Lung Cancer Risk in Men and Compliance with the 2018 WCRF/AICR Cancer Prevention Recommendations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Study Design and Participants
2.3. Data Collection
2.3.1. Sociodemographic Data
2.3.2. Lifestyle Data
2.3.3. Body Composition Data
2.3.4. Dietary Data
2.4. Development of the Ad-LC WCRF/AICR Score
2.5. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ríos-González, O.; Ramis-Salas, M.; Peña-Axt, J.C.; Racionero-Plaza, S. Alternative Friendships to Improve Men’s Health Status. The Impact of the New Alternative Masculinities’ Approach. Int. J. Environ. Res. Public Health 2021, 18, 2188. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Lung Cancer. Available online: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx (accessed on 11 March 2022).
- Wojciechowska, U.; Didkowska, J. Zachorowania i zgony na Nowotwory Złośliwe w Polsce; Krajowy Rejestr Nowotworów, Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie Państwowy Instytut Badawczy. [Incidence and Deaths from Malignant Neoplasms in Poland; National Cancer Registry, Maria Sklodowska-Curie National Institute of Oncology National Research Institute]. Warszawa, Poland, 2014. Available online: http://onkologia.org.pl/raporty/ (accessed on 11 March 2022).
- Nasim, F.; Sabath, B.F.; Eapen, G.A. Lung Cancer. Med. Clin. N. Am. 2019, 103, 463–473. [Google Scholar] [CrossRef]
- World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Expert Report 2018. Diet, Nutrition, Physical Activity and Lung Cancer. Available online: https://www.wcrf.org/sites/default/files/Lung-cancer-report.pdf (accessed on 11 March 2022).
- Malhotra, J.; Malvezzi, M.; Negri, E.; La Vecchia, C.; Boffetta, P. Risk factors for lung cancer worldwide. Eur. Respir. J. 2016, 48, 889–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shams-White, M.M.; Brockton, N.T.; Mitrou, P.; Romaguera, D.; Brown, S.; Bender, A.; Kahle, L.L.; Reedy, J. Operationalizing the 2018 World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Cancer Prevention Recommendations: A Standardized Scoring System. Nutrients 2019, 11, 1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brambilla, E.; Travis, W.D. Lung cancer. In World Cancer Report; Stewart, B.W., Wild, C.P., Eds.; IARC: Lyon, France, 2014; pp. 350–631. [Google Scholar]
- Lippi, G.; Mattiuzzi, C.; Cervellin, G. Meat consumption and cancer risk: A critical review of published meta-analyses. Crit. Rev. Oncol. Hematol. 2016, 97, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; McClees, S.F.; Afaq, F. Pomegranate for prevention and treatment of cancer: An update. Molecules 2017, 22, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakai, K.; Sugawara, Y.; Tsuji, I.; Tamakoshi, A.; Shimazu, T.; Matsuo, K.; Nagata, C.; Mizoue, T.; Tanaka, K.; Inoue, M.; et al. Risk of lung cancer and consumption of vegetables and fruit in Japanese: A pooled analysis of cohort studies in Japan. Cancer Sci. 2015, 106, 1057–1065. [Google Scholar] [CrossRef] [Green Version]
- Gilsing, A.M.; Weijenberg, M.P.; Goldbohm, R.A.; Dagnelie, P.C.; van den Brandt, P.A.; Schouten, L.J. Vegetarianism, low meat consumption and the risk of lung, postmenopausal breast and prostate cancer in a population-based cohort study. Eur. J. Clin. Nutr. 2016, 70, 723–729. [Google Scholar] [CrossRef]
- Luqman, M.; Javed, M.M.; Daud, S.; Raheem, N.; Ahmad, J.; Khan, A.U. Risk factors for lung cancer in the Pakistani population. Asian Pac. J. Cancer Prev. 2014, 15, 3035–3039. [Google Scholar] [CrossRef] [Green Version]
- Linseisen, J.; Rohrmann, S.; Bueno-de-Mesquita, B.; Büchner, F.L.; Boshuizen, H.C.; Agudo, A.; Gram, I.T.; Dahm, C.C.; Overvad, K.; Egeberg, R.; et al. Consumption of meat and fish and risk of lung cancer: Results from the European Prospective Investigation into Cancer and Nutrition. Cancer Causes Control 2011, 22, 909–918. [Google Scholar] [CrossRef]
- Theodoratou, E.; Timofeeva, M.; Li, X.; Meng, X.; Ioannidis, J.P.A. Nature, Nurture, and Cancer Risks: Genetic and Nutritional Contributions to Cancer. Annu. Rev. Nutr. 2017, 37, 293–320. [Google Scholar] [CrossRef]
- Narita, S.; Saito, E.; Sawada, N.; Shimazu, T.; Yamaji, T.; Iwasaki, M.; Ishihara, J.; Takachi, R.; Shibuya, K.; Inoue, M.; et al. Dietary consumption of antioxidant vitamins and subsequent lung cancer risk: The Japan Public Health center-based prospective study. Int. J. Cancer 2018, 142, 2441–2460. [Google Scholar] [CrossRef] [Green Version]
