General Nutritional Profile of Bee Products and Their Potential Antiviral Properties against Mammalian Viruses
Abstract
:1. Introduction
2. Honey
2.1. Composition of Honey
2.2. Antiviral Activity of Honey
2.3. Adverse Effects of Honey
3. Bee Pollen
3.1. Composition of Bee Pollen
3.2. Antiviral Activity of Bee Pollen
3.3. Adverse Effects of Bee Pollen
4. Bee Bread
4.1. Composition of Bee Bread
4.2. Antiviral Activity of Bee Bread
5. Propolis
5.1. Composition of Propolis
5.2. Antiviral Activity of Propolis
5.3. Adverse Effects of Propolis
6. Bee Venom
6.1. Composition of Bee Venom
6.2. Antiviral Activity of Bee Venom
7. Royal Jelly
7.1. Composition of Royal Jelly
7.2. Antiviral Activity of Royal Jelly
7.3. Adverse Effects of Royal Jelly
8. Beeswax
8.1. Composition of Beeswax
8.2. Antiviral Activity of Beeswax
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tafere, D.A. Chemical composition and uses of Honey: A Review. J. Food Sci. Nutr. Res. 2021, 4, 194–201. [Google Scholar] [CrossRef]
- Al-Hatamleh, M.A.I.; Boer, J.C.; Wilson, K.L.; Plebanski, M.; Mohamud, R.; Mustafa, M.Z. Antioxidant-Based Medicinal Properties of Stingless Bee Products: Recent Progress and Future Directions. Biomolecules 2020, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; Haneefa, S.M.; Fernandez-Cabezudo, M.J.; Giampieri, F.; Al-Ramadi, B.K.; Battino, M. Therapeutic and preventive properties of honey and its bioactive compounds in cancer: An evidence-based review. Nutr. Res. Rev. 2019, 33, 50–76. [Google Scholar] [CrossRef] [PubMed]
- Olas, B. Bee Products as Interesting Natural Agents for the Prevention and Treatment of Common Cardiovascular Diseases. Nutrients 2022, 14, 2267. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Moore, P.S.; Chang, Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat. Cancer 2010, 10, 878–889. [Google Scholar] [CrossRef]
- Liu, T.; Song, C.; Zhang, Y.; Siyin, S.T.; Zhang, Q.; Song, M.; Cao, L.; Shi, H. Hepatitis B virus infection and the risk of gastrointestinal cancers among Chinese population: A prospective cohort study. Int. J. Cancer 2021, 150, 1018–1028. [Google Scholar] [CrossRef]
- Schiller, J.T.; Lowy, D.R. An introduction to virus infections and human cancer. In Viruses and Human Cancer; Springer: Cham, Switzerland, 2020; pp. 1–11. [Google Scholar] [CrossRef]
- Rehman, M.U.; Majid, S. Therapeutic Applications of Honey and its Phytochemicals; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Nweze, J.A.; Olovo, C.V.; Nweze, E.I.; John, O.O.; Paul, C. Therapeutic Properties of Honey. Honey Anal. New Adv. Chall 2020, 1–21. [Google Scholar] [CrossRef]
- Almasaudi, S. The antibacterial activities of honey. Saudi J. Biol. Sci. 2020, 28, 2188–2196. [Google Scholar] [CrossRef]
- Kamal, D.A.M.; Ibrahim, S.F.; Kamal, H.; Kashim, M.I.A.M.; Mokhtar, M.H. Physicochemical and Medicinal Properties of Tualang, Gelam and Kelulut Honeys: A Comprehensive Review. Nutrients 2021, 13, 197. [Google Scholar] [CrossRef]
- Varol, A.; Sezen, S.; Evcimen, D.; Zarepour, A.; Ulus, G.; Zarrabi, A.; Badr, G.; Daştan, S.D.; Orbayoğlu, A.G.; Selamoğlu, Z.; et al. Cellular targets and molecular activity mechanisms of bee venom in cancer: Recent trends and developments. Toxin Rev. 2022, 1–14. [Google Scholar] [CrossRef]
- Shehata, M.G.; Ahmad, F.T.; Badr, A.N.; Masry, S.H.; El-Sohaimy, S.A. Chemical analysis, antioxidant, cytotoxic and antimicrobial properties of propolis from different geographic regions. Ann. Agric. Sci. 2020, 65, 209–217. [Google Scholar] [CrossRef]
- Bhargava, P.; Mahanta, D.; Kaul, A.; Ishida, Y.; Terao, K.; Wadhwa, R.; Kaul, S. Experimental Evidence for Therapeutic Potentials of Propolis. Nutrients 2021, 13, 2528. [Google Scholar] [CrossRef]
- Amoros, M.; Lurton, E.; Boustie, J.; Girre, L.; Sauvager, F.; Cormier, M. Comparison of the anti-herpes simplex virus activities of propolis and 3-methyl-but-2-enyl caffeate. J. Nat. Prod. 1994, 57, 644–647. [Google Scholar] [CrossRef]
- Watanabe, K.; Rahmasari, R.; Matsunaga, A.; Haruyama, T.; Kobayashi, N. Anti-influenza Viral Effects of Honey In Vitro: Potent High Activity of Manuka Honey. Arch. Med Res. 2014, 45, 359–365. [Google Scholar] [CrossRef]
- Zareie, P.P. Honey as an Antiviral Agent against Respiratory Syncytial Virus; University of Waikato: Hamilton, New Zealand, 2011. [Google Scholar]
- Shvarzbeyn, J.; Huleihel, M. Effect of propolis and caffeic acid phenethyl ester (CAPE) on NFκB activation by HTLV-1 Tax. Antivir. Res. 2011, 90, 108–115. [Google Scholar] [CrossRef]
- Soroy, L.; Bagus, S.; Yongkie, I.P.; Djoko, W. The effect of a unique propolis compound (Propoelix™) on clinical outcomes in patients with dengue hemorrhagic fever. Infect. Drug Resist. 2014, 7, 323. [Google Scholar] [CrossRef]
- Manzoor, M.A.; Chaudhry, Z.I.; Muhammad, K.; Akhtar, R. Amelioration of pathological effects of newcastle disease effected broiler chicks by feeding propolis. Wayamba J. Anim. Sci. 2017, 1511–1517. [Google Scholar]
- Lyu, S.Y.; Rhim, J.Y.; Park, W.B. Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2)in vitro. Arch. Pharm. Res. 2005, 28, 1293–1301. [Google Scholar] [CrossRef]
- Lee, I.-K.; Hwang, B.S.; Kim, D.-W.; Kim, J.-Y.; Woo, E.-E.; Lee, Y.-J.; Choi, H.J.; Yun, B.-S. Characterization of Neuraminidase Inhibitors in Korean Papaver rhoeas Bee Pollen Contributing to Anti-Influenza Activities In Vitro. Planta Med. 2016, 82, 524–529. [Google Scholar] [CrossRef]
