Are Dietary Patterns Related to Cognitive Performance in 7-Year-Old Children? Evidence from a Birth Cohort in Friuli Venezia Giulia, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Cognitive Performance
2.3. Dietary Assessment
2.4. Socio-Demographic, Socio-Economic, and Lifestyle Characteristics
2.5. Statistical Analysis
2.5.1. Selecting Nutrients of Interest
2.5.2. Checking Factorability
2.5.3. Identifying Nutrient-Based Dietary Patterns
2.5.4. Assessing Internal Reproducibility, Internal Consistency, and Validity of the Identified Dietary Patterns
2.5.5. Relating Identified Dietary Patterns with Cognitive Performance
3. Results
3.1. Population Characteristics
3.2. Cognitive Performance on the Wechsler Intelligence Scale for Children–Fourth Edition (WISC-IV)
3.3. Identification of Nutrient-Based Dietary Patterns
3.4. Internal Consistency and Reproducibility of the Identified Dietary Patterns
3.5. Food Groups and Identified Dietary Patterns
3.6. Cognitive Performance and Identified Dietary Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatnagar, S.; Taneja, S. Zinc and Cognitive Development. Br. J. Nutr. 2001, 85, S139–S145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demetriou, A.; Kazali, E.; Kazi, S.; Spanoudis, G. Cognition and Cognizance in Preschool Predict School Achievement in Primary School. Cogn Dev. 2020, 54, 100872. [Google Scholar] [CrossRef]
- Prado, E.L.; Dewey, K.G. Nutrition and Brain Development in Early Life. Nutr. Rev. 2014, 72, 267–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, S.E.; Geiser, E.; Schneider, N. Nutrients for Executive Function Development and Related Brain Connectivity in School-Aged Children. Nutr. Rev. 2021, 79, 1293–1306. [Google Scholar] [CrossRef] [PubMed]
- Naveed, S.; Lakka, T.; Haapala, E.A. An Overview on the Associations between Health Behaviors and Brain Health in Children and Adolescents with Special Reference to Diet Quality. Int. J. Environ. Res. Public Health 2020, 17, 953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, L.F.; Lawlis, T.R. Feeding the Brain—The Effects of Micronutrient Interventions on Cognitive Performance among School-Aged Children: A Systematic Review of Randomized Controlled Trials. Clin. Nutr. 2017, 36, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary Pattern Analysis: A New Direction in Nutritional Epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Castriotta, L.; Rosolen, V.; Biggeri, A.; Ronfani, L.; Catelan, D.; Mariuz, M.; Bin, M.; Brumatti, L.V.; Horvat, M.; Barbone, F. The Role of Mercury, Selenium and the Se-Hg Antagonism on Cognitive Neurodevelopment: A 40-Month Follow-up of the Italian Mother-Child PHIME Cohort. Int. J. Hyg. Environ. Health 2020, 230, 113604. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Gao, Q.; Zhao, H.; Chen, S.; Huang, L.; Wang, W.; Wang, T. A Review of Statistical Methods for Dietary Pattern Analysis. Nutr. J. 2021, 20, 37. [Google Scholar] [CrossRef]
- Gleason, P.M.; Boushey, C.J.; Harris, J.E.; Zoellner, J. Publishing Nutrition Research: A Review of Multivariate Techniques-Part 3: Data Reduction Methods. J. Acad. Nutr. Diet. 2015, 115, 1072–1082. [Google Scholar] [CrossRef]
- Schulze, M.B.; Martínez-González, M.A.; Fung, T.T.; Lichtenstein, A.H.; Forouhi, N.G. Food Based Dietary Patterns and Chronic Disease Prevention. BMJ 2018, 361, k2396. [Google Scholar] [CrossRef] [Green Version]
- Esteban-Cornejo, I.; Izquierdo-Gomez, R.; Gómez-Martínez, S.; Padilla-Moledo, C.; Castro-Piñero, J.; Marcos, A.; Veiga, O.L. Adherence to the Mediterranean Diet and Academic Performance in Youth: The UP&DOWN Study. Eur. J. Nutr. 2016, 55, 1133–1140. [Google Scholar] [CrossRef]
- Granziera, F.; Guzzardi, M.A.; Iozzo, P. Associations between the Mediterranean Diet Pattern and Weight Status and Cognitive Development in Preschool Children. Nutrients 2021, 13, 3723. [Google Scholar] [CrossRef]
- Tapia-Serrano, M.A.; Esteban-Cornejo, I.; Rodriguez-Ayllon, M.; Vaquero-Solís, M.; Sánchez-Oliva, D.; Sánchez-Miguel, P.A. Adherence to the Mediterranean Diet and Academic Performance in Adolescents: Does BMI Status Moderate This Association? Clin. Nutr. 2021, 40, 4465–4472. [Google Scholar] [CrossRef]
- Khan, N.A.; Raine, L.B.; Drollette, E.S.; Scudder, M.R.; Kramer, A.F.; Hillman, C.H. Dietary Fiber Is Positively Associated with Cognitive Control among Prepubertal Children. J. Nutr. 2015, 145, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Haapala, E.A.; Eloranta, A.M.; Venäläinen, T.; Schwab, U.; Lindi, V.; Lakka, T.A. Associations of Diet Quality with Cognition in Children-the Physical Activity and Nutrition in Children Study. Br. J. Nutr. 2015, 114, 1080–1087. [Google Scholar] [CrossRef] [Green Version]