- Buffart, L.M.; Singh, A.S.; van Loon, E.C.; Vermeulen, H.I.; Brug, J.; Chinapaw, M.J. Physical activity and the risk of developing lung cancer among smokers: A meta-analysis. J. Sci. Med. Sport 2014, 17, 67–71. [Google Scholar] [CrossRef]
- Tu, H.; Heymach, J.V.; Wen, C.P.; Ye, Y.; Pierzynski, J.A.; Roth, J.A.; Wu, X. Different dietary patterns and reduction of lung cancer risk: A large cases-control study in the U.S. Sci. Rep. 2016, 6, 26760. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, Z.; Li, J.; Li, Z.; Han, J. A Healthy Dietary Pattern Reduces Lung Cancer Risk: A Systematic Review and Meta-Analysis. Nutrients 2016, 8, 134. [Google Scholar] [CrossRef] [Green Version]
- Balder, H.F.; Goldbohm, R.A.; van den Brandt, P.A. Dietary patterns associated with male lung cancer risk in the Netherlands Cohort Study. Cancer Epidemiol. Biomark. Prev. 2005, 14, 483–490. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Xiao, R.D.; Lin, T.; Xiong, W.M.; Xu, Q.P.; Li, X.; Liu, Z.G.; He, B.C.; Hu, Z.J.; Cai, L. Dietary patterns, BCMO1 polymorphisms, and primary lung cancer risk in a Han Chinese population: A case-control study in Southeast China. BMC Cancer 2018, 18, 445. [Google Scholar] [CrossRef]
- Krusinska, B.; Hawrysz, I.; Slowinska, M.A.; Wadolowska, L.; Biernacki, M.; Czerwinska, A.; Golota, J.J. Dietary patterns and breast or lung cancer risk: A pooled analysis of two case-control studies in northern-eastern Poland. Adv. Clin. Exp. Med. 2017, 9, 1367–1375. [Google Scholar] [CrossRef] [Green Version]
- Krusinska, B.; Hawrysz, I.; Wadolowska, L.; Slowinska, M.A.; Biernacki, M.; Czerwinska, A.; Golota, J.J. Associations of Mediterranean Diet and a Posteriori Derived Dietary Patterns with Breast and Lung Cancer Risk: A Case-Control Study. Nutrients 2018, 10, 470. [Google Scholar] [CrossRef] [Green Version]
- Anic, G.M.; Park, Y.; Subar, A.F.; Schap, T.E.; Reedy, J. Index-based dietary patterns and risk of lung cancer in the NIH-AARP diet and health study. Eur. J. Clin. Nutr. 2016, 70, 123–129. [Google Scholar] [CrossRef]
- De Stefani, E.; Boffetta, P.; Ronco, A.L.; Deneo-Pellegrini, H.; Acosta, G.; Gutiérrez, L.P.; Mendilaharsu, M. Nutrient patterns and risk of lung cancer: A factor analysis in Uruguayan men. Lung Cancer 2008, 61, 283–291. [Google Scholar] [CrossRef] [PubMed]
- De Stefani, E.; Deneo-Pellegrini, H.; Boffetta, P.; Ronco, A.L.; Aune, D.; Acosta, G.; Mendilaharsu, M.; Brennan, P.; Ferro, G. Dietary patterns and risk of cancer: A factor analysis in Uruguay. Int. J. Cancer 2009, 124, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Wild, C.P.; Espina, C.; Bauld, L.; Bonanni, B.; Brenner, H.; Brown, K.; Dillner, J.; Forman, D.; Kampman, E.; Nilbert, M.; et al. Cancer Prevention Europe. Mol. Oncol. 2019, 13, 528–534. [Google Scholar] [CrossRef] [PubMed]
- World Cancer Research Fund International; American Institute for Cancer Research (Eds.) Diet, Nutrition, Physical Activity and Cancer: A Global Perspective: A Summary of the Third Expert Report, 3rd ed.; World Cancer Research Fund International: London, UK, 2018. [Google Scholar]
- Hawrysz, I.; Wadolowska, L.; Slowinska, M.A.; Czerwinska, A.; Golota, J.J. Adherence to Prudent and Mediterranean Dietary Patterns Is Inversely Associated with Lung Cancer in Moderate But Not Heavy Male Polish Smokers: A Case-Control Study. Nutrients 2020, 12, 3788. [Google Scholar] [CrossRef]
- Schulpen, M.; van den Brandt, P.A. Adherence to the Mediterranean diet and risk of lung cancer in the Netherlands Cohort Study. Br. J. Nutr. 2018, 119, 674–684. [Google Scholar] [CrossRef] [Green Version]
- Hodge, A.M.; Bassett, J.K.; Shivappa, N.; Hebert, J.R.; English, D.R.; Giles, G.G.; Severi, G. Dietary inflammatory index, Mediterranean diet score, and lung cancer: A prospective study. Cancer Causes Control 2016, 27, 907–917. [Google Scholar] [CrossRef] [Green Version]
- Gnagnarella, P.; Maisonneuve, P.; Bellomi, M.; Rampinelli, C.; Bertolotti, R.; Spaggiari, L.; Palli, D.; Veronesi, G. Red meat, Mediterranean diet and lung cancer risk among heavy smokers in the COSMOS screening study. Ann. Oncol. 2013, 24, 2606–2611. [Google Scholar] [CrossRef]
- Lidia Wadolowska Website. Available online: http://www.uwm.edu.pl/edu/lidiawadolowska/ (accessed on 25 April 2013).