- Yosri, N.; El-Wahed, A.A.A.; Ghonaim, R.; Khattab, O.M.; Sabry, A.; Ibrahim, M.A.A.; Moustafa, M.F.; Guo, Z.; Zou, X.; Algethami, A.F.M.; et al. Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2. Foods 2021, 10, 1776. [Google Scholar] [CrossRef]
- Vynograd, N.; Sosnowski, Z. A comparative multi-centre study of the efficacy of propolis, acyclovir and placebo in the treatment of genital herpes (HSV). Phytomedicine 2000, 7, 1–6. [Google Scholar] [CrossRef]
- Demir, S.; Atayoglu, A.T.; Galeotti, F.; Garzarella, E.U.; Zaccaria, V.; Volpi, N.; Karagoz, A.; Sahin, F. Antiviral Activity of Different Extracts of Standardized Propolis Preparations against HSV. Antivir. Ther. 2019, 25, 353–363. [Google Scholar] [CrossRef]
- Lima, W.G.; Brito, J.C.M.; Nizer, W.S.D.C. Bee products as a source of promising therapeutic and chemoprophylaxis strategies against COVID-19 (SARS-CoV-2). Phytother. Res. 2020, 35, 743–750. [Google Scholar] [CrossRef]
- Asfaram, S.; Fakhar, M.; Keighobadi, M.; Akhtari, J. Promising Anti-Protozoan Activities of Propolis (Bee Glue) as Natural Product: A Review. Acta Parasitol. 2020, 66, 1–12. [Google Scholar] [CrossRef]
- Mohammed, S.E.A.; Kabashi, A.S.; Koko, W.; Azim, M.K. Antigiardial activity of glycoproteins and glycopeptides fromZiziphushoney. Nat. Prod. Res. 2015, 29, 2100–2102. [Google Scholar] [CrossRef] [PubMed]
- Santos-Buelga, C.; González-Paramás, A.M. Phenolic Composition of Propolis. In Bee Products—Chemical and Biological Properties; Alvarez-Suarez, J.M., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 99–111. [Google Scholar] [CrossRef]
- Lawal, B.; Shittu, O.; Kabiru, A.; Jigam, A.; Umar, M.; Berinyuy, E.; Alozieuwa, B. Potential antimalarials from African natural products: A review. J. Intercult. Ethnopharmacol. 2015, 4, 318–343. [Google Scholar] [CrossRef] [PubMed]
- Fratini, F.; Cilia, G.; Turchi, B.; Felicioli, A. Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pac. J. Trop. Med. 2016, 9, 839–843. [Google Scholar] [CrossRef]
- Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products. Front. Pharmacol. 2017, 8, 412. [Google Scholar] [CrossRef] [PubMed]
- Meo, S.A.; Al-Asiri, S.A.; Mahesar, A.L.; Ansari, M.J. Role of honey in modern medicine. Saudi J. Biol. Sci. 2016, 24, 975–978. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, D.; Mawatha, B. Health benefits and traditional uses of honey: A review. J. Apither. 2017, 2, 9–14. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; González-Paramás, A.M. Chemical Composition of Honey. In Bee Products-Chemical and Biological Properties; Springer: Cham, Switzerland, 2017; pp. 43–82. [Google Scholar] [CrossRef]
- Kozłowicz, K.; Różyło, R.; Gładyszewska, B.; Matwijczuk, A.; Gładyszewski, G.; Chocyk, D.; Samborska, K.; Piekut, J.; Smolewska, M. Identification of sugars and phenolic compounds in honey powders with the use of GC–MS, FTIR spectroscopy, and X-ray diffraction. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Kolayli, S.; Boukraâ, L.; Şahin, H.; Abdellah, F. Sugars in honey. In Dietary Sugars: Chemistry, Analysis, Function and Effects; Royal Society of Chemistry: Cambridge, UK, 2012; pp. 3–15. [Google Scholar] [CrossRef]
- Biluca, F.C.; Bernal, J.; Valverde, S.; Ares, A.M.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Determination of Free Amino Acids in Stingless Bee (Meliponinae) Honey. Food Anal. Methods 2019, 12, 902–907. [Google Scholar] [CrossRef]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Suto, M.; Kawashima, H.; Nakamura, Y. Determination of Organic Acids in Honey by Liquid Chromatography with Tandem Mass Spectrometry. Food Anal. Methods 2020, 13, 2249–2257. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Rodríguez, I.; Ramil, M.; Cela, R.; Sulaiman, S.A.; Gan, S.H. Assessment of gas chromatography time-of-flight accurate mass spectrometry for identification of volatile and semi-volatile compounds in honey. Talanta 2014, 129, 505–515. [Google Scholar] [CrossRef]
- Mădaş, N.M.; Mărghitaş, L.A.; Dezmirean, D.S.; Bonta, V.; Bobiş, O.; Fauconnier, M.-L.; Francis, F.; Haubruge, E.; Nguyen, K.B. Volatile Profile and Physico-Chemical Analysis of Acacia Honey for Geographical Origin and Nutritional Value Determination. Foods 2019, 8, 445. [Google Scholar] [CrossRef]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef] [PubMed]
- Lanjwani, M.F.; Channa, F.A. Minerals content in different types of local and branded honey in Sindh, Pakistan. Heliyon 2019, 5, e02042. [Google Scholar] [CrossRef]
- Tutun, H.; Kahraman, H.A.; Aluc, Y.; Avci, T.; Ekici, H. Investigation of some metals in honey samples from West Mediterranean region of Turkey. Veter. Res. Forum Int. Q. J. 2019, 10, 181–186. [Google Scholar] [CrossRef]
- Madigan, M.T.; Martinko, J.M.; Bender, K.S.; Buckley, D.H.; Stahl, D.A. Microbiologia de Brock-14ª Edição. Artmed Editora: Porto Alegre, Brazil, 2016. [Google Scholar]
- Brooks, G.F.; Carroll, K.C.; Butel, J.S.; Morse, S.A.; Mietzner, T.A. Medical Microbiology, Jawetz, Melnick & Adelbergs, 26th ed.; McGraw-Hill Companies: New York, NY, USA, 2014. [Google Scholar]
- Kalediene, L.; Baz, M.; Liubaviciute, A.; Biziuleviciene, G.; Grabauskyte, I.; Bieliauskiene, R.; Jovaisas, P.; Jurjonas, N. Antiviral effect of honey extract Camelyn against SARS-CoV-2. J. Adv. Biotechnol. Exp. Ther. 2021, 4, 290. [Google Scholar] [CrossRef]