- Haapala, E.A.; Eloranta, A.M.; Venäläinen, T.; Jalkanen, H.; Poikkeus, A.M.; Ahonen, T.; Lindi, V.; Lakka, T.A. Diet Quality and Academic Achievement: A Prospective Study among Primary School Children. Eur. J. Nutr. 2017, 56, 2299–2308. [Google Scholar] [CrossRef]
- Leventakou, V.; Roumeliotaki, T.; Sarri, K.; Koutra, K.; Kampouri, M.; Kyriklaki, A.; Vassilaki, M.; Kogevinas, M.; Chatzi, L. Dietary Patterns in Early Childhood and Child Cognitive and Psychomotor Development: The Rhea Mother-Child Cohort Study in Crete. Br. J. Nutr. 2016, 115, 1431–1437. [Google Scholar] [CrossRef] [Green Version]
- Nurliyana, A.R.; Mohd Nasir, M.T.; Zalilah, M.S.; Rohani, A. Dietary Patterns and Cognitive Ability among 12-to 13 Year-Old Adolescents in Selangor, Malaysia. Public Health Nutr. 2015, 18, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Feinstein, L.; Sabates, R.; Sorhaindo, A.; Rogers, I.; Herrick, D.; Northstone, K.; Emmett, P. Dietary Patterns Related to Attainment in School: The Importance of Early Eating Patterns. J. Epidemiol. Community Health 2008, 62, 734–739. [Google Scholar] [CrossRef]
- Northstone, K.; Joinson, C.; Emmett, P.; Ness, A.; Paus, T. Are Dietary Patterns in Childhood Associated with IQ at 8 Years of Age? A Population-Based Cohort Study. J. Epidemiol. Community Health 2012, 66, 624–628. [Google Scholar] [CrossRef] [Green Version]
- Smithers, L.G.; Golley, R.K.; Mittinty, M.N.; Brazionis, L.; Northstone, K.; Emmett, P.; Lynch, J.W. Dietary Patterns at 6, 15 and 24 Months of Age Are Associated with IQ at 8 Years of Age. Eur. J. Epidemiol. 2012, 27, 525–535. [Google Scholar] [CrossRef]
- Nyaradi, A.; Foster, J.K.; Hickling, S.; Li, J.; Ambrosini, G.L.; Jacques, A.; Oddy, W.H. Prospective Associations between Dietary Patterns and Cognitive Performance during Adolescence. J. Child. Psychol. Psychiatry 2014, 55, 1017–1024. [Google Scholar] [CrossRef]
- Gale, C.R.; Martyn, C.N.; Marriott, L.D.; Limond, J.; Crozier, S.; Inskip, H.M.; Godfrey, K.M.; Law, C.M.; Cooper, C.; Robinson, S.M. Dietary Patterns in Infancy and Cognitive and Neuropsychological Function in Childhood. J. Child. Psychol. Psychiatry 2009, 50, 816–823. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Cao, S.; Li, D.; Chen, F.; Jiang, Q.; Zeng, J. Association between Dietary Patterns and Cognitive Ability in Chinese Children Aged 10–15 Years: Evidence from the 2010 China Family Panel Studies. BMC Public Health 2021, 21, 2212. [Google Scholar] [CrossRef]
- Valent, F.; Mariuz, M.; Bin, M.; Little, D.; Mazej, D.; Tognin, V.; Tratnik, J.; McAfee, A.J.; Mulhern, M.S.; Parpinel, M.; et al. Associations of Prenatal Mercury Exposure from Maternal Fish Consumption and Polyunsaturated Fatty Acids with Child Neurodevelopment: A Prospective Cohort Study in Italy. J. Epidemiol. 2013, 23, 360–370. [Google Scholar] [CrossRef] [Green Version]
- Valent, F.; Horvat, M.; Sofianou-Katsoulis, A.; Spiric, Z.; Mazej, D.; Little, D.; Prasouli, A.; Mariuz, M.; Tamburlini, G.; Nakou, S.; et al. Neurodevelopmental Effects of Low-Level Prenatal Mercury Exposure from Maternal Fish Consumption in a Mediterranean Cohort: Study Rationale and Design. J. Epidemiol. 2013, 23, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Brumatti, L.V.; Rosolen, V.; Mariuz, M.; Piscianz, E.; Valencic, E.; Bin, M.; Athanasakis, E.; D’adamo, P.; Fragkiadoulaki, E.; Calamandrei, G.; et al. Impact of Methylmercury and Other Heavy Metals Exposure on Neurocognitive Function in Children Aged 7 Years: Study Protocol of the Follow-Up. J. Epidemiol. 2021, 31, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Wechsler, D. Wechsler Intelligence Scale for Children; IV-WISC; Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Orsini, A.; Pezzuti, L.; Picone, L. WISC-IV: Contributo Alla Taratura Italiana.; WISC-IV Italian; Giunti OS: Florence, Italy, 2012. [Google Scholar]
- Tanner, E.M.; Hallerbäck, M.U.; Wikström, S.; Lindh, C.; Kiviranta, H.; Gennings, C.; Bornehag, C.G. Early Prenatal Exposure to Suspected Endocrine Disruptor Mixtures Is Associated with Lower IQ at Age Seven. Environ. Int. 2020, 134, 105185. [Google Scholar] [CrossRef]
- Gnagnarella, P.; Salvini, S.; Parpinel, M. Food Composition Database for Epidemiological Studies in Italy. Available online: http://www.bda-ieo.it/ (accessed on 1 September 2022).
