The Dietary and Non-Dietary Management of Osteoporosis in Adult-Onset Celiac Disease: Current Status and Practical Guidance
Abstract
:1. Introduction
1.1. Celiac Disease
1.2. Osteoporosis in Celiac Disease
1.3. Physiology and Pathophysiology of Alterations of Bone Health in Celiac Disease
2. Aims and Methods
3. Assessment
3.1. Assessment of Bone Condition in Celiac Disease
3.1.1. Clinical Assessment
3.1.2. Laboratory Tests
3.1.3. Dual-Energy X-ray Absorptiometry (DXA)
3.1.4. Vertebral Fracture Assessment
3.1.5. Fracture Risk Assessment (FRAX) Tool
3.1.6. Timing of DXA Scan in Adult Celiac Disease
- i.
- DXA may be considered in establishing the diagnosis of CeD, particularly in the presence of
- -
- Malabsorption with significant weight loss or low body weight;
- -
- Delayed diagnosis (above 40 years) or in patients with severe CeD presenta-tion;
- -
- The presence of a history of fragility fracture or when an individual has an-other important risk factor for osteoporosis (such as rheumatoid arthritis, hyperparathyroidism, hypogonadism, thyroid gland disorders, hip fracture in the family, smoking and excess alcohol use);
- -
- Down syndrome: These patients have an estimated six-fold increased chance of having CeD in comparison to the general population [44]. An increased prevalence of osteoporosis in Down syndrome has been reported [45]. This is possibly attributed to the diminished osteoblastic bone formation with no significant differences in bone resorption.
- ii.
- DXA in CeD without additional risk factors
- -
- A DXA scan may be performed later in the course of the disease, for example, at 30–35 years of age [4]. Pantaleoni et al. [33] reported that stratifying patients according to gender and age showed a higher prevalence of low BMD in men older than 30 years and in women of all ages. Therefore, they proposed that DXA needs to be performed when CeD is diagnosed in those older than 30 years of age.
- iii.
- Follow-up DXA
3.2. Celiac Disease Screening in Individuals having Fragility Fracture or Low BMD
4. General Non-Pharmacological Management of Osteoporosis in Adult-Onset Celiac Disease
4.1. General Measures
4.2. Gluten-Free Diet
4.3. Vitamin D and Calcium
4.4. Magnesium
5. Pharmacological Management of Osteoporosis in Adult-Onset Celiac Disease
5.1. Indications for Pharmacological Treatment
5.2. Overview of Osteoporosis Medications
5.3. Medications: Selection, Regimen, Duration and Side Effects
6. Practical Management of Osteoporosis in Adult-Onset Celiac Disease
6.1. Premenopausal Celiac Disease Women with Osteoporosis
6.2. Treating Male Celiac Patients with Osteoporosis
6.3. Monitoring and Follow-Up
6.4. Consultation with Bone Specialist
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lindfors, K.; Ciacci, C.; Kurppa, K.; Lundin, K.E.A.; Makharia, G.K.; Mearin, M.L.; Murray, J.A.; Verdu, E.F.; Kaukinen, K. Coeliac disease. Nat. Rev. Dis. Prim. 2019, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Theethira, T.G.; Dennis, M.; Leffler, D.A. Nutritional Consequences of Celiac Disease and the Gluten-Free Diet. Expert Rev. Gastroenterol. Hepatol. 2014, 8, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Welander, A.; Tjernberg, A.R.; Montgomery, S.M.; Ludvigsson, J.; Ludvigsson, J.F. Infectious disease and risk of later celiac disease in childhood. Pediatrics 2010, 125, e530–e536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahrs, C.R.; Chuda, K.; Tapia, G.; Stene, L.C.; Mårild, K.; Rasmussen, T.; Rønningen, K.S.; Lundin, K.E.A.; Kramna, L.; Cinek, O.; et al. Enterovirus as trigger of coeliac disease: Nested case-control study within prospective birth cohort. BMJ 2019, 364, l231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Toma, A.; Volta, U.; Auricchio, R.; Castillejo, G.; Sanders, D.S.; Cellier, C.; Mulder, C.J.; Lundin, K.E.A. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. U. Eur. Gastroenterol. J. 2019, 7, 583–613. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A.; Berti, I.; Gerarduzzi, T.; Not, T.; Colletti, R.B.; Drago, S.; Elitsur, Y.; Green, P.H.; Guandalini, S.; Hill, I.D.; et al. Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: A large multicenter study. Arch. Intern. Med. 2003, 163, 286–292. [Google Scholar] [CrossRef]
- Haines, M.L.; Anderson, R.P.; Gibson, P.R. Systematic review: The evidence base for long-term management of coeliac disease. Aliment Pharmacol. Ther. 2008, 28, 1042–1066. [Google Scholar] [CrossRef]
- Wierdsma, N.J.; Nijeboer, P.; de van der Schueren, M.A.E.; Berkenpas, M.; van Bodegraven, A.A.; Mulder, C.J.J. Refractory celiac disease and EATL patients show severe malnutrition and malabsorption at diagnosis. Clin. Nutr. 2016, 35, 685–691. [Google Scholar] [CrossRef] [Green Version]
- Cummings, S.R.; Melton, L.J. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002, 359, 1761–1767. [Google Scholar] [CrossRef]
- Lorentzon, M.; Cummings, S.R. Osteoporosis: The evolution of a diagnosis. J. Intern. Med. 2015, 277, 650–661. [Google Scholar] [CrossRef]
- Miller, P.D. Underdiagnosis and Undertreatment of Osteoporosis: The Battle to Be Won. J. Clin. Endocrinol. Metab. 2016, 101, 852–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burge, R.T.; Dawson-Hughes, B.; Solomon, D.; Wong, J.B.; King, A.B.T.A. Incidence and economic burden of osteoporotic fractures in the United States, 2005–2025. J. Bone Min. Res. 2007, 22, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Abrahamsen, B.; Van Staa, T.; Ariely, R.; Olson, M.; Cooper, C. Excess mortality following hip fracture: A systematic epidemiological review. Osteoporos. Int. 2009, 20, 1633–1650. [Google Scholar] [CrossRef] [PubMed]