- Zeina, B.; Othman, O.; Al-Assad, S. Effect of Honey versus Thyme on Rubella Virus Survival In Vitro. J. Altern. Complement. Med. 1996, 2, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Hashemipour, M.A.; Tavakolineghad, Z.; Arabzadeh, S.; Iranmanesh, Z.; Nassab, S. Antiviral Activities of Honey, Royal Jelly, and Acyclovir Against HSV-1. Wounds A Compend. Clin. Res. Pract. 2014, 26, 47–54. [Google Scholar]
- Charyasriwong, S.; Haruyama, T.; Kobayashi, N. In vitro evaluation of the antiviral activity of methylglyoxal against influenza B virus infection. Drug Discov. Ther. 2016, 10, 201–210. [Google Scholar] [CrossRef]
- Semprini, A.; Singer, J.; Braithwaite, I.; Shortt, N.; Thayabaran, D.; McConnell, M.; Weatherall, M.; Beasley, R. Kanuka honey versus aciclovir for the topical treatment of herpes simplex labialis: A randomised controlled trial. BMJ Open 2019, 9, e026201. [Google Scholar] [CrossRef]
- Sobhanian, S.; Pourahmad, M.; Jafarzadeh, A.; Tadayon, S.M.K.; Zabetian, H. The prophylactic effect of honey on common cold. Quran Med. 2014, 3, 10111. [Google Scholar] [CrossRef]
- Yusuf, W.N.W.; Mohammad, W.M.Z.W.; Gan, S.H.; Mustafa, M.; Aziz, C.B.A.; Sulaiman, S.A. Tualang honey ameliorates viral load, CD4 counts and improves quality of life in asymptomatic human immunodeficiency virus infected patients. J. Tradit. Complement. Med. 2018, 9, 249–256. [Google Scholar] [CrossRef]
- Behbahani, M. Anti-HIV-1 Activity of Eight Monofloral Iranian Honey Types. PLoS ONE 2014, 9, e108195. [Google Scholar] [CrossRef]
- Ghapanchi, J.; Moattari, A.; Tadbir, A.A.; Talatof, Z.; Shahidi, S.P.; Ebrahimi, H. The in vitro anti-viral activity of honey on type 1 herpes simplex virus. Aust. J. Basic Appl. Sci. 2011, 5, 849–852. [Google Scholar]
- Vahed, H.; Jafri, S.B. Propagation of Influenza Virus in Lymphocytes Determine by Antiviral Effects of Honey, Ginger and Garlic Decoction. J. Antivirals Antiretrovir. 2016, 8, 1000129. [Google Scholar] [CrossRef]
- Littlejohn, E.S.V. The Sensitivity of Adenovirus and Herpes simplex virus to Honey; The University of Waikato: Hamilton, New Zealand, 2009. [Google Scholar]
- Al-Waili, N.S. Topical honey application vs. acyclovir for the treatment of recurrent herpes simplex lesions. Med. Sci. Monit. 2004, 10, MT94-98. [Google Scholar] [PubMed]
- Münstedt, K. Bee products and the treatment of blister-like lesions around the mouth, skin and genitalia caused by herpes viruses—A systematic review. Complement. Ther. Med. 2019, 43, 81–84. [Google Scholar] [CrossRef]
- Shahzad, A.; Cohrs, R.J. International Archives of Medicine. Transl. Biomed. 2015, 3, 434. [Google Scholar] [CrossRef]
- Thompson, W.W.; Shay, D.K.; Weintraub, E.; Brammer, L.; Cox, N.; Anderson, L.J.; Fukuda, K. Mortality Associated With Influenza and Respiratory Syncytial Virus in the United States. JAMA J. Am. Med Assoc. 2003, 289, 179–186. [Google Scholar] [CrossRef]
- Shimizu, T.; Hino, A.; Tsutsumi, A.; Park, Y.K.; Watanabe, W.; Kurokawa, M. Anti-Influenza Virus Activity of Propolis In Vitro and Its Efficacy against Influenza Infection in Mice. Antivir. Chem. Chemother. 2008, 19, 7–13. [Google Scholar] [CrossRef]
- Lucatello, L.; Piana, L.; Fasolato, L.; Capolongo, F. A multivariate statistical approach to identify the factors influencing the grayanotoxin content of Italian Rhododendron honey. Food Control 2022, 136, 108881. [Google Scholar] [CrossRef]
- Sinha, S.; Jothiramajayam, M.; Ghosh, M.; Jana, A.; Chatterji, U.; Mukherjee, A. Vetiver oil (Java) attenuates cisplatin-induced oxidative stress, nephrotoxicity and myelosuppression in Swiss albino mice. Food Chem. Toxicol. 2015, 81, 120–128. [Google Scholar] [CrossRef]
- Koca, I.; Koca, A.F. Poisoning by mad honey: A brief review. Food Chem. Toxicol. 2007, 45, 1315–1318. [Google Scholar] [CrossRef]
- Brugnerotto, P.; Seraglio, S.K.T.; Schulz, M.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Pyrrolizidine alkaloids and beehive products: A review. Food Chem. 2020, 342, 128384. [Google Scholar] [CrossRef]
- Yan, S.; Wang, K.; Al Naggar, Y.; Heyden, Y.V.; Zhao, L.; Wu, L.; Xue, X. Natural plant toxins in honey: An ignored threat to human health. J. Hazard. Mater. 2021, 424, 127682. [Google Scholar] [CrossRef]
- Larsen, L.; Joyce, N.I.; Sansom, C.E.; Cooney, J.M.; Jensen, D.J.; Perry, N.B. Sweet Poisons: Honeys Contaminated with Glycosides of the Neurotoxin Tutin. J. Nat. Prod. 2015, 78, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- Fields, B.A.; Reeve, J.; Bartholomaeus, A.; Mueller, U. Human pharmacokinetic study of tutin in honey; a plant-derived neurotoxin. Food Chem. Toxicol. 2014, 72, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Liu, Y.; Sun, F.; Zhang, J.; Jin, Y.; Li, Y.; Zhou, J.; Li, Y.; Zhu, K. Gelsedine-type alkaloids: Discovery of natural neurotoxins presented in toxic honey. J. Hazard. Mater. 2019, 381, 120999. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Nanda, V. Composition and functionality of bee pollen: A review. Trends Food Sci. Technol. 2020, 98, 82–106. [Google Scholar] [CrossRef]
- Saavedra, C.I.; Rojas, I.C.; Delgado, P.G.E. Características polínicas y composición química del polen apícola colectado en Cayaltí (Lambayeque-Perú). Rev. Chil. Nutr. 2013, 40, 71–78. [Google Scholar] [CrossRef]
- Komosinska-Vassev, K.; Olczyk, P.; Kaźmierczak, J.; Mencner, L.; Olczyk, K. Bee Pollen: Chemical Composition and Therapeutic Application. Evid. Based Complement. Altern. Med. 2015, 2015, 297425. [Google Scholar] [CrossRef]