- Niedzwiedzka, E.; Wadolowska, L.; Kowalkowska, J. Reproducibility of A Non-Quantitative Food Frequency Questionnaire (62-Item FFQ-6) and PCA-Driven Dietary Pattern Identification in 13–21-Year-Old Females. Nutrients 2019, 11, 2183. [Google Scholar] [CrossRef] [Green Version]
- Karavasiloglou, N.; Hüsing, A.; Masala, G.; van Gils, C.H.; Turzanski Fortner, R.; Chang-Claude, J.; Huybrechts, I.; Weiderpass, E.; Gunter, M.; Arveux, P.; et al. Adherence to the World Cancer Research Fund/American Institute for Cancer Research cancer prevention recommendations and risk of in situ breast cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. BMC Med. 2019, 17, 221. [Google Scholar] [CrossRef]
- Armitage, P.; Berry, G.; Matthews, J.N.S. Statistical Methods in Medical Research, 4th ed.; Blackwell Science: Oxford, UK, 2001. [Google Scholar]
- Gough, B. Conner MT Barriers to healthy eating among men: A qualitative analysis. Soc. Sci. Med. 2006, 62, 387–395. [Google Scholar] [CrossRef]
- Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef]
- Limit Red and Processed Meat. Available online: https://www.wcrf.org/diet-activity-and-cancer/cancer-prevention-recommendations/limit-red-and-processed-meat/ (accessed on 8 July 2022).
- Meat, Fish, Dairy and Cancer Risk. Available online: https://www.wcrf.org/diet-activity-and-cancer/risk-factors/meat-fish-dairy-and-cancer-risk/ (accessed on 8 July 2022).
- Ng, T.P.; Niti, M.; Yap, K.B.; Tan, W.C. Dietary and supplemental antioxidant and anti-inflammatory nutrient intakes and pulmonary function. Public Health Nutr. 2014, 17, 2081–2086. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Larsen, V.; Amigo, H.; Bustos, P.; Bakolis, I.; Rona, R.J. Ventilatory function in young adults and dietary antioxidant intake. Nutrients 2015, 7, 2879–2896. [Google Scholar] [CrossRef] [Green Version]
- Farvid, M.S.; Sidahmed, E.; Spence, N.D.; Mante Angua, K.; Rosner, B.A.; Barnett, J.B. Consumption of red meat and processed meat and cancer incidence: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2021, 36, 937–951. [Google Scholar] [CrossRef]
- De Stefani, E.; Boffetta, P.; Deneo-Pellegrini, H.; Ronco, A.L.; Aune, D.; Acosta, G.; Brennan, P.; Mendilaharsu, M.; Ferro, G. Meat intake, meat mutagens and risk of lung cancer in Uruguayan men. Cancer Causes Control 2009, 20, 1635–1643. [Google Scholar] [CrossRef]
- Tasevska, N.; Sinha, R.; Kipnis, V.; Subar, A.F.; Leitzmann, M.F.; Hollenbeck, A.R.; Caporaso, N.E.; Schatzkin, A.; Cross, A.J. A prospective study of meat, cooking methods, meat mutagens, heme iron, and lung cancer risks. Am. J. Clin. Nutr. 2009, 89, 1884–1894. [Google Scholar] [CrossRef] [Green Version]
- Kathuria, H.; Neptune, E. Primary and Secondary Prevention of Lung Cancer. Clin. Chest Med. 2020, 41, 39–51. [Google Scholar] [CrossRef]
- Bentley, A.R.; Kritchevsky, S.B.; Harris, T.B.; Holvoet, P.; Jensen, R.L.; Newman, A.B.; Lee, J.S.; Yende, S.; Bauer, D. Health ABC Study. Dietary antioxidants and forced expiratory volume in 1 s decline: The Health, Aging and Body Composition study. Eur. Respir. J. 2012, 39, 979–984. [Google Scholar] [CrossRef] [Green Version]
- Wirfält, E.; Drake, I.; Wallström, P. What do review papers conclude about food and dietary patterns? Food Nutr. Res. 2013, 57, 20523. [Google Scholar] [CrossRef] [Green Version]
- Lonnie, M.; Wadolowska, L.; Bandurska-Stankiewicz, E. Dietary-Lifestyle Patterns Associated with Adiposity and Metabolic Abnormalities in Adult Men under 40 Years Old: A Cross-Sectional Study (MeDiSH Project). Nutrients 2020, 12, 751. [Google Scholar] [CrossRef]
- Veronese, N.; Notarnicola, M.; Cisternino, A.M.; Inguaggiato, R.; Guerra, V.; Reddavide, R.; Donghia, R.; Rotolo, O.; Zinzi, I.; Leandro, G.; et al. Trends in following the Mediterranean diet in southern Italy: A cross-sectional study. Nutr. Metab. Kardiovasc. Dis. 2020, 30, 410–417. [Google Scholar] [CrossRef]