- Buckley, L.; Guyatt, G.; Fink, H.A.; Cannon, M.; Grossman, J.; Hansen, K.E.; Humphrey, M.B.; Lane, N.E.; Magrey, M.; Miller, M.; et al. 2017 American College of Rheumatology Guideline for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis. Arthritis Rheumatol. 2017, 69, 1521–1537. [Google Scholar] [CrossRef] [Green Version]
- Dias Costa, F.; Maia, C.; Almeida, S.; Ferreira, R. Child with multiple fractures: A rare presentation of a common disease. BMJ Case Rep. 2017, 2017, bcr2016218477. [Google Scholar] [CrossRef]
- Passananti, V.; Santonicola, A.; Bucci, C.; Andreozzi, P.; Ranaudo, A.; Di Giacomo, D.V.; Ciacci, C. Bone mass in women with celiac disease: Role of exercise and gluten-free diet. Dig. Liver Dis. 2012, 44, 379–383. [Google Scholar] [CrossRef]
- Jafri, M.R.; Nordstrom, C.W.; Murray, J.A.; Van Dyke, C.T.; Dierkhising, R.A.; Zinsmeister, A.R.; Melton, L.J. Long-term fracture risk in patients with celiac disease: A population-based study in Olmsted County, Minnesota. Dig. Dis. Sci. 2008, 53, 964–971. [Google Scholar] [CrossRef] [Green Version]
- Kamycheva, E.; Goto, T.; Camargo, C.A. Celiac disease is associated with reduced bone mineral density and increased FRAX scores in the US National Health and Nutrition Examination Survey. Osteoporos. Int. 2017, 28, 781–790. [Google Scholar] [CrossRef]
- Ganji, R.; Moghbeli, M.; Sadeghi, R.; Bayat, G.; Ganji, A. Prevalence of Osteoporosis and Osteopenia in Men and Premenopausal Women with Celiac Disease: A Systematic Review; BioMed Central Ltd.: London, UK, 2019; Volume 18, pp. 9. [Google Scholar] [CrossRef] [Green Version]
- Drummond, F.J.; Annis, P.; O’Sullivan, K.; Wynne, F.; Daly, M.; Shanahan, F.; Quane, K.A.; Molloy, M.G. Screening for asymptomatic celiac disease among patients referred for bone densitometry measurement. Bone 2003, 33, 970–974. [Google Scholar] [CrossRef]
- Sanders, D.S.; Patel, D.; Khan, F.B.; Westbrook, R.H.; Webber, C.V.; Milford-Ward, A.; McCloskey, E.V. Case-finding for adult celiac disease in patients with reduced bone mineral density. Dig. Dis. Sci. 2005, 50, 587–592. [Google Scholar] [CrossRef]
- Zanchetta, M.B.; Longobardi, V.; Bai, J.C. Bone and Celiac Disease. Curr. Osteoporos. Rep. 2016, 14, 43–48. [Google Scholar] [CrossRef]
- Stein, E.M.; Rogers, H.; Leib, A.; McMahon, D.J.; Young, P.; Nishiyama, K.; Guo, X.E.; Lewis, S.; Green, P.H.; Shane, E. Abnormal Skeletal Strength and Microarchitecture in Women With Celiac Disease. J. Clin. Endocrinol. Metab. 2015, 100, 2347–2353. [Google Scholar] [CrossRef] [Green Version]
- Meyer, D.; Stavropolous, S.; Diamond, B.; Shane, E.; Green, P.H. Osteoporosis in a north american adult population with celiac disease. Am. J. Gastroenterol. 2001, 96, 112–119. [Google Scholar] [CrossRef]
- Posthumus, L.; Al-Toma, A. Duodenal Histopathology and Laboratory Deficiencies Related to Bone Metabolism in Coeliac Disease. Eur. J. Gastroenterol. Hepatol. 2017, 29, 897–903. [Google Scholar] [CrossRef]
- Kemppainen, T.; Kröger, H.; Janatuinen, E.; Arnala, I.; Lamberg-Allardt, C.; Kärkkäinen, M.; Kosma, V.M.; Julkunen, R.; Jurvelin, J.; Alhava, E.; et al. Bone recovery after a gluten-free diet: A 5-year follow-up study. Bone 1999, 25, 355–360. [Google Scholar] [CrossRef]
- Pantaleoni, S.; Luchino, M.; Adriani, A.; Pellicano, R.; Stradella, D.; Ribaldone, D.G.; Sapone, N.; Isaia, G.C.; Di Stefano, M.; Astegiano, M. Bone Mineral Density at Diagnosis of Celiac Disease and after 1 Year of Gluten-Free Diet. Sci. World J. 2014, 2014, 173082. [Google Scholar] [CrossRef]
- Newnham, E.D.; Shepherd, S.J.; Strauss, B.J.; Hosking, P.; Gibson, P.R. Adherence to the gluten-free diet can achieve the therapeutic goals in almost all patients with coeliac disease: A 5-year longitudinal study from diagnosis. J. Gastroenterol. Hepatol. 2016, 31, 342–349. [Google Scholar] [CrossRef]
- Lucendo, A.J.; García-Manzanares, A. Bone mineral density in adult coeliac disease: An updated review. Rev. Esp. Enferm. Dig. 2013, 105, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, A.; Bhadada, S.K.; Bhansali, A.; Kochhar, R.; Santosh, R. Celiac disease: A missed cause of metabolic bone disease. Indian J. Endocrinol. Metab. 2012, 16, 780–785. [Google Scholar] [CrossRef]
- Olmos, M.; Antelo, M.; Vazquez, H.; Smecuol, E.; Mauriño, E.; Bai, J.C. Systematic review and meta-analysis of observational studies on the prevalence of fractures in coeliac disease. Dig. Liver Dis. 2008, 40, 46–53. [Google Scholar] [CrossRef]
- Davie, M.W.; Gaywood, I.; George, E.; Jones, P.W.; Masud, T.; Price, T.; Summers, G.D. Excess non-spine fractures in women over 50 years with celiac disease: A cross-sectional, questionnaire-based study. Osteoporos. Int. 2005, 16, 1150–1155. [Google Scholar] [CrossRef] [PubMed]
- West, J.; Logan, R.F.A.; Card, T.R.; Smith, C.; Hubbard, R. Fracture risk in people with celiac disease: A population-based cohort study. Gastroenterology 2003, 125, 429–436. [Google Scholar] [CrossRef]
- Moreno, M.L.; Vazquez, H.; Mazure, R.; Smecuol, E.; Niveloni, S.; Pedreira, S.; Sugai, E.; Mauriño, E.; Gomez, J.C.; Bai, J.C. Stratification of bone fracture risk in patients with celiac disease. Clin. Gastroenterol. Hepatol. 2004, 2, 127–134. [Google Scholar] [CrossRef]
- Laszkowska, M.; Mahadev, S.; Sundström, J.; Lebwohl, B.; Green, P.H.R.; Michaelsson, K.; Ludvigsson, J.F. Systematic review with meta-analysis: The prevalence of coeliac disease in patients with osteoporosis. Aliment Pharmacol. Ther. 2018, 48, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Ludvigsson, J.F.; Michaelsson, K.; Ekbom, A.; Montgomery, S.M. Coeliac disease and the risk of fractures-A general population-based cohort study. Aliment Pharmacol. Ther. 2006, 25, 273–285. [Google Scholar] [CrossRef]