- Khalifa, S.; Elashal, M.; Yosri, N.; Du, M.; Musharraf, S.; Nahar, L.; Sarker, S.; Guo, Z.; Cao, W.; Zou, X.; et al. Bee Pollen: Current Status and Therapeutic Potential. Nutrients 2021, 13, 1876. [Google Scholar] [CrossRef]
- Mărgăoan, R.; Özkök, A.; Keskin, Ş.; Mayda, N.; Urcan, A.C.; Cornea-Cipcigan, M. Bee collected pollen as a value-added product rich in bioactive compounds and unsaturated fatty acids: A comparative study from Turkey and Romania. LWT 2021, 149, 111925. [Google Scholar] [CrossRef]
- De-Melo, A.A.M.; De Almeida-Muradian, L.B. Chemical Composition of Bee Pollen. In Bee products-Chemical and Biological Properties; Springer: Cham, Switzerland, 2017; pp. 221–259. [Google Scholar] [CrossRef]
- Sattler, J.A.G.; de Melo, I.L.P.; Granato, D.; Araújo, E.; Freitas, A.D.S.D.; Barth, O.M.; Sattler, A.; de Almeida-Muradian, L.B. Impact of origin on bioactive compounds and nutritional composition of bee pollen from southern Brazil: A screening study. Food Res. Int. 2015, 77, 82–91. [Google Scholar] [CrossRef]
- Souza, B.R.d. Quantificação das Vitaminas do Complexo B (B1, B2) e Vitâmeros das Vitaminas B3 e B6 em Amostras de pólen apícola Desidratado Provenientes da Região Sul do Brasil; Universidade de São Paulo: São Paulo, Brazil, 2017. [Google Scholar]
- Melo, A.A.M.d. Perfil Químico e Microbiológico, cor, Análise Polínica e Propriedades Biológicas do Pólen Apícola Desidratado; Universidade de São Paulo: São Paulo, Brazil, 2017. [Google Scholar]
- Yang, K.; Wu, D.; Ye, X.; Liu, D.; Chen, J.; Sun, P. Characterization of Chemical Composition of Bee Pollen in China. J. Agric. Food Chem. 2013, 61, 708–718. [Google Scholar] [CrossRef]
- Youssef, A.M.; Farag, R.S.; Ewies, M.A.; El-Shakaa, S.M.A. Chemical Studies on Pollen Collected by Honeybees in Giza Region, Egypt. J. Apic. Res. 1978, 17, 110–113. [Google Scholar] [CrossRef]
- Nogueira, C.; Iglesias, A.; Feás, X.; Estevinho, L.M. Commercial Bee Pollen with Different Geographical Origins: A Comprehensive Approach. Int. J. Mol. Sci. 2012, 13, 11173–11187. [Google Scholar] [CrossRef]
- Féas, X.; Vázquez-Tato, M.P.; Estevinho, L.; Seijas, J.A.; Iglesias, A. Organic Bee Pollen: Botanical Origin, Nutritional Value, Bioactive Compounds, Antioxidant Activity and Microbiological Quality. Molecules 2012, 17, 8359–8377. [Google Scholar] [CrossRef]
- Kostić, A.; Barać, M.B.; Stanojević, S.P.; Milojković-Opsenica, D.M.; Tešić, L.; Šikoparija, B.; Radišić, P.; Prentović, M.; Pešić, M.B. Physicochemical composition and techno-functional properties of bee pollen collected in Serbia. LWT 2015, 62, 301–309. [Google Scholar] [CrossRef]
- Fuenmayor, B.C.; Zuluaga, D.C.; Díaz, M.C.; de Quicazán, C.M.; Cosio, M.; Mannino, S. Evaluation of the physicochemical and functional properties of Colombian bee pollen. Rev. MVZ Córdoba 2014, 19, 4003–4014. [Google Scholar] [CrossRef]
- Almeida-Muradian, L.; Pamplona, L.C.; Coimbra, S.; Barth, O.M. Chemical composition and botanical evaluation of dried bee pollen pellets. J. Food Compos. Anal. 2005, 18, 105–111. [Google Scholar] [CrossRef]
- Mayda, N.; Özkök, A.; Bayram, N.E.; Gerçek, Y.C.; Sorkun, K. Bee bread and bee pollen of different plant sources: Determination of phenolic content, antioxidant activity, fatty acid and element profiles. J. Food Meas. Charact. 2020, 14, 1795–1809. [Google Scholar] [CrossRef]
- Campos, M.; Markham, K.R.; Mitchell, K.A.; da Cunha, A.P. An approach to the characterization of bee pollens via their flavonoid/phenolic profiles. Phytochem. Anal. 1997, 8, 181–185. [Google Scholar] [CrossRef]
- Mărgăoan, R.; Mărghitaş, L.A.; Dezmirean, D.S.; Dulf, F.V.; Bunea, A.; Socaci, S.A.; Bobiş, O. Predominant and Secondary Pollen Botanical Origins Influence the Carotenoid and Fatty Acid Profile in Fresh Honeybee-Collected Pollen. J. Agric. Food Chem. 2014, 62, 6306–6316. [Google Scholar] [CrossRef]
- Inacio, L.D.J.; Merlanti, R.; Lucatello, L.; Bisutti, V.; Contiero, B.; Serva, L.; Segato, S.; Capolongo, F. Pyrrolizidine alkaloids in bee pollen identified by LC-MS/MS analysis and colour parameters using multivariate class modeling. Heliyon 2020, 6, e03593. [Google Scholar] [CrossRef]
- Végh, R.; Csóka, M.; Sörös, C.; Sipos, L. Food safety hazards of bee pollen—A review. Trends Food Sci. Technol. 2021, 114, 490–509. [Google Scholar] [CrossRef]
- Zafeiraki, E.; Kasiotis, K.M.; Nisianakis, P.; Manea-Karga, E.; Machera, K. Occurrence and human health risk assessment of mineral elements and pesticides residues in bee pollen. Food Chem. Toxicol. 2022, 161, 112826. [Google Scholar] [CrossRef] [PubMed]
- Bakour, M.; Fernandes, Â.; Barros, L.; Sokovic, M.; Ferreira, I.C.F.R.; Lyoussi, B. Bee bread as a functional product: Chemical composition and bioactive properties. LWT 2019, 109, 276–282. [Google Scholar] [CrossRef]
- Mohammad, S.M.; Mahmud-Ab-Rashid, N.-K.; Zawawi, N. Botanical Origin and Nutritional Values of Bee Bread of Stingless Bee (Heterotrigona itama) from Malaysia. J. Food Qual. 2020, 2020, 2845757. [Google Scholar] [CrossRef]
- Nagai, T.; Nagashima, T.; Myoda, T.; Inoue, R. Preparation and functional properties of extracts from bee bread. Food Nahr. 2004, 48, 226–229. [Google Scholar] [CrossRef]