- Giordani, E.; Marinoni, M.; Fiori, F.; Concina, F.; Ronfani, L.; Dalmin, P.; Barbone, F.; Edefonti, V.; Parpinel, M. Adherence to Dietary Recommendations of 7-Year-Old Children from a Birth Cohort in Friuli Venezia Giulia, Italy. Nutrients 2022, 14, 515. [Google Scholar] [CrossRef]
- Raven, J.; Court, J.H.; Raven, J.C. Manual for Raven’s Progressive and Vocabulary Scales.; Harcourt Assessment: San Antonio, TX, USA, 1998. [Google Scholar]
- Capotorti, L.; Luchino, F.; Siglienti, L.; Battaini, A.; di Tullio, F.; Rosenholtz, E.; Vecerova, S.; Molinari, G.; Carelli, E.; Foderini, N.; et al. La Valutazione Dell’Ambiente Familiare Negli Studi Longitudinali Di Sviluppo Infantile. Med. Bambino 1987, 9, 16–23. [Google Scholar]
- Bradley, R.H.; Caidwell, B.M. The Relation of Infants’ Home Environments to Aehievement Test Performance in First Grade: A Follow-Up Study. Child Dev. 1984, 55, 803–809. [Google Scholar] [PubMed]
- Ronfani, L.; Vecchi Brumatti, L.; Mariuz, M.; Tognin, V.; Bin, M.; Ferluga, V.; Knowles, A.; Montico, M.; Barbone, F. The Complex Interaction between Home Environment, Socioeconomic Status, Maternal IQ and Early Child Neurocognitive Development: A Multivariate Analysis of Data Collected in a Newborn Cohort Study. PLoS ONE 2015, 10, e0127052. [Google Scholar] [CrossRef] [Green Version]
- Lobstein, T.; Jewell, J. What Is a “High” Prevalence of Obesity? Two Rapid Reviews and a Proposed Set of Thresholds for Classifying Prevalence Levels. Obes. Rev. 2022, 23, e13363. [Google Scholar] [CrossRef]
- Cole, T.J.; Lobstein, T. Extended International (IOTF) Body Mass Index Cut-Offs for Thinness, Overweight and Obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Pett, M.A.; Lackey, N.R.; Sullivan, J.J. Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research; Sage: Thousand Oaks, CA, USA, 2003. [Google Scholar]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis, 5th ed.; Prentice Hall: Upper Saddler River, NJ, USA, 2002. [Google Scholar]
- Comrey, A.; Lee, H.B. A First Course in Factor Analysis, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1992. [Google Scholar]
- Castelló, A.; Buijsse, B.; Martín, M.; Ruiz, A.; Casas, A.M.; Baena-Cañada, J.M.; Pastor-Barriuso, R.; Antolín, S.; Ramos, M.; Muñoz, M.; et al. Evaluating the Applicability of Data-Driven Dietary Patterns to Independent Samples with a Focus on Measurement Tools for Pattern Similarity. J. Acad. Nutr. Diet. 2016, 116, 1914–1924.e6. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient Alpha and the Internal Structure of Tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Dalmartello, M.; Bravi, F.; Serraino, D.; Crispo, A.; Ferraroni, M.; la Vecchia, C.; Edefonti, V. Dietary Patterns in Italy and the Risk of Renal Cell Carcinoma. Nutrients 2020, 12, 134. [Google Scholar] [CrossRef] [Green Version]
- Bravi, F.; Bertuccio, P.; Turati, F.; Serraino, D.; Edefonti, V.; Dal Maso, L.; Decarli, A.; Montella, M.; Zucchetto, A.; la Vecchia, C.; et al. Nutrient-Based Dietary Patterns and Endometrial Cancer Risk: An Italian Case-Control Study. Cancer Epidemiol. 2015, 39, 66–72. [Google Scholar] [CrossRef]
- Edefonti, V.; la Vecchia, C.; di Maso, M.; Crispo, A.; Polesel, J.; Libra, M.; Parpinel, M.; Serraino, D.; Ferraroni, M.; Bravi, F. Association between Nutrient-Based Dietary Patterns and Bladder Cancer in Italy. Nutrients 2020, 12, 1584. [Google Scholar] [CrossRef]
- Yohai, V.J. High Breakdown-Point and High Efficiency Robust Estimates for Regression. Ann. Stat. 1987, 15, 642–656. [Google Scholar] [CrossRef]
- Ihaka, R.; Gentleman, R. A Language For Data Analysis and Graphics. J. Comput. Graph. Stat. 1996, 5, 299–314. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing. Available online: http://www.R-Project.Org (accessed on 23 June 2022).