- de Bruin, I.J.A.; Vranken, L.; Wyers, C.E.; van der Velde, R.Y.; Trienekens, T.A.M.; Kaarsemaker, S.; Janzing, H.M.J.; Wolters, F.L.; Wouda, S.; Geusens, P.P.M.M.; et al. The Prevalence of Celiac Disease in a Fracture Liaison Service Population. Calcif. Tissue Int. 2020, 107, 327–334. [Google Scholar] [CrossRef]
- Rickels, M.R.; Mandel, S.J. Celiac disease manifesting as isolated hypocalcemia. Endocr. Pract. 2004, 10, 203–207. [Google Scholar] [CrossRef]
- Dobnig, H.; Turner, R.T. The effects of programmed administration of human parathyroid hormone fragment (1-34) on bone histomorphometry and serum chemistry in rats. Endocrinology 1997, 138, 4607–4612. [Google Scholar] [CrossRef]
- Rejnmark, L.E.-S.H. Effects of PTH and PTH Hypersecretion on Bone: A Clinical Perspective. Curr. Osteoporos. Rep. 2020, 18, 103–114. [Google Scholar] [CrossRef]
- Rude, R.K.; Olerich, M. Magnesium deficiency: Possible role in osteoporosis associated with gluten-sensitive enteropathy. Osteoporos. Int. 1996, 6, 453–461. [Google Scholar] [CrossRef]
- Mayassi, T.; Ladell, K.; Gudjonson, H.; McLaren, J.E.; Shaw, D.G.; Tran, M.T.; Rokicka, J.J.; Lawrence, I.; Grenier, J.C.; van Unen, V.; et al. Chronic Inflammation Permanently Reshapes Tissue-Resident Immunity in Celiac Disease. Cell 2019, 176, 967–981.e19. [Google Scholar] [CrossRef] [Green Version]
- Livshits, G.; Kalinkovich, A. Targeting chronic inflammation as a potential adjuvant therapy for osteoporosis. Life Sci. 2022, 306, 120847. [Google Scholar] [CrossRef]
- Zhou, A.; Hyppönen, E. Vitamin D deficiency and C-reactive protein: A bidirectional Mendelian randomization study. Int. J. Epidemiol. 2022. [Google Scholar] [CrossRef]
- Mousa, A.; Cui, C.; Song, A.; Myneni, V.D.; Sun, H.; Li, J.J.; Murshed, M.; Melino, G.; Kaartinen, M.T. Transglutaminases factor XIII-A and TG2 regulate resorption, adipogenesis and plasma fibronectin homeostasis in bone and bone marrow. Cell Death Differ. 2017, 24, 844–854. [Google Scholar] [CrossRef] [Green Version]
- Krupa-Kozak, U. Pathologic bone alterations in celiac disease: Etiology, epidemiology, and treatment. Nutrition 2014, 30, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Wimalawansa, S.J. Vitamin D in the new millennium. Curr. Osteoporos. Rep. 2012, 10, 4–15. [Google Scholar] [CrossRef]
- Reboul, E.; Goncalves, A.; Comera, C.; Bott, R.; Nowicki, M.; Landrier, J.F.; Jourdheuil-Rahmani, D.; Dufour, C.; Collet, X.; Borel, P. Vitamin D intestinal absorption is not a simple passive diffusion: Evidences for involvement of cholesterol transporters. Mol. Nutr. Food Res. 2011, 55, 691–702. [Google Scholar] [CrossRef]
- Corazza, G.R.; Stefano, M.D.; Mauriño, E.; Bai, J.C. Bones in coeliac disease: Diagnosis and treatment. Best Pract. Res. Clin. Gastroenterol. 2005, 19, 453–465. [Google Scholar] [CrossRef]
- Mazure, R.; Vazquez, H.; Gonzalez, D.; Mautalen, C.; Pedreira, S.; Boerr, L.; Bai, J.C. Bone mineral affection in asymptomatic adult patients with celiac disease. Am. J. Gastroenterol. 1994, 89, 2130–2134. [Google Scholar]
- García-Manzanares, Á.; Tenias, J.M.; Lucendo, A.J.; García-Manzanares, A.; Tenias, J.M.; Lucendo, A.J. Bone mineral density directly correlates with duodenal Marsh stage in newly diagnosed adult celiac patients. Scand J. Gastroenterol. 2012, 47, 927–936. [Google Scholar] [CrossRef]
- Chavda, S.; Chavda, B.; Dube, R. Osteoporosis Screening and Fracture Risk Assessment Tool: Its Scope and Role in General Clinical Practice. Cureus 2022, 14, e26518. [Google Scholar] [CrossRef] [PubMed]
- Carey, J.J.; Chih-Hsing Wu, P.; Bergin, D. Risk assessment tools for osteoporosis and fractures in 2022. Best Pract. Res. Clin. Rheumatol. 2022, 101775. [Google Scholar] [CrossRef] [PubMed]
- Yedavally-Yellayi, S.; Ho, A.M.; Patalinghug, E.M. Update on Osteoporosis. Prim. Care Clin. Off. Pract. 2019, 46, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Bultink, I.E.L.W. Performance of vertebral fracture assessment in addition to dual energy X-ray absorptiometry in patients with rheumatoid arthritis. Rheumatol 2014, 53, 775–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, P.D.; Davis, J.W.; Epstein, R.S.; Wasnich, R.D. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann. Intern. Med. 1991, 114, 919–923. [Google Scholar] [CrossRef]
- El Maghraoui, A.; Rezqi, A.; Mounach, A.; Achemlal, L.; Bezza, A.; Ghozlani, I. Systematic vertebral fracture assessment in asymptomatic postmenopausal women. Bone 2013, 52, 176–180. [Google Scholar] [CrossRef]
- Lenchik, L.; Rogers, L.F.; Delmas, P.D.; Genant, H.K. Diagnosis of osteoporotic vertebral fractures: Importance of recognition and description by radiologists. AJR Am. J. Roentgenol. 2004, 183, 949–958. [Google Scholar] [CrossRef]
- Muhammad, R.; Ahmed, A.M.L.J. The predictive accuracy of pre-BMD FRAX scoring in identifying the need for treating osteoporosis in patients with coeliac disease. Am. J. Gastroenterol 2012, 107, S125. [Google Scholar] [CrossRef]
- Leslie, W.D.; Lix, L.M.; Langsetmo, L.; Berger, C.; Goltzman, D.; Hanley, D.A.; Adachi, J.D.; Johansson, H.; Oden, A.; McCloskey, E.; et al. Construction of a FRAX® model for the assessment of fracture probability in Canada and implications for treatment. Osteoporos. Int. 2011, 22, 817–827. [Google Scholar] [CrossRef]
- Tortora, R.; Imperatore, N.; Capone, P.; Gerbino, N.; Rea, M.; Affinito, G.; Caporaso, N.; Rispo, A. FRAX Score Can Be Used to Avoid Superfluous DXA Scans in Detecting Osteoporosis in Celiac Disease: Accuracy of the FRAX Score in Celiac Patients. J. Clin. Densitom. 2018, 21, 315–321. [Google Scholar] [CrossRef]