- Urcan, A.C.; Criste, A.D.; Dezmirean, D.S.; Bobiș, O.; Bonta, V.; Dulf, F.V.; Mărgăoan, R.; Cornea-Cipcigan, M.; Campos, M.G. Botanical origin approach for a better understanding of chemical and nutritional composition of beebread as an important value-added food supplement. LWT 2021, 142, 111068. [Google Scholar] [CrossRef]
- Kaplan, M.; Karaoglu, Ö.; Eroglu, N.; Silici, S. Fatty Acids and Proximate Composition of Beebread. Food Technol. Biotechnol. 2016, 54, 497–504. [Google Scholar] [CrossRef]
- Pełka, K.; Otłowska, O.; Worobo, R.; Szweda, P. Bee Bread Exhibits Higher Antimicrobial Potential Compared to Bee Pollen. Antibiotics 2021, 10, 125. [Google Scholar] [CrossRef]
- Didaras, N.A.; Karatasou, K.; Dimitriou, T.G.; Amoutzias, G.D.; Mossialos, D. Antimicrobial Activity of Bee-Collected Pollen and Beebread: State of the Art and Future Perspectives. Antibiotics 2020, 9, 811. [Google Scholar] [CrossRef]
- Didaras, N.A.; Dimitriou, T.; Daskou, M.; Karatasou, K.; Mossialos, D. In Vitro Assessment of the Antiviral Activity of Greek Bee Bread and Bee Collected Pollen against Enterovirus D68. J. Microbiol. Biotechnol. Food Sci. 2022, 11, e4859. [Google Scholar] [CrossRef]
- Chen, Y.-W.; Ye, S.-R.; Ting, C.; Yu, Y.-H. Antibacterial activity of propolins from Taiwanese green propolis. J. Food Drug Anal. 2018, 26, 761–768. [Google Scholar] [CrossRef]
- Costa, A.S.; Machado, B.A.S.; Umsza-Guez, M.A.; Cirqueira, M.G.; Nunes, S.B.; Padilha, F.F. Survey of studies with propolis produced in the state of Bahia, Brazil. SITIENTIBUS Série Ciências Biológicas 2013, 13, 1–7. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, C.-P.; Wang, K.; Li, G.Q.; Hu, F.-L. Recent Advances in the Chemical Composition of Propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef]
- Şahinler, N.; Kaftanoglu, O. Natural product propolis: Chemical composition. Nat. Prod. Res. 2005, 19, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Ristivojevic, P.; Trifkovic, J.; Andric, F.; Milojković-Opsenica, D. Poplar-type Propolis: Chemical Composition, Botanical Origin and Biological Activity. Nat. Prod. Commun. 2015, 10, 1869–1876. [Google Scholar] [CrossRef]
- Marcucci, M.C. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 1995, 26, 83–99. [Google Scholar] [CrossRef]
- Sforcin, J.M. Biological Properties and Therapeutic Applications of Propolis. Phytother. Res. 2016, 30, 894–905. [Google Scholar] [CrossRef]
- González-Búrquez, M.D.J.; González-Díaz, F.R.; García-Tovar, C.G.; Carrillo-Miranda, L.; Soto-Zárate, C.I.; Canales-Martínez, M.M.; Penieres-Carrillo, J.G.; Crúz-Sánchez, T.A.; Fonseca-Coronado, S. Comparison between In Vitro Antiviral Effect of Mexican Propolis and Three Commercial Flavonoids against Canine Distemper Virus. Evid.-Based Complement. Altern. Med. 2018, 2018, 7092416. [Google Scholar] [CrossRef]
- Schnitzler, P.; Neuner, A.; Nolkemper, S.; Zundel, C.; Nowack, H.; Sensch, K.H.; Reichling, J. Antiviral Activity and Mode of Action of Propolis Extracts and Selected Compounds. Phytother. Res. 2010, 24 (Suppl. 1), S20–S28. [Google Scholar] [CrossRef] [PubMed]
- Harish, Z.; Rubinstein, A.; Golodner, M.; Elmaliah, M.; Mizrachi, Y. Suppression of HIV-1 replication by propolis and its immunoregulatory effect. Drugs Under Exp. Clin. Res. 1997, 23, 89–96. [Google Scholar]
- Kwon, M.J.; Shin, H.M.; Perumalsamy, H.; Wang, X.; Ahn, Y.-J. Antiviral effects and possible mechanisms of action of constituents from Brazilian propolis and related compounds. J. Apic. Res. 2019, 59, 413–425. [Google Scholar] [CrossRef]
- Huleihel, M.; Isanu, V. Anti-herpes simplex virus effect of an aqueous extract of propolis. Isr. Med. Assoc. J. IMAJ 2002, 4, 923–927. [Google Scholar] [PubMed]
- Labska, K.; Plodkova, H.; Pumannova, M.; Sensch, K.H. Antiviral activity of propolis special extract GH 2002 against Varicella zoster virus in vitro. Pharmazie 2018, 73, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V.; Galabov, A.; Antonova, D.; Vilhelmova, N.; Di Perri, B. Chemical composition of Propolis Extract ACF® and activity against herpes simplex virus. Phytomedicine 2014, 21, 1432–1438. [Google Scholar] [CrossRef]
- Amoros, M.; Sauvager, F.; Girre, L.; Cormier, M. In vitro antiviral activity of propolis. Apidologie 1992, 23, 231–240. [Google Scholar] [CrossRef]
- Amoros, M.; Simõs, C.M.O.; Girre, L.; Sauvager, F.; Cormier, M. Synergistic Effect of Flavones and Flavonols Against Herpes Simplex Virus Type 1 in Cell Culture. Comparison with the Antiviral Activity of Propolis. J. Nat. Prod. 1992, 55, 1732–1740. [Google Scholar] [CrossRef]
- Fokt, H.; Pereira, A.; Ferreira, A.; Cunha, A.; Aguiar, C. How do bees prevent hive infections? The antimicrobial properties of propolis. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; FORMATEX: Badajoz, Spain, 2010; pp. 481–493. [Google Scholar]
- Nolkemper, S.; Reichling, J.; Sensch, K.H.; Schnitzler, P. Mechanism of herpes simplex virus type 2 suppression by propolis extracts. Phytomedicine 2010, 17, 132–138. [Google Scholar] [CrossRef]
- Siheri, W.; Alenezi, S.; Tusiimire, J.; Watson, D.G. The Chemical and Biological Properties of Propolis. In Bee Products-Chemical and Biological Properties; Alvarez-Suarez, J., Ed.; Springer: Cham, Switzerland, 2017; pp. 137–178. [Google Scholar]
- Abd El Hady, F.K.; Hegazi, A.G. Egyptian propolis: 2. Chemical composition, antiviral and antimicrobial activities of East Nile Delta propolis. Z. Naturforsch. C. J. Biosci. 2002, 57, 386–394. [Google Scholar] [CrossRef]