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern University: Evanston, Illinois. Available online: http://CRAN.Rproject.org/package=psychR (accessed on 2 September 2022).
- Bernaards, C.A.; Jennrich, R.I. Gradient Projection Algorithms and Software for Arbitrary Rotation Criteria in Factor Analysis. Educ. Psychol. Meas. 2005, 65, 770–790. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S; Springer: New York, NY, USA, 2002; Volume IV. [Google Scholar]
- De Clercq-Quaegebeur, M.; Casalis, S.; Lemaitre, M.P.; Bourgois, B.; Getto, M.; Vallée, L. Neuropsychological Profile on the WISC-IV of French Children with Dyslexia. J. Learn. Disabil. 2010, 43, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Dasi, C.; Soler, M.J.; Bellver, V.; Ruiz, J.C. Short Form of Spanish Version of the WISC–IV for Intelligence Assessment in Elementary School Children. Psychol. Rep. 2014, 115, 784–793. [Google Scholar] [CrossRef]
- Edefonti, V.; de Vito, R.; Dalmartello, M.; Patel, L.; Salvatori, A.; Ferraroni, M. Reproducibility and Validity of A Posteriori Dietary Patterns: A Systematic Review. Adv. Nutr. 2020, 11, 293–326. [Google Scholar] [CrossRef]
- Keith, T.Z.; Fine, J.G. Higher Order, Multisample, Confirmatory Factor Analysis of the Wechsler Intelligence Scale for Children—Fourth Edition: What Does It Measure? Sch. Psych. Rev. 2006, 35, 108–127. [Google Scholar] [CrossRef]
- McGrew, K.S. CHC Theory and the Human Cognitive Abilities Project: Standing on the Shoulders of the Giants of Psychometric Intelligence Research. Intelligence 2009, 37, 1–10. [Google Scholar] [CrossRef]
- Kaufman, A. Intelligent Testing with the WISC-III, 1st ed.; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Freitas-Vilela, A.A.; Pearson, R.M.; Emmett, P.; Heron, J.; Smith, A.D.A.C.; Emond, A.; Hibbeln, J.R.; Castro, M.B.T.; Kac, G. Maternal Dietary Patterns during Pregnancy and Intelligence Quotients in the Offspring at 8 Years of Age: Findings from the ALSPAC Cohort. Matern. Child. Nutr 2018, 14, e12431. [Google Scholar] [CrossRef] [Green Version]
- Zainuddin, M.S.A.; Thuret, S. Nutrition, Adult Hippocampal Neurogenesis and Mental Health. Br. Med. Bull. 2012, 103, 89–114. [Google Scholar] [CrossRef] [Green Version]
- Jacka, F.N.; Cherbuin, N.; Anstey, K.J.; Sachdev, P.; Butterworth, P. Western Diet Is Associated with a Smaller Hippocampus: A Longitudinal Investigation. BMC Med. 2015, 13, 215. [Google Scholar] [CrossRef] [Green Version]
- Geary, D.C. The Origin of Mind: Evolution of Brain, Cognition, and General Intelligence; American Psychological Association: Washington, DC, USA, 2005. [Google Scholar]
- McNamara, R.K.; Able, J.; Jandacek, R.; Rider, T.; Tso, P.; Eliassen, J.C.; Alfieri, D.; Weber, W.; Jarvis, K.; Delbello, M.P.; et al. Docosahexaenoic Acid Supplementation Increases Prefrontal Cortex Activation during Sustained Attention in Healthy Boys: A Placebo-Controlled, Dose-Ranging, Functional Magnetic Resonance Imaging Study. Am. J. Clin. Nutr. 2010, 91, 1060–1067. [Google Scholar] [CrossRef]
- Jackson, P.A.; Reay, J.L.; Scholey, A.B.; Kennedy, D.O. DHA-Rich Oil Modulates the Cerebral Haemodynamic Response to Cognitive Tasks in Healthy Young Adults: A near IR Spectroscopy Pilot Study. Br. J. Nutr. 2012, 107, 1093–1098. [Google Scholar] [CrossRef]