- Rubio-Tapia, A.; Hill, I.D.; Kelly, C.P.; Calderwood, A.H.; Murray, J.A.; American College of Gastroenterology. ACG clinical guidelines: Diagnosis and management of celiac disease. Am. J. Gastroenterol. 2013, 108, 656–676. [Google Scholar] [CrossRef] [Green Version]
- Ludvigsson, J.F.; Bai, J.C.; Biagi, F.; Card, T.R.; Ciacci, C.; Ciclitira, P.J.; Green, P.H.; Hadjivassiliou, M.; Holdoway, A.; van Heel, D.A.; et al. Diagnosis and Management of Adult Coeliac Disease: Guidelines From the British Society of Gastroenterology. Gut 2014, 63, 1210–1228. [Google Scholar] [CrossRef] [Green Version]
- Ziebart, C.; MacDermid, J.; Furtado, R.; Pontes, T.; Szekeres, M.; Suh, N.; Khan, A. An interpretive descriptive approach of patients with osteoporosis and integrating osteoporosis management advice into their lifestyle. Int. J. Qual. Stud. Health Well-Being 2022, 17, 2070976. [Google Scholar] [CrossRef]
- Chau, Y.P.; Au, P.C.M.; Li, G.H.Y.; Sing, C.W.; Cheng, V.K.F.; Tan, K.C.B.; Kung, A.W.C.; Cheung, C.L. Serum Metabolome of Coffee Consumption and its Association With Bone Mineral Density: The Hong Kong Osteoporosis Study. J. Clin. Endocrinol. Metab. 2020, 105, e619–e627. [Google Scholar] [CrossRef]
- Cavedon, V.; Milanese, C.; Laginestra, F.G.; Giuriato, G.; Pedrinolla, A.; Ruzzante, F.; Schena, F.; Venturelli, M. Bone and skeletal muscle changes in oldest-old women: The role of physical inactivity. Aging Clin. Exp. Res. 2020, 32, 207–214. [Google Scholar] [CrossRef]
- Lacombe, J.; Cairns, B.J.; Green, J.; Reeves, G.K.; Beral, V.; Armstrong, M.E.G.; Million Women Study collaborators. The Effects of Age, Adiposity, and Physical Activity on the Risk of Seven Site-Specific Fractures in Postmenopausal Women. J. Bone Miner. Res. 2016, 31, 1559–1568. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Li, S.; Zeng, Y.; Si, H.; Wu, Y.; Zhang, S.; Shen, B. Assessing the Association between Important Dietary Habits and Osteoporosis: A Genetic Correlation and Two-Sample Mendelian Randomization Study. Nutrients 2022, 14, 2656. [Google Scholar] [CrossRef]
- Martyn-St James, M.; Carroll, S. Effects of different impact exercise modalities on bone mineral density in premenopausal women: A meta-analysis. J. Bone Miner. Metab. 2010, 28, 251–267. [Google Scholar] [CrossRef]
- Giangregorio, L.M.; Papaioannou, A.; Macintyre, N.J.; Ashe, M.C.; Heinonen, A.; Shipp, K.; Wark, J.; McGill, S.; Keller, H.; Jain, R.; et al. Too Fit To Fracture: Exercise Recommendations for Individuals With Osteoporosis or Osteoporotic Vertebral Fracture. Osteoporos. Int. 2014, 25, 821–835. [Google Scholar] [CrossRef] [Green Version]
- Manavi, K.R.; Alston-Mills, B.P.; Thompson, M.P. History of tobacco, vitamin D and women. Int. J. Vitam. Nutr. Res. 2020, 90, 389–394. [Google Scholar] [CrossRef]
- Zura, R.; Xiong, Z.; Einhorn, T.; Watson, J.T.; Ostrum, R.F.; Prayson, M.J.; Della Rocca, G.J.; Mehta, S.; McKinley, T.; Wang, Z.; et al. Epidemiology of Fracture Nonunion in 18 Human Bones. JAMA Surg. 2016, 151, e162775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, A.; Li, X.; Zhao, J.; Zhou, J.; Xie, C.; Chen, H.; Wang, Q.; Wang, R.; Miao, D.; Li, J.; et al. Chronic Alcohol Reduces Bone Mass Through Inhibiting Proliferation and Promoting Aging of Endothelial Cells in Type-H Vessels. Stem. Cells Dev. 2022, 31, 541–554. [Google Scholar] [CrossRef] [PubMed]
- Kapania, E.M.; Reif, T.J.; Tsumura, A.; Eby, J.M.; Callaci, J.J. Alcohol-induced Wnt signaling inhibition during bone fracture healing is normalized by intermittent parathyroid hormone treatment. Anim. Model. Exp. Med. 2020, 3, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Langdahl, B.L. Osteoporosis in premenopausal women. Curr. Opin. Rheumatol. 2017, 29, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Shigehara, K.; Konaka, H.; Koh, E.; Nakashima, K.; Iijima, M.; Nohara, T.; Izumi, K.; Kitagawa, Y.; Kadono, Y.; Sugimoto, K.; et al. Effects of testosterone replacement therapy on hypogonadal men with osteopenia or osteoporosis: A subanalysis of a prospective randomized controlled study in Japan (EARTH study). Aging Male 2017, 20, 139–145. [Google Scholar] [CrossRef]
- Shigehara, K.; Izumi, K.; Kadono, Y.; Mizokami, A. Testosterone and Bone Health in Men: A Narrative Review. J. Clin. Med. 2021, 10, 530. [Google Scholar] [CrossRef]
- Sánchez, M.I.; Mohaidle, A.; Baistrocchi, A.; Matoso, D.; Vázquez, H.; González, A.; Mazure, R.; Maffei, E.; Ferrari, G.; Smecuol, E.; et al. Risk of fracture in celiac disease: Gender, dietary compliance, or both? World J. Gastroenterol. 2011, 17, 3035–3042. [Google Scholar] [CrossRef]
- Casella, S.; Zanini, B.; Lanzarotto, F.; Villanacci, V.; Ricci, C.; Lanzini, A. Celiac disease in elderly adults: Clinical, serological, and histological characteristics and the effect of a gluten-free diet. J. Am. Geriatr. Soc. 2012, 60, 1064–1069. [Google Scholar] [CrossRef]
- Mosca, C.; Thorsteinsdottir, F.; Abrahamsen, B.; Rumessen, J.J.; Händel, M.N. Newly Diagnosed Celiac Disease and Bone Health in Young Adults: A Systematic Literature Review. Calcif. Tissue Int. 2022, 110, 641–648. [Google Scholar] [CrossRef]
- Vilppula, A.; Kaukinen, K.; Luostarinen, L.; Krekelä, I.; Patrikainen, H.; Valve, R.; Luostarinen, M.; Laurila, K.; Mäki, M.; Collin, P. Clinical benefit of gluten-free diet in screen-detected older celiac disease patients. BMC Gastroenterol. 2011, 11, 136. [Google Scholar] [CrossRef]
- Kavak, U.S.; Yüce, A.; Koçak, N.; Demir, H.; Saltik, I.N.; Gürakan, F.; Ozen, H. Bone mineral density in children with untreated and treated celiac disease. J. Pediatr. Gastroenterol. Nutr. 2003, 37, 434–436. [Google Scholar] [CrossRef]
