R.E.; Gill, M.A.; Gern, J.E.; Lemanske, R.F.; et al. Innate immune responses to rhinovirus are reduced by the high-affinity IgE receptor in allergic asthmatic children. J. Allergy Clin. Immunol. 2012, 130, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.L. Innate immunity in the pathogenesis of virus-induced asthma exacerbations. Proc. Am. Thorac. Soc. 2007, 4, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Baines, K.J.; Wood, L.G.; Gibson, P.G. The nutrigenomics of asthma: Molecular mechanisms of airway neutrophilia following dietary antioxidant withdrawal. OMICS 2009, 13, 355–365. [Google Scholar] [CrossRef]
- Wood, L.G.; Garg, M.L.; Powell, H.; Gibson, P.G. Lycopene-rich treatments modify noneosinophilic airway inflammation in asthma: Proof of concept. Free Radic. Res. 2008, 42, 94–102. [Google Scholar] [CrossRef]
- Lee, C.M.; Chang, J.H.; Moon, D.O.; Choi, Y.H.; Choi, I.W.; Park, Y.M.; Kim, G.Y. Lycopene suppresses ovalbumin-induced airway inflammation in a murine model of asthma. Biochem. Biophys. Res. Commun. 2008, 374, 248–252. [Google Scholar] [CrossRef]
- Saedisomeolia, A.; Wood, L.G.; Garg, M.L.; Gibson, P.G.; Wark, P.A. Lycopene enrichment of cultured airway epithelial cells decreases the inflammation induced by rhinovirus infection and lipopolysaccharide. J. Nutr. Biochem. 2009, 20, 577–585. [Google Scholar] [CrossRef]
- Hazlewood, L.C.; Wood, L.G.; Hansbro, P.M.; Foster, P.S. Dietary lycopene supplementation suppresses Th2 responses and lung eosinophilia in a mouse model of allergic asthma. J Nutr. Biochem. 2011, 22, 95–100. [Google Scholar] [CrossRef]
- Chung, R.W.S.; Leanderson, P.; Lundberg, A.K.; Jonasson, L. Lutein exerts anti-inflammatory effects in patients with coronary artery disease. Atherosclerosis 2017, 262, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Vivek Iyer, B.L.H. Does Typical Dietary Intake of Vitamin E, Vitamin C, or β-Carotene Correlate with In Vitro Production of Pro-Inflammatory Cytokines in Aged Adults? University of Florida: Gainesville, FL, USA, 2012. [Google Scholar]
- Mihrshahi, S.; Myton, R.; Partridge, S.R.; Esdaile, E.; Hardy, L.L.; Gale, J. Sustained low consumption of fruit and vegetables in Australian children: Findings from the Australian National Health Surveys. Health Promot. J. Aust. 2019, 30, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Ard, J.D.; Fitzpatrick, S.; Desmond, R.A.; Sutton, B.S.; Pisu, M.; Allison, D.B.; Franklin, F.; Baskin, M.L. The impact of cost on the availability of fruits and vegetables in the homes of schoolchildren in Birmingham, Alabama. Am. J. Public Health 2007, 97, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Iacovou, M.; Pattieson, D.C.; Truby, H.; Palermo, C. Social health and nutrition impacts of community kitchens: A systematic review. Public Health Nutr. 2013, 16, 535–543. [Google Scholar] [CrossRef] [PubMed]
- McCormack, L.A.; Laska, M.N.; Larson, N.I.; Story, M. Review of the nutritional implications of farmers’ markets and community gardens: A call for evaluation and research efforts. J. Am. Diet Assoc. 2010, 110, 399–408. [Google Scholar] [CrossRef]
- Hébert, J.R.; Frongillo, E.A.; Adams, S.A.; Turner-McGrievy, G.M.; Hurley, T.G.; Miller, D.R.; Ockene, I.S. Perspective: Randomized Controlled Trials Are Not a Panacea for Diet-Related Research. Adv. Nutr. 2016, 7, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Evans, R., 3rd; Gergen, P.J.; Mitchell, H.; Kattan, M.; Kercsmar, C.; Crain, E.; Anderson, J.; Eggleston, P.; Malveaux, F.J.; Wedner, H.J. A randomized clinical trial to reduce asthma morbidity among inner-city children: Results of the National Cooperative Inner-City Asthma Study. J. Pediatr. 1999, 135, 332–338. [Google Scholar] [CrossRef]
- Garaiova, I.; Muchova, J.; Nagyova, Z.; Wang, D.; Li, J.V.; Orszaghova, Z.; Michael, D.R.; Plummer, S.F.; Ďuračková, Z. Probiotics and vitamin C for the prevention of respiratory tract infections in children attending preschool: A randomised controlled pilot study. Eur. J. Clin. Nutr. 2015, 69, 373–379. [Google Scholar] [CrossRef]
- Iikura, K.; Katsunuma, T.; Saika, S.; Saito, S.; Ichinohe, S.; Ida, H.; Saito, H.; Matsumoto, K. Peripheral blood mononuclear cells from patients with bronchial asthma show impaired innate immune responses to rhinovirus in vitro. Int. Arch. Allergy Immunol. 2011, 155 (Suppl. S1), 27–33. [Google Scholar] [CrossRef] [PubMed]
- Ducharme, F.M.; Mendelson, M.J.; Klassen, T.P. The Preschool Asthma Diary (PAD): A validated instrument for day-to-day monitoring of asthma severity in young children. Pediatric Acad. Soc. 2007, 6310. Available online: http://www.abstracts2view.com/pasall (accessed on 1 June 2021).