- Pu, S.; Nakagome, K.; Yamada, T.; Matsumura, H.; Yokoyama, K.; Kaneko, K.; Kurosawa, Y. Association between Fish Consumption and Prefrontal Function during a Cognitive Task in Male Japanese Workers: A Multi-Channel near-Infrared Spectroscopy Study. PLoS ONE 2015, 10, e0123972. [Google Scholar] [CrossRef] [Green Version]
- Kondo, H.; Osaka, N.; Osaka, M. Cooperation of the Anterior Cingulate Cortex and Dorsolateral Prefrontal Cortex for Attention Shifting. Neuroimage 2004, 23, 670–679. [Google Scholar] [CrossRef]
- Wade, A.T.; Davis, C.R.; Dyer, K.A.; Hodgson, J.M.; Woodman, R.J.; Keage, H.A.D.; Murphy, K.J. A Mediterranean Diet Supplemented with Dairy Foods Improves Mood and Processing Speed in an Australian Sample: Results from the MedDairy Randomized Controlled Trial. Nutr. Neurosci. 2020, 23, 646–658. [Google Scholar] [CrossRef]
- Crichton, G.E.; Bryan, J.; Murphy, K.J.; Buckley, J. Review of Dairy Consumption and Cognitive Performance in Adults: Findings and Methodological Issues. Dement. Geriatr. Cogn. Disord. 2010, 30, 352–361. [Google Scholar] [CrossRef]
- De Goeij, L.C.; van de Rest, O.; Brouwer-Brolsma, E.M.; Feskens, E.J.M.; de Groot, L.C.P.G.M. Associations between the Intake of Different Types of Dairy and Cognitive Performance in Dutch Older Adults: The B-PROOF Study. Nutrients 2020, 12, 468. [Google Scholar] [CrossRef] [Green Version]
- Bryan, J.; Osendarp, S.; Hughes, D.; Calvaresi, E.; Baghurst, K.; van Klinken, J.W. Nutrients for Cognitive Development in School-Aged Children. Nutr. Rev. 2004, 62, 295–306. [Google Scholar] [CrossRef]
- Wong, C.H.Y.; Liu, J.; Lee, T.M.C.; Tao, J.; Wong, A.W.K.; Chau, B.K.H.; Chen, L.; Chan, C.C.H. Fronto-Cerebellar Connectivity Mediating Cognitive Processing Speed. Neuroimage 2021, 226, 117556. [Google Scholar] [CrossRef]
- Hackman, D.A.; Farah, M.J.; Meaney, M.J. Socioeconomic Status and the Brain: Mechanistic Insights from Human and Animal Research. Nat. Rev. Neurosci. 2010, 11, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Vereecken, C.; Maes, L. Young Children’s Dietary Habits and Associations with the Mothers’ Nutritional Knowledge and Attitudes. Appetite 2010, 54, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Nyaradi, A.; Li, J.; Hickling, S.; Foster, J.; Oddy, W.H. The Role of Nutrition in Children’s Neurocognitive Development, from Pregnancy through Childhood. Front. Hum. Neurosci. 2013, 26, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W. Nutritional Epidemiology; Oxford University Press: New York, NY, USA, 2013; ISBN 9780199979448. [Google Scholar]
- Edefonti, V.; de Vito, R.; Salvatori, A.; Bravi, F.; Patel, L.; Dalmartello, M.; Ferraroni, M. Reproducibility of A Posteriori Dietary Patterns across Time and Studies: A Scoping Review. Adv. Nutr. 2020, 11, 1255–1281. [Google Scholar] [CrossRef]
- Agostoni, C.; Guz-Mark, A.; Marderfeld, L.; Milani, G.P.; Silano, M.; Shamir, R. The Long-Term Effects of Dietary Nutrient Intakes during the First 2 Years of Life in Healthy Infants from Developed Countries: An Umbrella Review. Adv. Nutr. 2019, 10, 489–501. [Google Scholar] [CrossRef]
Variable | Mean ± SD (Median, 1st–3rd Quartile) or N (%) |
---|---|
Child’s age at neurodevelopmental evaluation (years) | 7 ± 0.05 (7.0, 7.0–7.0) |