- Verma, A.; Lata, K.; Khanna, A.; Singh, R.; Sachdeva, A.; Jindal, P.; Yadav., S. Study of effect of gluten-free diet on vitamin D levels and bone mineral density in celiac disease patients. J. Family Med. Prim. Care 2022, 11, 603–607. [Google Scholar] [CrossRef]
- Rizzoli, R.; Biver, E.; Brennan-Speranza, T.C. Nutritional intake and bone health. Lancet Diabetes Endocrinol. 2021, 9, 606–621. [Google Scholar] [CrossRef]
- Muñoz-garach, A.; García-fontana, B.; Muñoz-torres, M. Nutrients and Dietary Patterns Related to Osteoporosis. Nutrients 2020, 12, 1986. [Google Scholar] [CrossRef]
- Fiore, C.E.; Pennisi, P.; Ferro, G.; Ximenes, B.; Privitelli, L.; Mangiafico, R.A.; Santoro, F.; Parisi, N.; Lombardo, T. Altered Osteoprotegerin/RANKL Ratio and Low Bone Mineral Density in Celiac Patients on Long-term Treatment with Gluten-free Diet. Horm. Metab. Res. 2006, 38, 417–422. [Google Scholar] [CrossRef]
- Nachman, F.; Sugai, E.; Vázquez, H.; González, A.; Andrenacci, P.; Niveloni, S.; Mazure, R.; Smecuol, E.; Moreno, M.L.; Hwang, H.J.; et al. Serological tests for celiac disease as indicators of long-term compliance with the gluten-free diet. Eur. J. Gastroenterol. Hepatol. 2011, 23, 473–480. [Google Scholar] [CrossRef]
- Moreno, M.L.; Cebolla, Á.; Muñoz-Suano, A.; Carrillo-Carrion, C.; Comino, I.; Pizarro, Á.; León, F.; Rodríguez-Herrera, A.; Sousa, C. Detection of gluten immunogenic peptides in the urine of patients with coeliac disease reveals transgressions in the gluten-free diet and incomplete mucosal healing. Gut 2017, 66, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Gerasimidis, K.; Zafeiropoulou, K.; Mackinder, M.; Ijaz, U.Z.; Duncan, H.; Buchanan, E.; Cardigan, T.; Edwards, C.A.; McGrogan, P.; Russell, R.K. Comparison of Clinical Methods With the Faecal Gluten Immunogenic Peptide to Assess Gluten Intake in Coeliac Disease. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 356–360. [Google Scholar] [CrossRef] [Green Version]
- Caruso, R.; Pallone, F.; Stasi, E.; Romeo, S.; Monteleone, G. Appropriate nutrient supplementation in celiac disease. Ann. Med. 2013, 45, 522–531. [Google Scholar] [CrossRef]
- Dai, Z.; McKenzie, J.E.; McDonald, S.; Baram, L.; Page, M.J.; Allman-Farinelli, M.; Raubenheimer, D.; Bero, L.A. Assessment of the Methods Used to Develop Vitamin D and Calcium Recommendations-A Systematic Review of Bone Health Guidelines. Nutrients 2021, 13, 2423. [Google Scholar] [CrossRef]
- Human Vitamin and Mineral Requirements Report of a joint FAO/WHO expert consultation Bangkok, Thailand. 2001. Available online: https://www.fao.org/3/y2809e/y2809e.pdf (accessed on 28 September 2022).
- IOM. Institute of Medicine, Food and Nutrition Board-Google Scholar. Available online: https://scholar.google.com/scholar?q=[IOM]+Institute+of+Medicine,+Food+and+Nutrition+Board+1997+Dietary+reference+intakes:+calcium,+phosphorus,+magnesium,+vitamin+D+and+fluoride+Washington+DC+National+Academy+Press+432+ (accessed on 3 October 2022).
- Pazianas, M.; Butcher, G.P.; Subhani, J.M.; Finch, P.J.; Ang, L.; Collins, C.; Heaney, R.P.; Zaidi, M.; Maxwell, J.D. Calcium absorption and bone mineral density in celiacs after long term treatment with gluten-free diet and adequate calcium intake. Osteoporos. Int. 2005, 16, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.D.C.; Need, A.G.; Tucker, G.; Slobodian, P.; O’Loughlin, P.D.; Nordin, B.E.C. Suppression of parathyroid hormone and bone resorption by calcium carbonate and calcium citrate in postmenopausal women. Calcif. Tissue Int. 2008, 83, 81–84. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Dietary reference values for vitamin D. EFSA J. 2016, 14, e04547. [Google Scholar] [CrossRef]
- Compston, J.; Cooper, A.; Cooper, C.; Gittoes, N.; Gregson, C.; Harvey, N.; Hope, S.; Kanis, J.A.; McCloskey, E.V.; Poole, K.E.S. UK clinical guideline for the prevention and treatment of osteoporosis. Arch. Osteoporos. 2017, 12, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capozzi, A.; Scambia, G.; Lello, S. Calcium, vitamin D, vitamin K2, and magnesium supplementation and skeletal health. Maturitas 2020, 140, 55–63. [Google Scholar] [CrossRef]
- Russell, R.G.G.; Watts, N.B.; Ebetino, F.H.; Rogers, M.J. Mechanisms of action of bisphosphonates: Similarities and differences and their potential influence on clinical efficacy. Osteoporos. Int. 2008, 19, 733–759. [Google Scholar] [CrossRef]
- Reginster, J.; Minne., H.W.; Sorensen, O.H.; Hooper, M.; Roux, C.; Brandi, M.L.; Lund, B.; Ethgen, D.; Pack, S.; Roumagnac, I.; et al. Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. Osteoporos. Int. 2000, 11, 83–91. [Google Scholar] [CrossRef]
- McClung, M.R.; Geusens, P.; Miller, P.D.; Zippel, H.; Bensen, W.G.; Roux, C.; Adami, S.; Fogelman, I.; Diamond, T.; Eastell, R.; et al. Hip Intervention Program Study Group. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N. Engl. J. Med. 2001, 344, 333–340. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, C.; Chen, H.; Ma, J.; Zhu, Y.; Wang, P.; Zhang, Y.; Ma, H.; Zhang, H. Efficacy and safety of medical therapy for low bone mineral density in patients with Crohn disease. Medicine 2017, 96, e6378. [Google Scholar] [CrossRef]
- Meek, S.E.; Nix, K. Hypocalcemia after alendronate therapy in a patient with celiac disease. Endocr. Pract. 2007, 13, 403–407. [Google Scholar] [CrossRef]
- Abrahamsen, B. Bisphosphonate adverse effects, lessons from large databases. Curr. Opin. Rheumatol. 2010, 22, 404–409. [Google Scholar] [CrossRef]
- Ehrenstein, V.; Heide-Jørgensen, U.; Schiødt, M.; Akre, O.; Herlofson, B.B.; Hansen, S.; Larsson Wexell, C.; Nørholt, S.E.; Tretli, S.; Kjellman, A.; et al. Osteonecrosis of the jaw among patients with cancer treated with denosumab or zoledronic acid: Results of a regulator-mandated cohort postauthorization safety study in Denmark, Norway, and Sweden. Cancer 2021, 127, 4050–4058. [Google Scholar] [CrossRef]