- Coelho, G.R.; Mendonça, R.Z.; Vilar, K.D.S.; Figueiredo, C.A.; Badari, J.C.; Taniwaki, N.; Namiyama, G.; de Oliveira, M.I.; Curti, S.P.; Silva, P.E.; et al. Antiviral Action of Hydromethanolic Extract of Geopropolis from Scaptotrigona postica against Antiherpes Simplex Virus (HSV-1). Evid. Based Complement. Altern. Med. 2015, 2015, 296086. [Google Scholar] [CrossRef]
- Yildirim, A.; Duran, G.G.; Duran, N.; Jenedi, K.; Bolgul, B.S.; Miraloglu, M.; Muz, M. Antiviral Activity of Hatay Propolis Against Replication of Herpes Simplex Virus Type 1 and Type 2. Med. Sci. Monit. 2016, 22, 422–430. [Google Scholar] [CrossRef]
- Ozcan, H.; Ulkevan, T.; Özcan, T.H. Propolis Induced Mania with Psychotic Features: A Case Report. Klin. Psikofarmakol. Bülteni-Bull. Clin. Psychopharmacol. 2015, 25, 207. [Google Scholar] [CrossRef]
- Nyman, G.; Wagner, S.; Prystupa-Chalkidis, K.; Ryberg, K.; Hagvall, L. Contact Allergy in Western Sweden to Propolis of Four Different Origins. Acta Derm. Venereol. 2020, 100, adv00256. [Google Scholar] [CrossRef]
- Abd El-Wahed, A.A.; Khalifa, S.A.M.; Sheikh, B.Y.; Farag, M.A.; Saeed, A.; Larik, F.A.; Koca-Caliskan, U.; AlAjmi, M.F.; Hassan, M.; Wahabi, H.A.; et al. Bee Venom Composition: From Chemistry to Biological Activity. Stud. Nat. Prod. Chem. 2018, 60, 459–484. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Kim, K.-H.; Lee, W.-R.; An, H.-J.; Lee, S.-J.; Han, S.-M.; Lee, K.-G.; Park, Y.-Y.; Kim, K.-S.; Lee, Y.-S.; et al. Apamin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration through suppressions of activated Akt and Erk signaling pathway. Vasc. Pharmacol. 2015, 70, 8–14. [Google Scholar] [CrossRef]
- Banks, B.E.; Shipolini, R.A. Chemistry and pharmacology of honey-bee venom. In Venoms of the Hymenoptera: Biochemical, Pharmacological and Behavioural Aspects; Academic Press: London, UK, 1986; pp. 329–416. [Google Scholar]
- Pak, S.C. Chemical Composition of Bee Venom. In Bee Products-Chemical and Biological Properties; Springer: Cham, Switzerland, 2017; pp. 279–285. [Google Scholar] [CrossRef]
- Chen, J.; Guan, S.-M.; Sun, W.; Fu, H. Melittin, the Major Pain-Producing Substance of Bee Venom. Neurosci. Bull. 2016, 32, 265–272. [Google Scholar] [CrossRef]
- Moreno, M.; Giralt, E. Three Valuable Peptides from Bee and Wasp Venoms for Therapeutic and Biotechnological Use: Melittin, Apamin and Mastoparan. Toxins 2015, 7, 1126–1150. [Google Scholar] [CrossRef]
- Dotimas, E.M.; Hider, R.C. Honeybee Venom. Bee World 1987, 68, 51–70. [Google Scholar] [CrossRef]
- Bellik, Y. Bee venom: Its potential use in alternative medicine. Anti-Infect. Agents 2015, 13, 3–16. [Google Scholar] [CrossRef]
- El-Seedi, H.; El-Wahed, A.A.; Yosri, N.; Musharraf, S.G.; Chen, L.; Moustafa, M.; Zou, X.; Al-Mousawi, S.; Guo, Z.; Khatib, A.; et al. Antimicrobial Properties of Apis mellifera’s Bee Venom. Toxins 2020, 12, 451. [Google Scholar] [CrossRef]
- Uddin, M.B.; Lee, B.-H.; Nikapitiya, C.; Kim, J.-H.; Kim, T.-H.; Lee, H.-C.; Kim, C.G.; Lee, J.-S.; Kim, C.-J. Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. J. Microbiol. 2016, 54, 853–866. [Google Scholar] [CrossRef]
- Lee, J.-A.; Kim, Y.-M.; Hyun, P.-M.; Jeon, J.-W.; Park, J.-K.; Suh, G.-H.; Jung, B.-G.; Lee, B.-J. Honeybee (Apis mellifera) Venom Reinforces Viral Clearance during the Early Stage of Infection with Porcine Reproductive and Respiratory Syndrome Virus through the Up-Regulation of Th1-Specific Immune Responses. Toxins 2015, 7, 1837–1853. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Aoki-Utsubo, C.; Kameoka, M.; Deng, L.; Terada, Y.; Kamitani, W.; Sato, K.; Koyanagi, Y.; Hijikata, M.; Shindo, K.; et al. Broad-spectrum antiviral agents: Secreted phospholipase A2 targets viral envelope lipid bilayers derived from the endoplasmic reticulum membrane. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Kamal, S.A. In Vitro Study on the Effect of Bee Venom on Some Cell Lines and Lumpy Skin Disease Virus. J. Agric. Sci. Technol. A 2016, 6, 124–135. [Google Scholar] [CrossRef]
- Kim, Y.-W.; Chaturvedi, P.K.; Chun, S.N.; Lee, Y.G.; Ahn, W.S. Honeybee venom possesses anticancer and antiviral effects by differential inhibition of HPV E6 and E7 expression on cervical cancer cell line. Oncol. Rep. 2015, 33, 1675–1682. [Google Scholar] [CrossRef] [PubMed]
- Fenard, D.; Lambeau, G.; Maurin, T.; Lefebvre, J.-C.; Doglio, A. A Peptide Derived from Bee Venom-Secreted Phospholipase A2 Inhibits Replication of T-Cell Tropic HIV-1 Strains via Interaction with the CXCR4 Chemokine Receptor. Mol. Pharmacol. 2001, 60, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Kozuka-Hata, H.; Ao-Kondo, H.; Kunieda, T.; Oyama, M.; Kubo, T. Proteomic Analysis of the Royal Jelly and Characterization of the Functions of its Derivation Glands in the Honeybee. J. Proteome Res. 2012, 12, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Nabas, Z.; Haddadin, M.S.; Haddadin, J.; Nazer, I.K. Chemical Composition of Royal Jelly and Effects of Synbiotic with Two Different Locally Isolated Probiotic Strains on Antioxidant Activities. Pol. J. Food Nutr. Sci. 2014, 64, 171–180. [Google Scholar] [CrossRef]
- El-Guendouz, S.; Lyoussi, B.; Miguel, M.G. Insight into the chemical composition and biological properties of Mediterranean royal jelly. J. Apic. Res. 2020, 59, 890–909. [Google Scholar] [CrossRef]
- Balkanska, R.; Karadjova, I.; Ignatova, M. Comparative analyses of chemical composition of royal jelly and drone brood. Bulg. Chem. Commun. 2014, 46, 412–416. [Google Scholar]