- Mishra, A.; Brown, A.L.; Yao, X.; Yang, S.; Park, S.J.; Liu, C.; Chung, J.H. Dendritic cells induce Th2-mediated airway inflammatory responses to house dust mite via DNA-dependent protein kinase. Nat. Commun. 2015, 6, 6224. [Google Scholar] [CrossRef] [PubMed]
- Plevin, R.E.; Knoll, M.; McKay, M.; Arbabi, S.; Cuschieri, J. The role of lipopolysaccharide structure in monocyte activation and cytokine secretion. Shock 2016, 45, 22. [Google Scholar] [CrossRef] [Green Version]
- Forbes, R.L.; Gibson, P.G.; Murphy, V.E.; Wark, P.A. Impaired type I and III interferon response to rhinovirus infection during pregnancy and asthma. Thorax 2012, 67, 209–214. [Google Scholar] [CrossRef] [Green Version]
Baseline Characteristic | Intervention n = 22 | Control n = 25 | p |
---|---|---|---|
Age (years), median (range) | 5 (3–10) | 5 (3–11) | 0.827 |
Age 3–6 years, n (%) | 17 (77) | 18 (72) | 0.747 |
Age 7–11 years, n (%) | 5 (23) | 7 (28) | |
Sex (Male: Female) | 15:7 | 19:6 | 0.550 |
Race: White, n (%) | 17 (77.3%) | 20 (80.0%) | 0.303 |
Height (cm), mean ± SD | 117 ± 14 | 116 ± 16 | 0.988 |
Weight (kg), median (IQR) | 21.6 (16.9, 25.1) | 21.4 (16.9, 26.6) | 0.664 |
BMI z-score, mean ± SD | 0.1 ± 1.3 | 0.1 ± 1.4 | 0.922 |
BMI percentile, mean ± SD | 49.4 ± 32.8 | 54.7 ± 32.4 | 0.623 |
Risk factors, n (%) | |||
Current food allergy | 6 (27) | 5 (20) | 0.557 |
History of Eczema # | 16 (73) | 12 (48) | 0.085 |
History of Hay fever ^ | 16 (73) | 12 (48) | 0.085 |
Asthma in first degree relative * | 15 (68) | 16 (64) | 0.592 |
Maternal Asthma | 7 (32) | 8 (32) | 0.923 |
Paternal Asthma | 6 (27) | 10 (40) | 0.418 |
Family history of Eczema | 11 (52) | 17 (68) | 0.280 |
Family history of Hay fever | 18 (86) | 21 (84) | 0.872 |
In-utero tobacco exposure † | 5 (23) | 0 | 0.015 |
Passive smoke exposure at home | 3 (14) | 1 (4) | 0.318 |
Morbidity in previous 12 months | |||
ED visits for asthma, mean ± SD | 1.7 ± 1.0 | 1.6 ± 0.9 | 0.672 |
≥1 hospital admission, n (%) | 16 (73) | 10 (40) | 0.027 |
Hospitalisations, median (IQR) | 1 (0,1) | 0 (0, 1) | 0.142 |
Type of Medication | Intervention n = 22 | Control n = 25 | p-Value |
---|---|---|---|
Short courses of OCS, median (IQR) | 3 (1, 4) | 2 (1, 4) | 0.974 |
≥2 Short courses of OCS, n (%) | 17 (68) | 13 (59) | 0.526 |
ICS or ICS/LABA ever, n (%) | 16 (73) | 14 (56) | 0.234 |
ICS intermittent, n (%) * | 1 (5) | 5 (20) | 0.194 |
ICS maintenance, n (%) ^ | 13 (59) | 8 (32) | 0.062 |
ICS/LABA maintenance, n (%) ^ | 2 (9) | 1 (4) | 0.593 |
ICS dose, beclomethasone equiv., median (IQR) | 400 (200, 400) | 400 (200, 500) | 0.573 |
Montelukast, n (%) | 4 (18) | 5 (20) | 1.000 |