Missing | 0 |
Child’s sex | |
Male | 195 (51.5) |
Female | 184 (48.5) |
Missing | 0 |
Child’s body mass index at 7 years | |
Underweight | 9 (2.4) |
Normal weight | 255 (67.3) |
Overweight | 67 (17.7) |
Obese | 18 (4.7) |
Missing | 30 (7.0) |
Child’s extracurricular physical activity at 7 years | |
2 or less days/week | 210 (55.4) |
3 or more days/week | 164 (43.3) |
Missing | 5 (1.3) |
Child’s birth weight ≥ 4 kg | |
Yes | 39 (10.3) |
No | 336 (88.7) |
Missing | 4 (1.1) |
Breastfeeding | |
No | 22 (5.8) |
Yes | 338 (89.2) |
Missing | 19 (5.0) |
Maternal Raven’s test score | 119 ± 11 (125, 114–127) |
Missing | 0 |
Folic acid supplementation before pregnancy | |
No | 221 (58.3) |
Yes | 158 (41.7) |
Missing | 0 |
Alcohol consumption during pregnancy (n° of units/week) | 1.6 ± 3.4 (0.3, 0.0–1.5) |
Missing | 2 |
Father’s education | |
Middle school or lower level | 109 (28.8) |
High school | 178 (47.1) |
University degree | 84 (22.2) |
Missing | 8 (2.1) |
House property | |
Yes | 308 (81.2) |
No | 67 (17.7) |
Missing | 4 (1.1) |
WISC-IV Index Scores | N | Minimum | Mean ± SD | Median (1st–3rd Quartile) | Maximum |
---|---|---|---|---|---|
Full-Scale Intelligence Quotient (FSIQ) | 376 | 75 | 109 ± 11 | 109 (102–116) | 141 |
Verbal Comprehension Index (VCI) | 376 | 76 | 108 ± 11 | 108 (100–117) | 138 |
Perceptual Reasoning Index (PRI) | 379 | 82 | 114 ± 11 | 113 (106–122) | 145 |
Working Memory Index (WMI) | 379 | 73 | 98 ± 10 | 100 (91–106) | 133 |
Processing Speed Index (PSI) | 379 | 62 | 102 ± 13 | 103 (91–112) | 147 |
Dietary Pattern | ||||||
---|---|---|---|---|---|---|
Nutrient | Dairy Products | Plant-Based Foods | Fats | Meat and Potatoes | Seafood | Communality |
Protein | 0.43 | 0.00 | −0.41 | 0.67 | 0.15 | 0.82 |
Cholesterol | 0.41 | 0.09 | −0.48 | 0.24 | 0.29 | 0.54 |
SFAs | 0.46 | 0.16 | −0.69 | −0.01 | −0.02 | 0.72 |
MUFAs | 0.20 | −0.13 | −0.88 | 0.14 | 0.16 | 0.87 |
Oleic acid | 0.18 | −0.15 | −0.87 | 0.12 | 0.15 | 0.85 |
Linoleic acid | 0.02 | −0.16 | −0.61 | 0.22 | 0.10 | 0.46 |
Linolenic acid | 0.33 | −0.19 | −0.50 | 0.12 | 0.00 | 0.40 |
Arachidonic acid | 0.06 | 0.17 | −0.26 | 0.53 | 0.38 | 0.52 |
EPA | −0.02 | 0.02 | 0.01 | 0.11 | 0.83 | 0.70 |
DHA | −0.05 | −0.04 | −0.02 | 0.01 | 0.68 | 0.47 |
Soluble carbohydrates | 0.41 | −0.48 | −0.09 | −0.06 | −0.14 | 0.43 |
Starch | −0.19 | −0.33 | −0.38 | 0.42 | −0.17 | 0.49 |
Fiber | −0.04 | −0.81 | −0.27 | 0.24 | −0.17 | 0.81 |
Sodium | −0.01 | −0.23 | −0.53 | 0.31 | −0.07 | 0.43 |
Potassium | 0.43 | −0.65 | −0.17 | 0.46 | 0.05 | 0.85 |
Phosphorus | 0.68 | −0.09 | −0.45 | 0.44 | 0.09 | 0.87 |
Iron | 0.17 | −0.61 | −0.27 | 0.33 | 0.26 | 0.65 |
Zinc | 0.37 | −0.16 | −0.42 | 0.60 | 0.15 | 0.73 |
Selenium | 0.24 | 0.04 | 0.00 | 0.29 | 0.67 | 0.59 |
Copper | 0.43 | −0.45 | −0.03 | 0.02 | 0.44 | 0.58 |
Iodine | 0.72 | 0.03 | −0.03 | −0.01 | 0.25 | 0.58 |
Calcium | 0.79 | 0.00 | −0.32 | 0.01 | −0.12 | 0.74 |
Magnesium | 0.75 | −0.35 | 0.01 | 0.26 | 0.08 | 0.76 |
Manganese | 0.37 | −0.59 | 0.14 | 0.01 | 0.09 | 0.52 |
Vitamin B1 | 0.10 | −0.44 | −0.28 | 0.62 | −0.08 | 0.67 |
Vitamin B2 | 0.67 | −0.26 | −0.29 | 0.37 | −0.03 | 0.73 |
Niacin | 0.09 | −0.19 | −0.05 | 0.82 | 0.22 | 0.76 |
Pantothenic acid | 0.72 | −0.12 | −0.11 | 0.43 | 0.22 | 0.78 |