- Sasco, A.J.; Secretan, M.B.; Straif, K. Tobacco smoking and cancer: A brief review of recent epidemiological evidence. Lung Cancer. 2004, 45 (Suppl. 2), 3–9. [Google Scholar] [CrossRef]
- World Cancer Research Fund; American Institute for Cancer Research (Eds.) Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective; AICR: Washington, DC, USA, 2007. [Google Scholar]
- Xu, J.; Vena, J.; Whelan, H.; Robson, P. Impact of adherence to cancer-specific prevention recommendations on subsequent risk of cancer in participants in Alberta’s Tomorrow Project. Public Health Nutr. 2019, 22, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Romaguera, D.; Vergnaud, A.C.; Peeters, P.H.; van Gils, C.H.; Chan, D.S.; Ferrari, P.; Romieu, I.; Jenab, M.; Slimani, N.; Clavel-Chapelon, F.; et al. Is concordance with World Cancer Research Fund/American Institute for Cancer Research guidelines for cancer prevention related to subsequent risk of cancer? Results from the EPIC study. Am. J. Clin. Nutr. 2012, 96, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Lohse, T.; Faeh, D.; Bopp, M.; Rohrmann, S. Swiss National Cohort Study Group. Adherence to the cancer prevention recommendations of the World Cancer Research Fund/American Institute for Cancer Research and mortality: A census-linked cohort. Am. J. Clin. Nutr. 2016, 104, 678–685. [Google Scholar] [CrossRef] [Green Version]
- Kaluza, J.; Harris, H.R.; Håkansson, N.; Wolk, A. Adherence to the WCRF/AICR 2018 recommendations for cancer prevention and risk of cancer: Prospective cohort studies of men and women. Br. J. Cancer 2020, 122, 1562–1570. [Google Scholar] [CrossRef]
- Barrubés, L.; Babio, N.; Hernández-Alonso, P.; Toledo, E.; Ramírez Sabio, J.B.; Estruch, R.; Ros, E.; Fitó, M.; Alonso-Gómez, A.M.; Fiol, M.; et al. Association between the 2018 WCRF/AICR and the Low-Risk Lifestyle Scores with Colorectal Cancer Risk in the Predimed Study. J. Clin. Med. 2020, 9, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, R.; Petimar, J.; Wang, M.; Tabung, F.K.; Song, M.; Liu, L.; Lee, D.H.; Giovannucci, E.L.; Zhang, X.; Smith-Warner, S.A. Adherence to the World Cancer Research Fund/American Institute for Cancer Research Cancer Prevention Recommendations and Colorectal Cancer Survival. Cancer Epidemiol. Biomark. Prev. 2021, 30, 1816–1825. [Google Scholar] [CrossRef] [PubMed]
- Barrios-Rodríguez, R.; Toledo, E.; Martinez-Gonzalez, M.A.; Aguilera-Buenosvinos, I.; Romanos-Nanclares, A.; Jiménez-Moleón, J.J. Adherence to the 2018 World Cancer Research Fund/American Institute for Cancer Research Recommendations and Breast Cancer in the SUN Project. Nutrients 2020, 12, 2076. [Google Scholar] [CrossRef] [PubMed]
- Turati, F.; Dalmartello, M.; Bravi, F.; Serraino, D.; Augustin, L.; Giacosa, A.; Negri, E.; Levi, F.; La Vecchia, C. Adherence to the World Cancer Research Fund/American Institute for Cancer Research Recommendations and the Risk of Breast Cancer. Nutrients 2020, 12, 607. [Google Scholar] [CrossRef]
- Rocío, O.-R.; Macarena, L.-L.; Inmaculada, S.-B.; Antonio, J.-P.; Fernando, V.-A.; Marta, G.-C.; María-José, S.; José-Juan, J.-M. Compliance with the 2018 World Cancer Research Fund/American Institute for Cancer Research Cancer Prevention Recommendations and Prostate Cancer. Nutrients 2020, 12, 768. [Google Scholar] [CrossRef] [Green Version]
- Solans, M.; Romaguera, D.; Gracia-Lavedan, E.; Molinuevo, A.; Benavente, Y.; Saez, M.; Marcos-Gragera, R.; Costas, L.; Robles, C.; Alonso, E.; et al. Adherence to the 2018 WCRF/AICR cancer prevention guidelines and chronic lymphocytic leukemia in the MCC-Spain study. Cancer Epidemiol. 2020, 64, 101629. [Google Scholar] [CrossRef]
- Lee, H.; Kang, M.; Song, W.; Shim, J.; Paik, H. Gender analysis in the development and validation of FFQ: A systematic review. Br. J. Nutr. 2016, 115, 666–671. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.; Yuan, C.; Wang, D.D.; Wang, M.; Song, M.; Shan, Z.; Hu, F.; Rosner, B.; Smith-Warner, S.A.; Willett, W.C. Reproducibility and validity of diet quality scores derived from food-frequency questionnaires. Am. J. Clin. Nutr. 2022, 115, 843–853. [Google Scholar] [CrossRef]