- Lercker, G.; Savioli, S.; Vecchi, M.; Sabatini, A.; Nanetti, A.; Piana, L. Carbohydrate determination of Royal Jelly by high resolution gas chromatography (HRGC). Food Chem. 1986, 19, 255–264. [Google Scholar] [CrossRef]
- Šimúth, J. Some properties of the main protein of honeybee (Apis mellifera) royal jelly. Apidologie 2001, 32, 69–80. [Google Scholar] [CrossRef]
- Ramanathan, A.N.K.G.; Nair, A.J.; Sugunan, V.S. A review on Royal Jelly proteins and peptides. J. Funct. Foods 2018, 44, 255–264. [Google Scholar] [CrossRef]
- Li, X.; Huang, C.; Xue, Y. Contribution of Lipids in Honeybee (Apis mellifera) Royal Jelly to Health. J. Med. Food 2013, 16, 96–102. [Google Scholar] [CrossRef]
- Ciulu, M.; Floris, I.; Nurchi, V.M.; Panzanelli, A.; Pilo, M.I.; Spano, N.; Sanna, G. HPLC determination of pantothenic acid in royal jelly. Anal. Methods 2013, 5, 6682–6685. [Google Scholar] [CrossRef]
- Bogdanov, S. Royal jelly, bee brood: Composition, health, medicine: A review. Lipids 2011, 3, 8–19. [Google Scholar]
- Habashy, N.H.; Abu-Serie, M.M. The potential antiviral effect of major royal jelly protein2 and its isoform X1 against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Insight on their sialidase activity and molecular docking. J. Funct. Foods 2020, 75, 104282. [Google Scholar] [CrossRef]
- Stocker, A. Isolation and Characterisation of Substances from Royal Jelly; Technische Universität München: Munich, Germany, 2003. [Google Scholar]
- Rizzo, S.; Russo, M.; Labra, M.; Campone, L.; Rastrelli, L. Determination of Chloramphenicol in Honey Using Salting-Out Assisted Liquid-Liquid Extraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry and Validation According to 2002/657 European Commission Decision. Molecules 2020, 25, 3481. [Google Scholar] [CrossRef]
- Hata, T.; Furusawa-Horie, T.; Arai, Y.; Takahashi, T.; Seishima, M.; Ichihara, K. Studies of royal jelly and associated cross-reactive allergens in atopic dermatitis patients. PLoS ONE 2020, 15, e0233707. [Google Scholar] [CrossRef]
- Tulloch, A.P. Beeswax—Composition and Analysis. Bee World 1980, 61, 47–62. [Google Scholar] [CrossRef]
- Bogdanov, S. Beeswax: Quality issues today. Bee World 2004, 85, 46–50. [Google Scholar] [CrossRef]
- Velickova, E.; Winkelhausen, E.; Kuzmanova, S.; Moldao-Martins, M.; Alves, V.D. Characterization of multilayered and composite edible films from chitosan and beeswax. Food Sci. Technol. Int. 2015, 21, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Abdulrhman, M.; Samir Elbarbary, N.; Ahmed Amin, D.; Saeid Ebrahim, R. Honey and a mixture of honey, beeswax, and olive oil–propolis extract in treatment of chemotherapy-induced oral mucositis: A randomized controlled pilot study. Pediatr. Hematol. Oncol. 2012, 29, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.I.; Mohamed, A.; Amer, M.A.; Hammad, K.M.; Riad, S.A. Monitoring of the antiviral potential of bee venom and wax extracts against Adeno-7 (DNA) and Rift Valley fever virus (RNA) viruses models. J. Egypt. Soc. Parasitol. 2015, 45, 193–198. [Google Scholar] [CrossRef]
Honey or Its Compounds | Organism | Tested Model | Outcome of the Study | References |
---|---|---|---|---|
Honey extract (Camelyn) | SARS-CoV-2 | In vitro (plaque reduction assay) baby hamster kidney cell line 21 (BHK-21), bone marrow-derived hematopoietic stem cells (HSCs), and splenic cells | Showed an inhibitory effect with an EC50 value from 85.7 μg/mL to 192.4 μg/mL. | [49] |
Honey | Rubella virus | In vitro African green monkey kidney cells | Inhibited the virus at all concentrations (1:1 to 1:1000 dilutions). | [50] |
Honey | HSV-1 | In vitro (plaque assay technique) Vero cells | Showed the highest inhibitory effect at 500 μg/mL and reduced viral load from 70795 to 43.3. | [51] |
Methylglyoxal (Component of manuka honey) | Influenza B virus | In vitro Madin-Darby canine kidney cells | Inhibited influenza B virus replication, with 50% inhibitory concentrations ranging from 23–140 μM. | [52] |
Kanuka honey | Herpes simplex labialis | Human model: 952 adults participated to compare the effect of Kanuka honey to 5% aciclovir cream | There was no difference in effectiveness compared with 5% acyclovir. | [53] |
Honey | Common cold | Human model (cohort study): 122 students participated | Especially after six weeks of honey application, common cold frequency was lower than in the control group. | [54] |
Tualang honey | HIV | Human model: 95 asymptomatic HIV-positive subjects participated | Ameliorated CD4 count, viral load, and quality of life. | [55] |
Iranian honeys (8 monofloral honey types obtained from Petro selinum sativum, Nigella sativa, Citrus sinensis, Zataria multiflora, Citrus aurantium, Zizyphus mauritiana, Astragalus gummifer, and Chamaemelum nobile flowers) | HIV-1 | In vitro peripheral blood mononuclear cells | Showed potent anti-HIV-1 activity in 6 of 8 monofloral honeys with EC50 values ranging from 5 to 105 µg/mL. | [56] |
Honey | HSV-1 | In vitro Vero cells | Showed complete inhibitory effect at 5% and higher concentrations. | [57] |
Honey (garlic and ginger decoction) | Influenza virus | In vitro human peripheral blood mononuclear cells | Decreased replication of the H1N2. | [58] |
Honeydew, manuka, and rewarewa honey | Adenovirus, rubella virus, and HSV | In vitro | Increased antiviral activity with the concentration of honey and time the virus was exposed to it. | [59] |