- Ominsky, M.S.; Stouch, B.; Schroeder, J.; Pyrah, I.; Stolina, M.; Smith, S.Y.; Kostenuik, P.J. Denosumab, a fully human RANKL antibody, reduced bone turnover markers and increased trabecular and cortical bone mass, density, and strength in ovariectomized cynomolgus monkeys. Bone 2011, 49, 162–173. [Google Scholar] [CrossRef]
- Cummings, S.R.; San Martin, J.; McClung, M.R.; Siris, E.S.; Eastell, R.; Reid, I.R.; Delmas, P.; Zoog, H.B.; Austin, M.; Wang, A.; et al. FREEDOM Trial. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 2009, 361, 756–765. [Google Scholar] [CrossRef] [Green Version]
- Bone, H.G.; Wagman, R.B.; Brandi, M.L.; Brown, J.P.; Chapurlat, R.; Cummings, S.R.; Czerwiński, E.; Fahrleitner-Pammer, A.; Kendler, D.L.; Lippuner, K.; et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: Results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 2017, 5, 513–523. [Google Scholar] [CrossRef]
- Miller, P.D.; Pannacciulli, N.; Brown, J.P.; Czerwinski, E.; Nedergaard, B.S.; Bolognese, M.A.; Malouf, J.; Bone, H.G.; Reginster, J.Y.; Singer, A.; et al. Denosumab or Zoledronic Acid in Postmenopausal Women With Osteoporosis Previously Treated With Oral Bisphosphonates. J. Clin. Endocrinol. Metab. 2016, 101, 3163–3170. [Google Scholar] [CrossRef] [Green Version]
- Bone, H.G.; Bolognese, M.A.; Yuen, C.K.; Kendler, D.L.; Miller, P.D.; Yang, Y.C.; Grazette, L.; San Martin, J.; Gallagher, J.C. Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J. Clin. Endocrinol. Metab. 2011, 96, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Tsourdi, E.; Langdahl, B.; Cohen-Solal, M.; Aubry-Rozier, B.; Eriksen, E.F.; Guañabens, N.; Obermayer-Pietsch, B.; Ralston, S.H.; Eastell, R.; Zillikens, M.C. Discontinuation of Denosumab therapy for osteoporosis: A systematic review and position statement by ECTS. Bone 2017, 105, 11–17. [Google Scholar] [CrossRef]
- Neer, R.M.; Arnaud, C.D.; Zanchetta, J.R.; Prince, R.; Gaich, G.A.; Reginster, J.Y.; Hodsman, A.B.; Eriksen, E.F.; Ish-Shalom, S.; Genant, H.K.; et al. Effect of Parathyroid Hormone (1-34) on Fractures and Bone Mineral Density in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2001, 344, 1434–1441. [Google Scholar] [CrossRef]
- Eli Lilly and Company. FORTEO—Teriparatide Injection, Solution. Highlights of Prescribing Information. Revised: 4/2021. Available online: https://uspl.lilly.com/forteo/forteo.html#pi/ (accessed on 28 September 2022).
- Bandeira, L.; Lewiecki, E.M.; Bilezikian, J.P. Romosozumab for the treatment of osteoporosis. Expert Opin. Biol. Ther. 2017, 17, 255–263. [Google Scholar] [CrossRef]
- Cosman, F.; Crittenden, D.B.; Adachi, J.D.; Binkley, N.; Czerwinski, E.; Ferrari, S.; Hofbauer, L.C.; Lau, E.; Lewiecki, E.M.; Miyauchi, A.; et al. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2016, 375, 1532–1543. [Google Scholar] [CrossRef] [PubMed]
- Watts, N.B.; Adler, R.A.; Bilezikian, J.P.; Drake, M.T.; Eastell, R.; Orwoll, E.S.; Finkelstein, J.S. Osteoporosis in Men: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2012, 97, 1802–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbers, L.P.B.; Raterman, H.G.; Lems, W.F. Bone Mineral Density Loss and Fracture Risk After Discontinuation of Anti-osteoporotic Drug Treatment: A Narrative Review. Drugs 2021, 81, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, R.; Scheele, W.H.; Neer, R.; Pohl, G.; Adami, S.; Mautalen, C.; Reginster, J.Y.; Stepan, J.J.; Myers, S.L.; Mitlak, B.H. Sustained vertebral fracture risk reduction after withdrawal of teriparatide in postmenopausal women with osteoporosis. Arch. Intern. Med. 2004, 164, 2024–2030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saag, K.G.; Petersen, J.; Brandi, M.L.; Karaplis, A.C.; Lorentzon, M.; Thomas, T.; Maddox, J.; Fan, M.; Meisner, P.D.; Grauer, A. Romosozumab or Alendronate for Fracture Prevention in Women with Osteoporosis. N. Engl. J. Med. 2017, 377, 1417–1427. [Google Scholar] [CrossRef] [Green Version]
- Ettinger, B.; Martin, S.J.; Crans, G.; Pavo, I. Differential Effects of Teriparatide on BMD After Treatment With Raloxifene or Alendronate. J. Bone Miner. Res. 2004, 19, 745–751. [Google Scholar] [CrossRef]
- Kobayakawa, T.; Miyazaki, A.; Takahashi, J.; Nakamura, Y. Verification of efficacy and safety of ibandronate or denosumab for postmenopausal osteoporosis after 12-month treatment with romosozumab as sequential therapy: The prospective VICTOR study. Bone 2022, 162, 116480. [Google Scholar] [CrossRef]
- Cipriani, C.; Pepe, J.; Minisola, S.; Lewiecki, E.M. Adverse effects of media reports on the treatment of osteoporosis. J. Endocrinol. Investig. 2018, 41, 1359–1364. [Google Scholar] [CrossRef]
- Khan, A.; Morrison, A.; Cheung, A.; Hashem, W.; Compston, J. Osteonecrosis of the jaw (ONJ): Diagnosis and management in 2015. Osteoporos. Int. 2016, 27, 853–859. [Google Scholar] [CrossRef]
- Feldstein, A.C.; Black, D.; Perrin, N.; Rosales, A.G.; Friess, D.; Boardman, D.; Dell, R.; Santora, A.; Chandler, J.M.; Rix, M.M.; et al. Incidence and demography of femur fractures with and without atypical features. J. Bone Miner. Res. 2012, 27, 977–986. [Google Scholar] [CrossRef]