- Al-Shaar, L.; Yuan, C.; Rosner, B.; Dean, S.B.; Ivey, K.L.; Clowry, C.M.; Sampson, L.A.; Barnett, J.B.; Rood, J.; Harnack, L.J.; et al. Reproducibility and Validity of a Semi-quantitative Food Frequency Questionnaire in Men Assessed by Multiple Methods. Am. J. Epidemiol. 2021, 190, 1122–1132. [Google Scholar] [CrossRef]
- Jiang, M.; Fares, A.F.; Shepshelovich, D.; Yang, P.; Christiani, D.; Zhang, J.; Shiraishi, K.; Ryan, B.M.; Chen, C.; Schwartz, A.G.; et al. The relationship between body-mass index and overall survival in non-small cell lung cancer by sex, smoking status, and race: A pooled analysis of 20,937 International lung Cancer consortium (ILCCO) patients. Lung Cancer 2021, 152, 58–65. [Google Scholar] [CrossRef]
- Polak-Szczybyło, E.; Tabarkiewicz, J. IL-17A, IL-17E and IL-17F as Potential Biomarkers for the Intensity of Low-Grade Inflammation and the Risk of Cardiovascular Diseases in Obese People. Nutrients 2022, 14, 643. [Google Scholar] [CrossRef]
- Leszczak, J.; Czenczek-Lewandowska, E.; Wyszyńska, J.; Weres, A.; Lewandowski, B.; Baran., J. Consumption of selected food products by adults representing various body mass categories, during Covid-19 lockdown in Poland. Eur. J. Clin. Nutr. 2022, 76, 1186–1192. [Google Scholar] [CrossRef]
- Osadnik, T.; Pawlas, N.; Lonnie, M.; Osadnik, K.; Lejawa, M.; Wądołowska, L.; Bujak, K.; Fronczek, M.; Reguła, R.; Gawlita, M.; et al. Family History of Premature Coronary Artery Disease (P-CAD)-A Non-Modifiable Risk Factor? Dietary Patterns of Young Healthy Offspring of P-CAD Patients: A Case-Control Study (MAGNETIC Project). Nutrients 2018, 10, 1488. [Google Scholar] [CrossRef] [Green Version]
- Wadolowska, L. Walidacja kwestionariusza częstotliwości spożycia żywności–FFQ. Ocena powtarzalności [Validation of food frequency questionnaire–FFQ. Reproducibility assessment]. Bromat. Chem. Toksykol. 2005, 38, 27–33. [Google Scholar]
- Bernaards, C.M.; Twisk, J.W.; Snel, J.; Van Mechelen, W.; Kemper, H.C. Is calculating pack-years retrospectively a valid method to estimate life-time tobacco smoking? A comparison between prospectively calculated pack-years and retrospectively calculated pack-years. Addiction 2001, 96, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
Socioeconomic Factors | Categories | Scoring |
---|---|---|
Place of residence | rural | 1 |
sub-urban | 2 | |
urban | 3 | |
Education level | primary | 1 |
secondary | 2 | |
higher | 3 | |
Economic situation | below average | 1 |
average | 2 | |
above average | 3 |
Physical Activity | Categories | Description |
---|---|---|
at work | low | more than 70% of working time spent sedentary or retired |
moderate | 50% of working time spent sedentary and 50% of working time spent in an active manner | |
high | 70% of working time spent in an active manner or physical work related to great exertion | |
at leisure time | low | sedentary for most of the time, watching TV, reading books, walking 1–2 h/week |
moderate | walking, bike riding, gymnastics, gardening, light physical activity performed 2–3 h/week | |
high | bike riding, jogging, gardening, and sports activities involving physical exertion performed more than 3 h weekly |
Physical Activity at Work | ||||
---|---|---|---|---|
Low | Moderate | High | ||
Physical activity in leisure time | Low | low | low | moderate |
Moderate | low | moderate | moderate | |
High | moderate | moderate | high |
2018 WCRF/AICR Recommendations | Operationalization of Recommendations | Scoring of the 2018 WCRF/AICR Score (Points) | Ad-LC WCRF/AICR Recommendations | Adapted Operationalization of the Recommendations | Scoring of the Ad-LC WCRF/AICR Score (Points) |
---|---|---|---|---|---|