Vitamin B6 | 0.26 | −0.49 | −0.06 | 0.70 | 0.10 | 0.82 |
Biotin | 0.75 | −0.20 | −0.16 | 0.11 | 0.18 | 0.68 |
Folate | 0.16 | −0.69 | −0.25 | 0.33 | −0.08 | 0.68 |
Vitamin B12 | 0.25 | −0.07 | −0.12 | −0.10 | 0.56 | 0.41 |
Retinol | 0.35 | −0.11 | −0.31 | −0.22 | 0.20 | 0.32 |
Beta-carotene | −0.07 | −0.64 | −0.10 | 0.02 | −0.01 | 0.42 |
Vitamin C | 0.15 | −0.75 | 0.05 | 0.05 | 0.00 | 0.59 |
Vitamin D | 0.09 | 0.08 | −0.28 | 0.18 | 0.56 | 0.44 |
Vitamin E 2 | −0.03 | −0.61 | −0.53 | 0.01 | 0.25 | 0.71 |
Proportion of explained variance (%) | 15.46 | 13.90 | 13.40 | 11.76 | 8.88 | |
Cumulative explained variance (%) | 15.46 | 29.35 | 42.75 | 54.51 | 63.39 |
Food Group (g/day) | Dairy Products | Plant-Based Foods | Fats | Meat and Potatoes | Seafood |
---|---|---|---|---|---|
Whole grains and whole bread | −0.11 | 0.32 | 0.07 | 0.03 | 0.00 |
Refined grains, white bread, and bread substitutes | −0.15 | 0.11 | 0.25 | 0.23 | −0.10 |
Ready-to-eat meals | −0.17 | 0.13 | 0.12 | 0.06 | −0.20 |
Breakfast cereals | 0.01 | 0.14 | −0.02 | 0.22 | −0.05 |
Biscuits | 0.16 | −0.08 | 0.01 | −0.15 | −0.05 |
Milk | 0.56 | −0.18 | 0.04 | 0.12 | −0.06 |
Yogurt | 0.39 | −0.06 | −0.05 | −0.08 | −0.14 |
Milk substitutes | −0.06 | 0.23 | 0.06 | 0.03 | −0.05 |
Fat cheese | 0.38 | −0.13 | 0.32 | −0.11 | −0.09 |
Low-fat cheese | 0.15 | 0.03 | 0.17 | 0.01 | −0.04 |
Eggs | 0.18 | 0.07 | 0.18 | −0.10 | 0.10 |
Potatoes | 0.04 | 0.08 | −0.04 | 0.33 | 0.08 |
Pulses and pulses products | −0.07 | 0.22 | 0.04 | 0.09 | −0.12 |
Green leafy vegetables | 0.11 | 0.34 | 0.11 | −0.04 | 0.01 |
Coloured vegetables | −0.10 | 0.38 | 0.12 | 0.00 | 0.00 |
Other vegetables | 0.08 | 0.22 | 0.04 | 0.03 | 0.01 |
Citrus fruits | 0.02 | 0.32 | −0.02 | 0.03 | −0.03 |
Bananas | 0.20 | 0.36 | −0.21 | 0.03 | −0.03 |
Other fruits | 0.15 | 0.41 | −0.02 | −0.03 | −0.02 |
Fruit juices | 0.08 | 0.28 | −0.15 | −0.04 | −0.07 |
Nuts and seeds | 0.13 | 0.11 | 0.16 | −0.03 | −0.04 |
Fatty fish | 0.00 | −0.07 | 0.02 | 0.03 | 0.45 |
Lean fish | 0.07 | 0.00 | −0.07 | 0.07 | 0.32 |
Crustaceans and shellfish | 0.06 | 0.05 | −0.08 | −0.08 | 0.45 |
Canned fish | −0.18 | −0.01 | 0.05 | −0.03 | 0.32 |
Processed and ultra-processed meat | −0.04 | −0.13 | 0.33 | 0.36 | 0.05 |
Poultry | 0.10 | −0.08 | −0.12 | 0.44 | 0.00 |
Red meat | 0.03 | −0.09 | 0.01 | 0.36 | 0.09 |
Spreading fats | 0.06 | −0.07 | 0.16 | −0.08 | 0.04 |
Olive oil and olives | −0.07 | 0.20 | 0.42 | −0.08 | 0.13 |
Seed oil | −0.06 | 0.04 | 0.11 | 0.09 | 0.18 |
Sweet and salty snacks | −0.10 | 0.05 | 0.24 | −0.02 | −0.03 |
Cakes without cream | 0.05 | 0.05 | 0.17 | −0.05 | 0.13 |
Spoon desserts and chocolate | 0.03 | −0.05 | 0.23 | −0.07 | 0.03 |
Sugar-sweetened beverages | −0.01 | −0.10 | −0.02 | −0.01 | −0.06 |
Estimated Beta Coefficient (Standard Error) | |||||
---|---|---|---|---|---|
FSIQ (N = 305) | VCI (N = 305) | PRI (N = 311) | WMI (N = 311) | PSI (N = 311) | |
Intercept | 71.86 (7.36) *** | 78.44 (7.43) *** | 85.01 (8.10) *** | 68.92 (7.15) *** | 82.04 (9.87) *** |
Dietary Pattern | |||||
Dairy Products | −0.44 (0.63) | 0.13 (0.63) | 0.25 (0.69) | 0.19 (0.61) | −2.05 (0.84) ** |
Plant-based Foods | −0.02 (0.66) | 0.30 (0.67) | 0.00 (0.72) | 0.57 (0.64) | −1.12 (0.88) |