SABA only, n (%) | 4 (18) | 9 (36) | 0.207 |
Intranasal CS, n (%) | 3 (14) | 3 (12) | 1.000 |
Event Type | Intervention (n = 22) | Control (n = 25) | p-Value | |||
---|---|---|---|---|---|---|
n | % | n | % | |||
All Events (1+2+3) | None | 2 | 9.0% | 0 | 0% | 0.214 |
1 or more | 20 | 91.0% | 25 | 100% | 0.214 | |
2 or more | 14 | 63.6% | 22 | 88% | 0.049 | |
Exacerbations (1) | None | 12 | 54.6% | 12 | 48% | 0.654 |
1 or more | 10 | 45.4% | 13 | 52% | 0.654 | |
2 or more | 5 | 22.7% | 3 | 12% | 0.446 | |
URTI (2) | None | 14 | 63.6% | 13 | 52% | 0.421 |
1 or more | 8 | 36.4% | 12 | 48% | 0.421 | |
2 or more | 3 | 13.6% | 6 | 24% | 0.470 | |
Exacerbations with URTI (3) | None | 5 | 22.7% | 4 | 16% | 0.715 |
1 or more | 17 | 77.3% | 21 | 84% | 0.715 | |
2 or more | 10 | 45.5% | 15 | 60% | 0.319 |
Intervention (n = 18) | Control (n = 18) | ||||
---|---|---|---|---|---|
Efficacy Outcomes | Events (Number) | Median (IQRI) | Events (Number) | Median (IQR) | p-Value |
Asthma symptoms severity/event | |||||
ADYC cumulative daily scores b | 34 | 9.9 (5.2, 11.8) | 37 | 9.8 (6.9, 12.8) | 0.687 |
Exacerbation duration | |||||
ADYC duration/event (days) c | 34 | 4.0 (3.0, 7.0) | 37 | 4.0 (3.0, 5.0) | 0.522 |
β2-agonist use | |||||
ADYC cumulative number of puffs/event d | 33 | 42.0 (30.0, 92.0) | 32 | 48.5 (27.0, 72.5) | 0.526 |
OCS courses/child | 8 | 1.0 (1.0, 2.0) | 14 | 1.5 (1.0, 2.0) | 0.462 |
Event Type | Intervention | Control | p-Value | |
---|---|---|---|---|
Total Events Tested for Virus (1 + 2 + 3) | 45 | 56 | ||
PCR virus-positive events (n) | 16 (35.6%) | 21 (37.5%) | 0.840 | |
Number of events positive for each respiratory virus | Rhinovirus | 10 (22.2%) * | 16 (28.6%) * | 0.528 |
Coronavirus | 1 (2.2%) | 0 | ||
RSV a A | 0 | 1 (1.8%) * | ||
RSV B | 1 (2.2%) | 3 (5.3%) * | ||
Influenza A | 2 (4.4%) * | 5 (9.0%) * | ||
Influenza B | 3 (6.6%) | 1 (1.8%) * | ||
Exacerbations (1) tested for virus | 5 | 6 | ||
PCR virus-positive events (n) | 2 (40.0%) | 2 (33.3%) | 1.000 | |
Number of events positive for each respiratory virus | Rhinovirus | 1 (20.0%) | 1 (16.7%) | 1.000 |
Coronavirus | 0 | 0 | ||
RSV a A | 0 | 1 (16.7%) | ||
RSV B | 0 | 0 | ||
Influenza A | 0 | 0 | ||
Influenza B | 1 (20.0%) | 0 | ||
URTI (2) tested for virus | 11 | 11 | ||
PCR virus-positive events (n) | 4 (36.4%) | 4 (36.4%) | 1.000 | |
Number of events positive for each respiratory virus | Rhinovirus | 2 (18.2%) * | 4 (36.4%) * | 0.610 |
Coronavirus | 1 (9.1%) | 0 | ||
RSV A | 0 | 0 | ||
RSV B | 0 | 0 | ||
Influenza A | 2 (18.2%) * | 1 (9.1%) * | ||
Influenza B | 0 | 1 (9.1%) * | ||