1. Be a healthy weight | BMI (kg/m2): | 1. Have a healthy body fat | Body fat content (%): | ||
18.5–24.9 | 0.5 | 11.0–20.0 | 1 | ||
25–29.9 | 0.25 | 20.1–24.9 | 0.5 | ||
<18.5 or ≥30 | 0 | <11.0 or >25.0 | 0 | ||
Waist circumference (cm (in)): | |||||
Men: <94 (<37); Women: <80 (<31.5) | 0.5 | ||||
Men: 94–<102 (37–<40); Women: 80–<88 (31.5–<35) | 0.25 | ||||
Men: ≥102 (≥40); Women: ≥88 (≥35) | 0 | ||||
2. Be physically active | Total moderate-vigorous physical activity (min/wk): | 2. Be physically active | Overall physical activity: | ||
≥150 | 1 | High | 1 | ||
75–<150 | 0.5 | Moderate | 0.5 | ||
<75 | 0 | Low | 0 | ||
3. Eat a diet rich in whole grains, vegetables, fruit, and beans | Fruits and vegetables (g/day): | 3. Eat whole grains/vegetables/fruits/beans | Fruits and vegetables 1 (times/day #): | ||
≥400 | 0.5 | Tertile 3 (≥1.435) | 0.5 | ||
200–<400 | 0.25 | Tertile 2 (>0.921 < 1.435) | 0.25 | ||
<200 | 0 | Tertile 1 (≤0.921) | 0 | ||
Total fibre (g/day): | Whole grains and beans 2 (times/day #): | ||||
≥30 | 0.5 | Tertile 3 (≥1.050) | 0.5 | ||
15–<30 | 0.25 | Tertile 2 (>0.200 < 1.050) | 0.25 | ||
<15 | 0 | Tertile 1 (≤0.200) | 0 | ||
4. Limit consumption of “fast foods” and other processed foods high in fat, starches, or sugars | Percent of total kcal from ultra-processed foods: | 4. Limit consumption of fast foods/other processed foods high in fat/starches/sugars | “Fast foods” and other processed foods high in fat, starches and sugars 3 (times/day #): | ||
Tertile 1 | 1 | Tertile 1 (≤2.421) | 1 | ||
Tertile 2 | 0.5 | Tertile 2(>2.421 < 4.038) | 0.5 | ||
Tertile 3 | 0 | Tertile 3 (≥ 4.038) | 0 | ||
5. Limit consumption of red and processed meat | Total red meat (g/wk) and processed meat (g/wk): | 5. Limit consumption of red/processed meats | Red meat and processed meats 4 (times/day #): | ||
Red meat <500 and processed meat <21 | 1 | Tertile 1 (≤1.392) | 1 | ||
Red meat <500 and processed meat 21–<100 | 0.5 | Tertile 2 (>1.392 < 2.359) | 0.5 | ||
Red meat >500 or processed meat ≥100 | 0 | Tertile 3 (≥2.359) | 0 | ||
6. Limit consumption of sugar-sweetened drinks | Total sugar-sweetened drinks (g/day): | 6. Limit consumption of sugar-sweetened drinks | Sugar-sweetened drinks 5 (times/day #): | ||
0 | 1 | Tertile 1 (≤0.000) | 1 | ||
>0–≤250 | 0.5 | Tertile 2 (>0.000 ≤ 0.025) | 0.5 | ||
>250 | 0 | Tertile 3 (>0.025) | 0 | ||
7. Limit alcohol consumption | Total ethanol (g/day): | 7. Limit alcohol consumption | Ethanol (g/day): | ||
0 | 1 | 0 (0 drinks/day) | 1 | ||
>0–≤28 (2 drinks) males and ≤14 (1 drink) females | 0.5 | >0–≤28 (2 drinks/day) males | 0.5 | ||
>28 (2 drinks) males and >14 (1 drink) females | 0 | >28 (>2 drinks/day) males | 0 | ||
8. (Optional) For mothers: breastfeed your baby, if you can | Exclusively breastfed over a lifetime for a total of: | 8. (Optional) For mothers: breastfeed your baby, if you can | NA | NA | |
6+ months | 1 | ||||
>0–<6 months | 0.5 | ||||
Never | 0 | ||||
9. Limit smoking | NI | NI | 9. Limit smoking | Smoking pack years: | |
Never (0 pack years) | 1 | ||||
Moderate smoker (>0–11 pack years) | 0.5 | ||||
Heavy smoker (>11 pack years) | 0 | ||||
Total Score Range 0–8 | Total Score Range 0–8 |
Variable | Total (0–8 Points) | Compliance with the Ad-LC WCRF/AICR Score | |||
---|---|---|---|---|---|
Lower (≤3 Points) | Intermediate (>3–≤5 Points) | Higher (>5 Points) | p-Value | ||
Sample size | 439 | 146 | 254 | 39 | |
Sample percentage | 100 | 33.2 | 57.9 | 8.9 | |
Age (years), mean (SD) | 62.6 (7.2) | 62.8 (7.3) | 62.9 (7.0) | 60.3 (8.1) | <0.0001 |
Place of residence | 0.0258 | ||||
rural | 34.6 | 43.8 | 30.7 | 25.6 | |
sub-urban | 46.0 | 41.1 | 49.2 | 43.6 | |
urban | 19.4 | 15.1 | 20.1 | 30.8 | |
Education level | 0.1018 | ||||
primary | 23.7 | 30.8 | 20.5 | 18.0 | |
secondary | 58.8 | 54.1 | 61.8 | 56.4 | |
higher | 17.5 | 15.1 | 17.7 | 25.6 | |
Economic situation | |||||
below average | 20.7 | 23.3 | 20.5 | 12.8 | 0.3331 |