Fats | −0.38 (0.61) | −0.98 (0.62) | 0.13 (0.68) | −0.45 (0.60) | 0.42 (0.83) |
Meat and Potatoes | −0.88 (0.65) | −1.28 (0.66) * | −1.07 (0.72) | −0.22 (0.63) | 0.51 (0.87) |
Seafood | 0.90 (0.63) | 1.24 (0.64) * | 1.35 (0.70) * | −0.45 (0.62) | −0.30 (0.85) |
Child’s characteristic | |||||
Sex | −1.39 (1.24) | −1.30 (1.26) | −4.26 (1.36) *** | −0.96 (1.20) | 3.26 (1.66) ** |
Body mass index | |||||
Obese | −4.11 (2.71) | −4.24 (2.74) | 0.76 (3.00) | −2.72 (2.65) | −5.26 (3.66) |
Overweight | −0.67 (1.58) | 0.72 (1.59) | −0.74 (1.73) | −2.50 (1.53) | 1.01 (2.11) |
Underweight | −3.60 (3.80) | −0.37 (3.84) | −3.53 (4.20) | −2.89 (3.71) | −1.25 (5.12) |
Child’s extracurricular physical activity at 7 years of age | 1.27 (1.27) | 0.84 (1.28) | −0.42 (1.40) | 1.08 (1.24) | 2.42 (1.71) |
Child’s birth weight ≥ 4 kg | −0.76 (2.03) | −1.08 (2.05) | 1.77 (2.21) | −0.68 (1.95) | −4.38 (2.70) |
Breastfeeding | 3.39 (2.68) | 3.39 (2.71) | 0.69 (2.97) | 3.77 (2.62) | 1.53 (3.62) |
Mother’s characteristic | |||||
Raven’s test score | 0.25 (0.06) *** | 0.20 (0.06) *** | 0.22 (0.06) *** | 0.18 (0.06) *** | 0.12 (0.08) |
Folic acid supplementation before pregnancy | 3.09 (1.24) ** | 2.51 (1.25) ** | 2.04 (1.37) | 2.00 (1.20) * | 1.94 (1.66) |
Alcohol consumption during pregnancy (n° of units/week) | −0.12 (0.23) | −0.72 (0.23) *** | 0.18 (0.25) | −0.01 (0.22) | 0.32 (0.31) |
Father’s characteristic | |||||
Father’s education | |||||
High school | 3.73 (1.43) *** | 3.20 (1.45) ** | 3.05 (1.57) * | 3.43 (1.39) ** | 2.00 (1.92) |
University degree | 5.93 (1.80) *** | 4.15 (1.82) ** | 4.52 (1.99) ** | 6.65 (1.76) *** | 2.41 (2.43) |
Family’s characteristic | |||||
House property | 2.61 (1.72) | 2.55 (1.74) | 0.16 (1.90) | 2.03 (1.68) | 2.22 (2.32) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinoni, M.; Giordani, E.; Mosconi, C.; Rosolen, V.; Concina, F.; Fiori, F.; Carletti, C.; Knowles, A.; Pani, P.; Bin, M.; et al. Are Dietary Patterns Related to Cognitive Performance in 7-Year-Old Children? Evidence from a Birth Cohort in Friuli Venezia Giulia, Italy. Nutrients 2022, 14, 4168. https://doi.org/10.3390/nu14194168
Marinoni M, Giordani E, Mosconi C, Rosolen V, Concina F, Fiori F, Carletti C, Knowles A, Pani P, Bin M, et al. Are Dietary Patterns Related to Cognitive Performance in 7-Year-Old Children? Evidence from a Birth Cohort in Friuli Venezia Giulia, Italy. Nutrients. 2022; 14(19):4168. https://doi.org/10.3390/nu14194168
Chicago/Turabian StyleMarinoni, Michela, Elisa Giordani, Cedric Mosconi, Valentina Rosolen, Federica Concina, Federica Fiori, Claudia Carletti, Alessandra Knowles, Paola Pani, Maura Bin, and et al. 2022. "Are Dietary Patterns Related to Cognitive Performance in 7-Year-Old Children? Evidence from a Birth Cohort in Friuli Venezia Giulia, Italy" Nutrients 14, no. 19: 4168. https://doi.org/10.3390/nu14194168
APA StyleMarinoni, M., Giordani, E., Mosconi, C., Rosolen, V., Concina, F., Fiori, F., Carletti, C., Knowles, A., Pani, P., Bin, M., Ronfani, L., Ferraroni, M., Barbone, F., Parpinel, M., & Edefonti, V. (2022). Are Dietary Patterns Related to Cognitive Performance in 7-Year-Old Children? Evidence from a Birth Cohort in Friuli Venezia Giulia, Italy. Nutrients, 14(19), 4168. https://doi.org/10.3390/nu14194168