Country | Origin | Protein Content (g/100 g) | References |
---|---|---|---|
Brazil | Heterofloral | 8.4–40.5 | [79] |
Brassica napus | 23.0–24.5 | [80] | |
Mimosa scabrella | 11.7–33.9 | [81] | |
Mimosa caesalpiniaefolia | 17.6–21.2 | ||
China | Citrullus lanatus | 20.7 | [82] |
Fagopyrum esculentum | 14.3 | ||
Helianthus annuus | 15.3 | ||
Dendranthema indicum | 14.9 | ||
Egypt | Brassica kaber | 29.0 | [83] |
Zea mays | 23.3 | ||
Trifolium alexandrium | 35.5 | ||
Portugal | Heterofloral | 18.8–34.2 | [84] |
Cistus | 23.0–27.1 | [85] | |
Serbia | Heterofloral | 14.8–27.2 | [86] |
Fabaceae | 19.9 | ||
Salix | 24.8 | ||
Spain | Heterofloral | 12.5–20.8 | [84,87] |
Cistus | 12.6–22.5 |
Propolis Type and Its Components | Organism | Tested Model | Outcome of the Study | References |
---|---|---|---|---|
Mexican propolis | Canine distemper virus | In vitro African green monkey kidney cells | Propolis application decreased viral expression and correlated with increased cell viability. | [110] |
Propolis extracts | HSV-1 | In vitro RC-37 cells | IC50 values of aqueous and ethanol extracts were determined at 0.0004% and 0.000035%, respectively. | [111] |
Propolis | HIV-1 | In vitro | Propolis abolished syncytium formation at 4.5 micrograms/mL and decreased p24 antigen production by as much as 90–100%. | [112] |
Propolis extracts | HSV-1 and HSV-2 | In vitro | Standardized preparations of propolis exhibited antiviral bioactivity. | [26] |
Brazilian propolis (kaempferol, KF and p-coumaric acid, and p-CA) | Human rhinoviruses (HRVs) | In vitro HeLa cells | They inhibited HRV-3 infection when added during the early stages following virus inoculation. | [113] |
Propolis | HSV-1 | In vitro Vero cells in vivo newborn rats | The addition of 10% propolis extract led to 80–85% protection. | [114] |
Propolis extract GH-2002 | Varicella zoster virus | In vitro LEP cells | IC50 value was determined to be 64 μg/mL. | [115] |
Propolis extract ACF® | HSV-1 and HSV-2 | In vitro MDBK cells | Showed pronounced virucidal effect and interfered with virus adsorption. | [116] |
Bee Venom Components | Dry Weight% | |
---|---|---|
Peptides | Melittin | 40–50 |
Apamine, MCD | 2–3 | |
Secapine | 0.5–2 | |
Minimine | 2 | |
Pamine | 1–3 | |
Adolapine | 0.5–1 | |
Protease inhibitor | 0.1–0.8 | |
Procamine (A, B), tertiapine, cardiopep, and melittin-F | 1–2 | |
Proteins | Phospholipase A2 | 10–12 |
Hyaluronidase | 1–2 | |
Phosphatase and phospholipase B | 1 | |
α-Glucosidase | 0–6 | |
Sugars | Glucose and fructose | 2–4 |
Minerals | Ca, Mg, and P | 3–4 |
Amines | Aminobutyric acid, α-amino acids | 1 |
Noradrenaline | 0.1–0.5 | |
Histamine | 0.5–2 | |
Dopamine | 0.2–1 | |
Volatile compounds (pheromones) | Complex ethers | 4–8 |
Bee Venom or Extract | Organism | Tested Model | Outcome of the Study | References |
---|---|---|---|---|
Bee venom | Vesicular stomatitis virus (VSV), coxsackievirus (H3), herpes simplex virus (HSV), enterovirus-71 (EV-71), influenza A virus (PR8), and respiratory syncytial virus (RSV) | In vitro HEK293T, MDCK, HEp2, Vero cells, and HeLa | It is concluded that bee venom would be a promising antiviral agent, especially in the establishment of a broad-spectrum antiviral agent. | [136] |
Bee venom | Porcine reproductive and respiratory syndrome virus (PRRSV) | In vivo pigs | Especially nasal or rectal application of bee venom may be used in the prevention of this infection in pigs. | [137] |
Bee venom (phospholipase A2) | Dengue virus (DENV), hepatitis C virus (HCV), and Japanese encephalitis virus (JEV) | In vitro Huh7it-1 cells, MDCK, HEK293T, and Vero cells and in vivo embryonated eggs | Phospholipase A2 and its derivatives could be potent candidates for the development of broad-spectrum antiviral drugs that exert their effects by targeting viral envelope lipid bilayers derived from the ER membrane. | [138] |
Bee venom | Lumpy skin disease virus (LSDV) | In vitro Maiden-Darby bovine kidney cells (MDBK), Hep-2, and MCF7 and in vivo embryonated chicken eggs | Bee venom could serve as a good treatment for LSDV after determination of suitable therapeutic doses. | [139] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asma, S.T.; Bobiş, O.; Bonta, V.; Acaroz, U.; Shah, S.R.A.; Istanbullugil, F.R.; Arslan-Acaroz, D. General Nutritional Profile of Bee Products and Their Potential Antiviral Properties against Mammalian Viruses. Nutrients 2022, 14, 3579. https://doi.org/10.3390/nu14173579
Asma ST, Bobiş O, Bonta V, Acaroz U, Shah SRA, Istanbullugil FR, Arslan-Acaroz D. General Nutritional Profile of Bee Products and Their Potential Antiviral Properties against Mammalian Viruses. Nutrients. 2022; 14(17):3579. https://doi.org/10.3390/nu14173579
Chicago/Turabian StyleAsma, Syeda Tasmia, Otilia Bobiş, Victoriţa Bonta, Ulas Acaroz, Syed Rizwan Ali Shah, Fatih Ramazan Istanbullugil, and Damla Arslan-Acaroz. 2022. "General Nutritional Profile of Bee Products and Their Potential Antiviral Properties against Mammalian Viruses" Nutrients 14, no. 17: 3579. https://doi.org/10.3390/nu14173579
APA StyleAsma, S. T., Bobiş, O., Bonta, V., Acaroz, U., Shah, S. R. A., Istanbullugil, F. R., & Arslan-Acaroz, D. (2022). General Nutritional Profile of Bee Products and Their Potential Antiviral Properties against Mammalian Viruses. Nutrients, 14(17), 3579. https://doi.org/10.3390/nu14173579