average | 63.3 | 65.1 | 61.8 | 66.7 | |
above average | 16.0 | 11.6 | 17.7 | 20.5 | |
Socioeconomic status (SES index) a | 0.1008 | ||||
low | 53.5 | 60.3 | 51.6 | 41.0 | |
average | 19.8 | 16.4 | 22.0 | 18.0 | |
high | 26.7 | 23.3 | 26.4 | 41.0 | |
Family history of lung cancer among relatives | 0.0925 | ||||
yes | 20.7 | 21.2 | 18.5 | 33.3 | |
no | 73.8 | 713.3 | 77.6 | 59.0 | |
I do not know | 5.5 | 7.5 | 3.9 | 7.7 | |
Occupational exposure in the workplace | 0.8394 | ||||
yes | 31.2 | 29.5 | 32.3 | 30.8 | |
no | 68.8 | 70.5 | 67.7 | 69.2 | |
Vitamin/mineral supplements use | 0.3731 | ||||
yes | 10.7 | 8.2 | 11.4 | 15.4 | |
no | 89.3 | 91.8 | 88.6 | 84.6 | |
BMI (kg/m2), mean (SD) | 27.7 (7.2) | 28.5 (5.2) | 27.4 (4.8) | 26.0 (3.4) | <0.0001 |
<18.5 | 2.3 | 1.4 | 3.1 | 0.0 | 0.0272 |
18.5–24.9 | 28.5 | 27.4 | 27.2 | 41.0 | |
25.0–29.9 | 36.4 | 30.1 | 38.9 | 43.6 | |
≥30.0 | 32.8 | 41.1 | 30.7 | 15.4 | |
Waist circumference (cm), mean (SD) | 100.6 (12.8) | 102.8 (7.6) | 100.3 (12.6) | 94.1 (10.1) | <0.0001 |
<94 | 29.6 | 23.9 | 29.9 | 48.7 | 0.0014 |
94–<102 | 20.5 | 28.9 | 20.5 | 30.8 | |
≥102 | 49.9 | 38.8 | 49.6 | 20.5 |
Variable | Total (0–8 Points) | Compliance with the Ad-LC WCRF/AICR Score | |||
---|---|---|---|---|---|
Lower (≤3 Points) | Intermediate (3–≤5 Points) | Higher (>5 Points) | p-Value | ||
Sample size | 439 | 146 | 254 | 39 | |
Body fat content (%) | 26.6 (7.9) | 28.0 (8.0) | 26.3 (7.8) | 23.0 (6.4) | <0.0001 |
11.0–20.0 | 18.4 | 10.3 | 19.7 | 41.0 | <0.0001 |
20.1–24.9 | 60.4 | 71.9 | 59.1 | 25.6 | |
<11.0 or >25.0 | 21.2 | 17.8 | 21.3 | 33.4 | |
Overall physical activity | |||||
low | 51.7 | 65.1 | 50.4 | 10.3 | <0.0001 |
moderate | 37.6 | 32.2 | 37.8 | 56.4 | |
high | 10.7 | 2.7 | 11.8 | 33.3 | |
Smoking in pack years | 12.4 (7.4) | 14.5 (7.3) | 12.0 (7.0) | 7.3 (6.7) | <0.0001 |
0 (never smoker) | 12.5 | 8.2 | 11.4 | 35.9 | <0.0001 |
>0–11 (moderate smoker) | 57.4 | 49.3 | 62.2 | 56.4 | |
>11 (heavy smoker) | 30.1 | 42.5 | 26.4 | 7.7 | |
Fruits and vegetables (times/day) | 1.3 (0.7) | 1.1 (0.6) | 1.3 (0.7) | 1.7 (1.0) | <0.0001 |
Tertile 1 | 34.4 | 42.5 | 32.3 | 17.9 | 0.0065 |
Tertile 2 | 32.6 | 34.2 | 31.5 | 33.3 | |
Tertile 3 | 33.0 | 23.3 | 36.2 | 48.7 | |
Whole grains and beans (times/day) | 0.8 (0.8) | 0.5 (0.7) | 0.9 (0.8) | 1.2 (0.9) | 0.1070 |
Tertile 1 | 35.8 | 54.1 | 28.7 | 12.8 | <0.0001 |
Tertile 2 | 31.0 | 28.8 | 32.3 | 30.8 | |
Tertile 3 | 33.3 | 17.1 | 39.0 | 56.4 | |
Fast foods/other processed foods high in fat/starches/sugars (times/day) | 3.3 (1.7) | 4.4 (1.6) | 3.3 (1.5) | 1.7 (1.0) | <0.0001 |
Tertile 1 | 33.6 | 11.6 | 37.8 | 76.9 | <0.0001 |
Tertile 2 | 33.5 | 23.3 | 40.9 | 23.1 | |
Tertile 3 | 33.9 | 65.1 | 21.3 | 0 | |
Red/processed meats (times/day) | 2.0 (1.2) | 2.4 (1.2) | 1.8 (1.1) | 1.3 (1.0) | <0.0001 |
Tertile 1 | 34.6 | 16.4 | 39.8 | 69.2 | <0.0001 |
Tertile 2 | 32.6 | 33.6 | 33.9 | 20.5 | |
Tertile 3 | 32.8 | 50.0 | 26.4 | 10.3 | |
Sugar-sweetened drinks (times/day) | 0.1 (0.3) | 0.2 (0.4) | 0.1 (0.2) | 0.1 (0.2) | <0.0001 |
Tertile 1 | 50.8 | 24.7 | 61.8 | 76.9 | <0.0001 |
Tertile 2 | 20.0 | 25.3 | 18.9 | 7.7 | |
Tertile 3 | 29.2 | 50.0 | 19.3 | 15.4 | |
Ethanol (g/day) | |||||
0 | 23.0 | 15.7 | 23.6 | 46.2 | <0.0001 |
>0–≤28 | 59.5 | 55.5 | 64.6 | 41.0 | |
>28 | 17.5 | 28.8 | 11.8 | 12.8 |
Component Included in the Model | Categories | Scores | Cancer-Control Sample (n = 439) | |||
---|---|---|---|---|---|---|
Model 1 | p-Value | Model 2 | p-Value | |||
‘Have a healthy body fat’ | 11.0–20.0% of body fat | 0 | Ref. | Ref. | ||
20.1–24.9% of body fat | 0.5 | 0.69 (0.36; 1.31) | 0.2581 | 0.71 (0.36; 1.41) | 0.3263 | |
<11.0 or >25.0% of body fat | 1 | 0.86 (0.59; 1.28) | 0.4609 | 0.83 (0.55; 1.25) | 0.3705 | |
‘Be physically active’ | Low | 0 | Ref. | Ref. | ||
Moderate | 0.5 | 0.70 (0.44; 1.13) | 0.1432 | 0.88 (0.53; 1.47) | 0.6237 | |
High | 1 | 0.73 (0.49; 1.08) | 0.1110 | 0.82 (0.54; 1.24) | 0.3445 | |