Exacerbation with URTI (3) tested for virus | 29 | 39 | ||
PCR virus-positive events (n) | 10 (34.5%) | 15 (38.5%) | 0.597 | |
Number of events positive for each respiratory virus | Rhinovirus | 7 (24.1%) | 11 (28.2%) * | 0.120 |
Coronavirus | 0 | 0 | ||
RSV A | 0 | 0 | ||
RSV B | 1 (3.4%) | 3 (7.7%) * | ||
Influenza A | 0 | 4 (10.2%) * | ||
Influenza B | 2 (6.8%) | 0 |
Variable | Baseline a | 3 Months a | Adjusted Change b Coeff. [95% CI] | p-Value | 6 Months a | Adjusted Change b Coeff. [95% CI] | p-Value |
---|---|---|---|---|---|---|---|
Levels of cytokines in the supernatants of PBMCs stimulated with Rhinovirus-1B | |||||||
IFN-γ (pg/mL) | |||||||
Intervention | 19.62 (9.37, 32.39) | 20.21 (7.92, 46.16) | 4.72 [−11.08, 20.53] | 0.558 | 16.64 (7.87, 43.66) | 3.84 [−16.65, 24.34] | 0.713 |
Control | 14.08 (7.38, 46.20) | 18.38 (11.38, 37.51) | 15.29 (7.20, 32.26) | ||||
IFN-λ (pg/mL) | |||||||
Intervention | 3.77 (1.66, 4.74) | 2.57 (1.76, 5.08) | −1.58 [−28.06, 24.35] | 0.890 | 2.14 (1.18, 6.42) | 15.34 [−10.68, 41.38] | 0.248 |
Control | 6.68 (4.08, 39.29) | 5.72 (1.43, 33.27) | 5.5 (1.77, 15.85) | ||||
IL-1β (pg/mL) | |||||||
Intervention | 22.47 (3.78, 71.17) | 41.92 (5.83, 77.87) | −60.53 [−167.30, 46.24] | 0.267 | 17.73 (4.41, 59.99) | −25.40 [−130.92, 80.11] | 0.637 |
Control | 21.25 (7.44, 92.67) | 20.64 (7.93, 83.64) | 9.36 (4.05, 42.13) | ||||
IL-6 (ng/mL) | |||||||
Intervention | 1.55 (0.13, 8.91) | 3.24 (0.68, 12.62) | −2.01 [−14.91, 10.88] | 0.760 | 1.45 (0.29, 6.38) | −1.56 [−14.32, 11.19] | 0.810 |
Control | 1.26 (0.38, 9.38) | 1.19 (0.48, 10.32) | 0.59 (0.21, 1.74) | ||||
Levels of cytokines in the supernatants of PBMCs stimulated with House Dust Mite | |||||||
IFN-γ (pg/mL) | |||||||
Intervention | 1.02 ± 0.37 | 1.25 ± 0.39 | 1.03 ± 0.48 | ||||
Control | 0.98 ± 0.56 | 0.98 ± 0.48 | 0.23 [−0.14, 0.60] | 0.221 | 0.90 ± 0.49 | 0.00 [−0.36, 0.36] | 0.999 |
IFN-λ (pg/mL) | |||||||
Intervention | 2.18 (0.82, 3.29) | 2.91 (1.57, 5.08) | −1.89 [−11.50, 7.71] | 0.699 | 1.67 (0.94, 5.75) | 0.49 [−11.81, 12.80] | 0.937 |
Control | 2.17 (1.26, 5.94) | 2.88 (1.11, 7.89) | 2.29 (0.92, 6.40) | ||||
IL-1β (pg/mL) | |||||||
Intervention | 13.89 (7.29, 42.49) | 23.65 (7.58, 57.85) | 13.81 [−88.27, −115.91] | 0.791 | 31.36 [5.80, 65.04) | 5.54 [−95.45, 106.54] | 0.914 |
Control | 14.71 (10.49, 54.65) | 22.38 (9.04, 42.47) | 24.91 [9.26, 78.49) | ||||
IL-6 (ng/mL) | |||||||
Intervention | 1.87 (0.74, 7.42) | 4.66 (0.75, 15.19) | 1.15 [−13.90, 16.20] | 0.881 | 2.20 (0.85, 15.12) | 0.96 [−13.91, 15.83] | 0.899 |
Control | 5.56 (1.46, 12.78) | 4.52 (1.04, 13.82) | 10.11 (1.49, 20.10) | ||||