- Adler, R.A.; El-Hajj Fuleihan, G.; Bauer, D.C.; Camacho, P.M.; Clarke, B.L.; Clines, G.A.; Compston, J.E.; Drake, M.T.; Edwards, B.J.; Favus, M.J.; et al. Managing Osteoporosis in Patients on Long-Term Bisphosphonate Treatment: Report of a Task Force of the American Society for Bone and Mineral Research. J. Bone Miner. Res. 2016, 31, 1910. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.P.; Engelke, K.; Keaveny, T.M.; Chines, A.; Chapurlat, R.; Foldes, A.J.; Nogues, X.; Civitelli, R.; De Villiers, T.; Massari, F.; et al. Romosozumab improves lumbar spine bone mass and bone strength parameters relative to alendronate in postmenopausal women: Results from the Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial. J. Bone Miner. Res. 2021, 36, 2139–2152. [Google Scholar] [CrossRef]
- Mochizuki, T.; Yano, K.; Ikari, K.; Hiroshima, R.; Okazaki, K. Comparison of Romosozumab Versus Denosumab Treatment on Bone Mineral Density After One Year in Rheumatoid Arthritis Patients with Severe Osteoporosis: A Randomized Clinical Pilot Study. Mod. Rheumatol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Frysz, M.; Gergei, I.; Scharnagl, H.; Smith, G.D.; Zheng, J.; Lawlor, D.A.; Herrmann, M.; Maerz, W.; Tobias, J.H. Circulating Sclerostin Levels Are Positively Related to Coronary Artery Disease Severity and Related Risk Factors. J. Bone Miner. Res. 2022, 37, 273–284. [Google Scholar] [CrossRef]
- Hosmer, W.D.; Genant, H.K.; Browner, W.S.; Browner, W.S.; Browner, W.S. Fractures before menopause: A red flag for physicians. Osteoporos. Int. 2002, 13, 337–341. [Google Scholar] [CrossRef]
- Lewiecki, E.M.; Gordon, C.M.; Baim, S.; Leonard, M.B.; Bishop, N.J.; Bianchi, M.L.; Kalkwarf, H.J.; Langman, C.B.; Plotkin, H.; Rauch, F.; et al. International Society for Clinical Densitometry 2007 Adult and Pediatric Official Positions. Bone 2008, 43, 1115–1121. [Google Scholar] [CrossRef]
- Ferrari, S.; Bianchi, M.L.; Eisman, J.A.; Foldes, A.J.; Adami, S.; Wahl, D.A.; Stepan, J.J.; de Vernejoul, M.C.; Kaufman, J.M.; IOF Committee of Scientific Advisors Working Group on Osteoporosis Pathophysiology. Osteoporosis in young adults: Pathophysiology, diagnosis, and management. Osteoporosis in young adults: Pathophysiology, diagnosis, and management. Osteoporos. Int. 2012, 23, 2735–2748. [Google Scholar] [CrossRef] [Green Version]
- Levy, S.; Fayez, I.; Taguchi, N.; Han, J.Y.; Aiello, J.; Matsui, D.; Moretti, M.; Koren, G.; Ito, S. Pregnancy outcome following in utero exposure to bisphosphonates. Bone 2009, 44, 428–430. [Google Scholar] [CrossRef]
- Cohen, A. Premenopausal Osteoporosis. Endocrinol. Metab. Clin. N. Am. 2017, 46, 117–133. [Google Scholar] [CrossRef] [Green Version]
- Eller-Vainicher, C.; Falchetti, A.; Gennari, L.; Cairoli, E.; Bertoldo, F.; Vescini, F.S.A.C.I. Diagnosis of Endocrine disease: Evaluation of bone fragility in endocrine disorders. Eur. J. Endocrinol. 2019, 180, R213–R323. [Google Scholar] [CrossRef]
- Porcelli, T.; Maffezzoni, F.; Pezzaioli, L.C.; Delbarba, A.; Cappelli, C.; Ferlin, A. Management of endocrine disease: Male Osteoporosis: Diagnosis and Management. Should the Treatment and Target Be the Same as for Female Osteoporosis? Eur. J. Endocrinol. 2020, 183, R75–R93. [Google Scholar] [CrossRef] [PubMed]
- Kondo, H.; Okimoto, N.; Yoshioka, T.; Akahoshi, S.; Fuse, Y.; Ogawa, T.; Okazaki, Y.; Katae, Y.; Tsukamoto, M.; Yamanaka, Y.; et al. Zoledronic acid sequential therapy could avoid disadvantages due to the discontinuation of less than 3-year denosumab treatment. J. Bone Miner. Metab. 2020, 38, 894–902. [Google Scholar] [CrossRef]
- Diez-Perez, A.; Naylor, K.E.; Abrahamsen, B.; Agnusdei, D.B.M.; Cooper, C.; Dennison, E.; Eriksen, E.F.; Gold, D.T.G.N.; Guañabens, N.; Hadji, P.; et al. International Osteoporosis Foundation and European Calcified Tissue Society Working Group. Recommendations for the screening of adherence to oral bisphosphonates. Osteoporos. Int. 2017, 28, 767–774. [Google Scholar] [CrossRef]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.R.J. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2019, 30, 3–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, D.; Mazure, R.; Mautalen, C.; Vazquez, H.; Bai, J. Body composition and bone mineral density in untreated and treated patients with celiac disease. Bone 1995, 16, 231–234. [Google Scholar] [CrossRef]
- Tan, R.Z.; Loh, T.P.; Vasikaran, S. Bone Turnover Marker Monitoring in Osteoporosis Treatment Response. Eur. J. Endocrinol. 2020, 183, 23–57. [Google Scholar] [CrossRef]
1 | Vitamin D deficiency, elevated parathyroid hormone or low urinary calcium level despite sufficient vitamin D and calcium intake *. |
2 | When there is an inadequate response to therapy with oral bisphosphonates |
3 | The presence of medical conditions having a clear risk of possible celiac disease development:
|
4 | The presence of any symptoms suggestive of celiac disease
|
Category | Summary | |
---|---|---|
1. Antiresorptive Agents | ||
1a. Bisphosphonates | ||
Examples: Alendronate and risedronate (orally), ibandronate (orally or intravenously), Pamidronate (intravenously) and zoledronic acid (intravenously). Usually, the 1st line in management | Mechanism of action | The antiresorptive effect of bisphosphonates is derived from the affinity for hydroxyapatite and their inhibitory capability to the osteoclast enzyme farnesyl pyrophosphate synthase [98]. They promote apoptosis of osteoclasts resulting in the inhibition of bone resorption and an increase in BMD. |
Evidence of efficacy | In postmenopausal osteoporosis, these agents improve BMD at the spine (risk reduction 4–9%) and hip (2–6%) after 3 years [99] and decreased fracture risk in comparison with placebo [100]. They also improve BMD in cohorts of Crohn’s patients [101]. A critical issue is that only 1–3% of bisphosphonates are absorbed. In celiac disease, this might be lower, indicating that oral bisphosphonates might be ineffective in active celiac disease versus those in remission. Bone markers, such as CTX (bone resorption) and P1NP (bone formation) should be decreased by 30% or more after 3–6 months of therapy, a high level may indicate poor absorption. In those with poor response, switching to intravenous bisphosphonate is indicated. | |