‘Limit smoking’ | Heavy smoker | 0 | Ref. | Ref. | ||
Moderate smoker | 0.5 | 0.53 (0.33; 0.87) | 0.0116 | 0.55 (0.33; 0.91) | 0.0189 | |
Never smoker | 1 | 0.14 (0.05; 0.39) | 0.0001 | 0.13 (0.04; 0.37) | 0.0002 | |
‘Eat whole grains/ vegetables/fruits/beans’ | Infrequent consumption | 0 | Ref. | Ref. | ||
Moderate frequency consumption | 0.5 | 0.76 (0.44; 1.35) | 0.3547 | 0.90 (0.50; 1.63) | 0.7301 | |
Frequent consumption | 1 | 0.69 (0.53; 0.90) | 0.0057 | 0.77 (0.58; 1.03) | 0.0810 | |
‘Limit consumption of fast foods/other processed foods high in fat/starches/sugars’ | Frequent consumption | 0 | Ref. | Ref. | ||
Moderate frequency consumption | 0.5 | 1.07 (0.63; 1.81) | 0.8014 | 1.08 (0.60; 1.91) | 0.8150 | |
Infrequent consumption | 1 | 0.90 (0.69; 1.19) | 0.4830 | 0.93 (0.68; 1.27) | 0.6389 | |
‘Limit consumption of red/processed meats’ | Frequent consumption | 0 | Ref. | Ref. | ||
Moderate frequency consumption | 0.5 | 2.04 (1.16; 3.58) | 0.0013 | 1.78 (0.98; 3.23) | 0.0575 | |
Infrequent consumption | 1 | 1.40 (1.07; 1.97) | 0.0152 | 1.18 (0.87; 1.62) | 0.2830 | |
‘Limit consumption of sugar-sweetened drinks’ | Frequent consumption | 0 | Ref. | Ref. | ||
Moderate frequency consumption | 0.5 | 0.80 (0.41; 1.57) | 0.0512 | 0.56 (1.25; 0.57) | 0.5659 | |
Infrequent consumption | 1 | 1.10 (0.85; 1.43) | 0.4503 | 0.99 (0.78; 1.26) | 0.9514 | |
‘Limit alcohol consumption’ | Frequent consumption | 0 | Ref. | Ref. | ||
Moderate frequency consumption | 0.5 | 0.92 (0.50; 1.70) | 0.8013 | 0.89 (0.45; 1.74) | 0.8874 | |
Infrequent consumption | 1 | 1.13 (0.76; 1.67) | 0.5440 | 0.99 (0.63; 1.53) | 0.9477 |
Components Included in the Model | Scores | Cancer-Control Sample (n = 439) | |
---|---|---|---|
Adjusted Model | p-Value | ||
Model 1: ‘Have a healthy body fat’ + ‘Be physically active’ | ≤0.5 | Ref. | |
>0.5–≤1 | 1.04 (0.57; 1.88) | 0.9036 | |
>1 | 0.69 (0.47; 1.02) | 0.0634 | |
Model 2: Model 1 + ‘Limit smoking’ | ≤1 | Ref. | |
>1–<2 | 0.55 (0.21; 1.00) | 0.0497 | |
≥2 | 0.53 (0.36; 0.78) | 0.0013 | |
Model 3: Model 2 + ‘Eat whole grains/vegetables/fruits/beans’ | <2 | Ref. | |
≥2–<3 | 0.22 (0.12; 0.39) | <0.0001 | |
≥3 | 0.57 (0.32; 0.99) | 0.0441 | |
Model 4: Model 3 + ‘Limit fast food/other processed foods high in fat/starches/sugars’ | ≤3 | Ref. | |
>2–<3 | 0.54 (0.32; 0.96) | 0.0335 | |
≥3 | 0.40 (0.27; 0.59) | <0.0001 | |
Model 5: Model 4 + ‘Limit consumption of red/processed meats’ | <3 | Ref. | |
>3–≤4 | 0.49 (0.29; 0.82) | 0.0075 | |
>4 | 0.34 (0.17; 0.69) | 0.0026 | |
Model 6: Model 5 + ‘Limit consumption of sugar-sweetened drinks’ | ≤3 | Ref. | |
>3–≤4 | 0.93 (0.57; 1.53) | 0.0708 | |
>4 | 0.61 (0.43; 0.85) | 0.0041 | |
Model 7 (full): Model 6 + ‘Limit alcohol consumption’ | ≤3 | Ref. | |
>3–≤5 | 0.87 (0.54; 1.38) | 0.5873 | |
>5 | 0.53 (0.32; 0.88) | 0.0129 | |
1-point increase | 0.66 (0.45; 0.95) | 0.0267 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hawrysz, I.; Wadolowska, L.; Slowinska, M.A.; Czerwinska, A.; Golota, J.J. Lung Cancer Risk in Men and Compliance with the 2018 WCRF/AICR Cancer Prevention Recommendations. Nutrients 2022, 14, 4295. https://doi.org/10.3390/nu14204295
Hawrysz I, Wadolowska L, Slowinska MA, Czerwinska A, Golota JJ. Lung Cancer Risk in Men and Compliance with the 2018 WCRF/AICR Cancer Prevention Recommendations. Nutrients. 2022; 14(20):4295. https://doi.org/10.3390/nu14204295
Chicago/Turabian StyleHawrysz, Iwona, Lidia Wadolowska, Malgorzata Anna Slowinska, Anna Czerwinska, and Janusz Jacek Golota. 2022. "Lung Cancer Risk in Men and Compliance with the 2018 WCRF/AICR Cancer Prevention Recommendations" Nutrients 14, no. 20: 4295. https://doi.org/10.3390/nu14204295
APA StyleHawrysz, I., Wadolowska, L., Slowinska, M. A., Czerwinska, A., & Golota, J. J. (2022). Lung Cancer Risk in Men and Compliance with the 2018 WCRF/AICR Cancer Prevention Recommendations. Nutrients, 14(20), 4295. https://doi.org/10.3390/nu14204295