Levels of cytokines in the supernatants of PBMCs stimulated with Lipopolysaccharide | |||||||
IFN-γ (pg/mL) | |||||||
Intervention | 1.48 (1.07, 4.92) | 3.59 (1.37, 12.65) c | 2.66 (1.35, 8.41) | ||||
Control | 2.37 (1.08, 13.65) | 3.53 (1.56, 8.82) | −4.21 [−16.23, 7.81] | 0.492 | 5.52 (0.73, 12.74) | −5.71 [−17.75, 6.32] | 0.352 |
IFN-λ (pg/mL) | |||||||
Intervention | 1.50 (0.6, 4.11) | 1.97 (0.64, 5.9) c | 0.61 [−6.89, 8.12] | 0.872 | 1.86 (0.4, 4.53) | 4.47 [−4.71, 13.66] | 0.340 |
Control | 4.22 (0.93, 10.12) | 0.92 (0.2, 1.99) | 2.06 (0.63, 6.79) | ||||
IL-1β (pg/mL) | |||||||
Intervention | 1926.13 (1213.19, 4066.73) | 4646.56 (1773.93, 6439.98) | 997.36 [−1521.98, 3516.70] | 0.438 | 1792.86 (1236.9, 4634.93) | −201.07 [−2663.57, 2261.42] | 0.873 |
Control | 1928.85 (1099.88, 8469.68) | 1896.76 (1623.12, 9045.34) | 2000.26 (968.92, 8832.58) | ||||
IL-6 (ng/mL) | |||||||
Intervention | 70.04 (46.64, 103.49) | 76.63 (38.87, 150.94) | 20.14 [−18.31, 58.59] | 0.305 | 78.34 (52.04, 114.49) | −2.33 [−40.56, 35.88] | 0.905 |
Control | 75.83 (48.56, 130.21) | 65.34 (46.23, 94.99) | 88.99 (71.16, 151.03) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseini, B.; Berthon, B.S.; Jensen, M.E.; McLoughlin, R.F.; Wark, P.A.B.; Nichol, K.; Williams, E.J.; Baines, K.J.; Collison, A.; Starkey, M.R.; et al. The Effects of Increasing Fruit and Vegetable Intake in Children with Asthma on the Modulation of Innate Immune Responses. Nutrients 2022, 14, 3087. https://doi.org/10.3390/nu14153087
Hosseini B, Berthon BS, Jensen ME, McLoughlin RF, Wark PAB, Nichol K, Williams EJ, Baines KJ, Collison A, Starkey MR, et al. The Effects of Increasing Fruit and Vegetable Intake in Children with Asthma on the Modulation of Innate Immune Responses. Nutrients. 2022; 14(15):3087. https://doi.org/10.3390/nu14153087
Chicago/Turabian StyleHosseini, Banafsheh, Bronwyn S. Berthon, Megan E. Jensen, Rebecca F. McLoughlin, Peter A. B. Wark, Kristy Nichol, Evan J. Williams, Katherine J. Baines, Adam Collison, Malcolm R. Starkey, and et al. 2022. "The Effects of Increasing Fruit and Vegetable Intake in Children with Asthma on the Modulation of Innate Immune Responses" Nutrients 14, no. 15: 3087. https://doi.org/10.3390/nu14153087
APA StyleHosseini, B., Berthon, B. S., Jensen, M. E., McLoughlin, R. F., Wark, P. A. B., Nichol, K., Williams, E. J., Baines, K. J., Collison, A., Starkey, M. R., Mattes, J., & Wood, L. G. (2022). The Effects of Increasing Fruit and Vegetable Intake in Children with Asthma on the Modulation of Innate Immune Responses. Nutrients, 14(15), 3087. https://doi.org/10.3390/nu14153087