Important side effects/drawbacks | Adverse events of bisphosphonates are uncommon. Oral administration of bisphosphonates may be associated with dysphagia, abdominal pain, nausea, constipation or diarrhea, acid regurgitation, taste distortion, gastritis and esophageal ulcers. Hypocalcemia is reported particularly after starting potent intravenous bisphosphonates such as zoledronic acid. It is strongly recommended to commence the substitution of calcium and vitamin D 2–4 weeks before bisphosphonates to ameliorate the risk of tetany [102]. The incidence of osteonecrosis of the jaw (ONJ) is small in patients using bisphosphonates for osteoporosis prevention or treatment, ranging from less than 1–28 cases per 100,000 person-years of treatment [103]. In cancer patients, a study showed that ONJ developed in 1.4% of those who were treated initially with zoledronic acid, over the course of 5 years [104]. | |
1b. Monoclonal antibodies | ||
Denosumab 1st or 2nd line in management | Mechanism of action | It is the most powerful antiresorptive agent [105], a monoclonal antibody to the RANKL; which is a key regulator of bone resorption |
Evidence of efficacy | In postmenopausal women, subcutaneous denosumab 6-monthly improved the BMD in both the spine (9%) and the hip (6%) [106]. It reduced the fracture risk: hip (40%), and nonvertebral (20%). In contrast to bisphosphonates, long-term denosumab results in continued improvement in BMD [107]. Further, switching to denosumab in those who had long-term bisphosphonates induced greater BMD gains over 12 months of treatment [108]. Therefore, this approach may be preferable when a response to intravenous bisphosphonates is inadequate. | |
Important side effects/drawbacks | The effect of denosumab is reversible, thus a loss in BMD may happen after treatment cessation [109]. Therefore, it is advocated to continue with an antiresorptive agent after stopping denosumab [110]. | |
2. Anabolic agents | ||
2a. Parathyroid hormone 2nd or 3rd line in management | Mechanism of action | The recombinant parathyroid hormone fragment (1–34 or teriparatide) results in increased bone formation when administered intermittently [111]. |
Evidence of efficacy | Used to treat corticosteroid-related bone loss and also in postmenopausal osteoporosis with beneficial effects on BMD and reduction in vertebral and nonvertebral fractures. | |
Important side effects/drawbacks | Many guidelines restrict its use to two years in those patients at high risk of/or documented vertebral fractures [96] because of an increased risk of osteosarcoma found in studies in rodents, but this has not been seen in human studies. Therefore, the new teriparatide label [112] states that use for more than 2 years may be allowed in patients having a high risk for fracture. It needs to be avoided when there is a heightened risk for osteosarcoma. Its effect is reversible, thus if discontinued a decline in BMD may follow. | |
2b. Romosozumab2nd or 3rd line in management. The main indication is postmenopausal osteoporosis. | Mechanism of action | A humanized monoclonal antibody to sclerostin (a glycoprotein blocks canonical Wnt signaling bone formation pathway). It improves bone strength by increasing bone formation and suppressing bone resorption |
Evidence of efficacy | Monthly subcutaneous administration (maximal 12 months) decreases the occurrence of vertebral fractures in postmenopausal osteoporosis [113]. | |
Important side effects/drawbacks | There is concern about a possible increase in cardiovascular events [114]. It is mainly indicated for severe postmenopausal osteoporosis. |
Medication | Dosing Scheme; Route of Administration | Duration of Therapy |
---|---|---|
Bisphosphonates | 5 years | |
Alendronate | 70 mg per week; orally | |
Ibandronate | 150 mg, monthly. Orally. Or 3 mg every 3 months; intravenously | |
Pamidronate | Different schemes, intravenously. e.g., 90 mg every 4 weeks | |
Risedronate | 35 mg weekly. Orally | |
Zoledronic acid | 5 mg, once yearly; intravenously | |
Denosumab | 60 mg twice yearly; subcutaneously | 5 years, followed by another antiresorptive therapy |
Teriparatide | 20 micrograms daily; subcutaneously | 2 years; then 1st or 2nd line agent (see Table 2) |
Romosozumab | 210 mg (administered as two subcutaneous injections of 105 mg each) once a month | One year. Thereafter start antiresorptive therapy with bisphosphonate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Toma, A.; Herman, A.; Lems, W.F.; Mulder, C.J.J. The Dietary and Non-Dietary Management of Osteoporosis in Adult-Onset Celiac Disease: Current Status and Practical Guidance. Nutrients 2022, 14, 4554. https://doi.org/10.3390/nu14214554
Al-Toma A, Herman A, Lems WF, Mulder CJJ. The Dietary and Non-Dietary Management of Osteoporosis in Adult-Onset Celiac Disease: Current Status and Practical Guidance. Nutrients. 2022; 14(21):4554. https://doi.org/10.3390/nu14214554
Chicago/Turabian StyleAl-Toma, Abdulbaqi, Amin Herman, Willem F. Lems, and Chris J. J. Mulder. 2022. "The Dietary and Non-Dietary Management of Osteoporosis in Adult-Onset Celiac Disease: Current Status and Practical Guidance" Nutrients 14, no. 21: 4554. https://doi.org/10.3390/nu14214554
APA StyleAl-Toma, A., Herman, A., Lems, W. F., & Mulder, C. J. J. (2022). The Dietary and Non-Dietary Management of Osteoporosis in Adult-Onset Celiac Disease: Current Status and Practical Guidance. Nutrients, 14(21), 4554. https://doi.org/10.3390/nu14214554