Vitamin B12 Supplementation Adequacy in Australian Vegan Study Participants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Recruitment
2.2. Data Collection
2.3. Data Preparation and Analysis
3. Results
3.1. Vitamin B12 Supplementation Practices of Australian Vegan Study Participants
3.2. Impact of Recalculations on Assessment of Adequacy of Supplemental Intake
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benham, A.J.; Gallegos, D.; Hanna, K.L.; Hannan-Jones, M.T. Intake of vitamin B12 and other characteristics of women of reproductive age on a vegan diet in Australia. Public Health Nutr. 2021, 24, 4397–4407. [Google Scholar] [CrossRef] [PubMed]
- Herbert, V. Staging vitamin B−12 (cobalamin) status in vegetarians. Am. J. Clin. Nutr. 1994, 59 (Suppl. S5), 1213s–1222s. [Google Scholar] [CrossRef] [PubMed]
- Honzik, T.; Adamovicova, M.; Smolka, V.; Magner, M.; Hruba, E.; Zeman, J. Clinical presentation and metabolic consequences in 40 breastfed infants with nutritional vitamin B12 deficiency—What have we learned? Eur. J. Paediatr. Neurol. 2010, 14, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Devalia, V.; Hamilton, M.S.; Molloy, A.; The British Committee for Standards in Haematology. Guidelines for the diagnosis and treatment of cobalamin and folate disorders. Br. J. Haematol. 2014, 166, 496–513. [Google Scholar] [CrossRef]
- FSANZ. Schedule 17—Vitamins and Minerals: Food Standards Australia New Zealand ACT 1991; AGPS: Canberra, Australia, 2016. [Google Scholar]
- WHO. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization: Geneva, Switzerland, 2005. Available online: https://apps.who.int/iris/handle/10665/42716 (accessed on 14 July 2021).
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar] [CrossRef]
- NHMRC. Nutrient Reference Values for Australia and New Zealand; National Health and Medical Research Council: Canberra, Australia, 2014.
- Salmon, J. Dietary Reference Values: A Guide; Department of Health: London, UK, 1991.
- Green, R. Vitamin B12 deficiency from the perspective of a practicing hematologist. Blood 2017, 129, 2603–2611. [Google Scholar] [CrossRef] [Green Version]
- Harrington, D.J. Laboratory assessment of vitamin B12 status. J. Clin. Pathol. 2016, 70, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, W.; Obeid, R. Utility and limitations of biochemical markers of vitamin B12 deficiency. Eur. J. Clin. Investig. 2013, 43, 231–237. [Google Scholar] [CrossRef]
- European Food Safety Authority Panel on Dietetic Products Nutrition and Allergies. Scientific Opinion on Dietary Reference Values for cobalamin (vitamin B12). EFSA J. 2015, 13, 4150. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academies Press: Washington, DC, USA, 1998. [Google Scholar] [CrossRef]
- EFSA. Tolerable Upper Intake Levels for Vitamins and Minerals. European Food Safety Authority, Scientific Committee on Food; Wiley Online Library, 2006; Available online: http://www.efsa.europa.eu/de/ndatopics/docs/ndatolerableuil.pdf (accessed on 15 October 2021).
- Kuzminski, A.M.; Del Giacco, E.J.; Allen, R.H.; Stabler, S.P.; Lindenbaum, J. Effective Treatment of Cobalamin Deficiency With Oral Cobalamin. Blood 1998, 92, 1191–1198. [Google Scholar] [CrossRef]
- Wolffenbuttel, B.H.R.; Heiner-Fokkema, M.R.; Green, R.; Gans, R.O.B. Relationship between serum B12 concentrations and mortality: Experience in NHANES. BMC Med. 2020, 18, 1–14. [Google Scholar] [CrossRef]
- Carmel, R. Efficacy and Safety of Fortification and Supplementation with Vitamin B12: Biochemical and Physiological Effects. Food Nutr. Bull. 2008, 29 (Suppl. S2), S177–S187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, R.; Allen, L.H.; Bjørke-Monsen, A.-L.; Brito, A.; Guéant, J.-L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.-H. Vitamin B12 deficiency. Nat. Rev. Dis. Primers 2017, 3, 17040. [Google Scholar] [CrossRef]
- Heyssel, R.M.; Bozan, R.C.; Darby, W.J.; Bell, M.C. Vitamin B12 Turnover in Man. Am. J. Clin. Nutr. 1966, 18, 176–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swendseid, M.E.; Gasster, M.; Halsted, J.A. Limits of Absorption of Orally Administered Vitamin B12: Effect of Intrinsic Factor Sources. Exp. Biol. Med. 1954, 86, 834–836. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, W.; Obeid, R. Causes and Early Diagnosis of Vitamin B12 Deficiency. Dtsch. Arztebl. Int. 2008, 105, 680–685. [Google Scholar] [CrossRef]
- Doscherholmen, A.; Hagen, P.S. A Dual Mechanism of Vitamin B12 Plasma Absorption1. J. Clin. Investig. 1957, 36, 1551–1557. [Google Scholar] [CrossRef]
- Berlin, H.; Berlin, R.; Brante, G. Oral treatment of pernicious anemia with high doses of Vitamin B12 without intrinsic factor. Acta Med. Scand. 1968, 184, 247–258. [Google Scholar] [CrossRef]
- Damayanti, D.; Jaceldo-Siegl, K.; Beeson, W.L.; Fraser, G.; Oda, K.; Haddad, E.H. Foods and Supplements Associated with Vitamin B12 Biomarkers among Vegetarian and Non-Vegetarian Participants of the Adventist Health Study-2 (AHS-2) Calibration Study. Nutrients 2018, 10, 722. [Google Scholar] [CrossRef]
- Draper, A.; Lewis, J.; Malhotra, N.; Wheeler, L.E. The energy and nutrient intakes of different types of vegetarian: A case for supplements? Br. J. Nutr. 1993, 69, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, N.B.; Madsen, M.L.; Hansen, T.H.; Allin, K.H.; Hoppe, C.; Fagt, S.; Lausten, M.S.; Gøbel, R.J.; Vestergaard, H.; Hansen, T. Intake of macro- and micronutrients in Danish vegans. Nutr. J. 2015, 14, 115. [Google Scholar] [CrossRef] [Green Version]
- ABS. Household Use of Information Technology: ‘Table 1, Persons, by Internet Use—2016-17’ Data cube: Excel Spreadsheet Cat; No. 81460DO002_201617; Australian Bureau of Statistics: Canberra, Australia, 2018.
- Hughes, C. Breakdown of Facebook Users in Australia, by Age Group and Gender. Statista. 2019. Available online: https://www.statista.com/statistics/680581/australia-facebook-users-by-age/ (accessed on 2 November 2020).
- Morgan, R. The Slow But Steady Rise of Vegetarianism in Australia. Roy Morgan. 2016. Available online: http://www.roymorgan.com/findings/vegetarianisms-slow-but-steady-rise-in-australia-201608151105 (accessed on 12 June 2021).
- ABS. Online Sample Size Calculator. Australian Bureau of Statistics. 2016. Available online: https://www.abs.gov.au/websitedbs/D3310114.nsf/home/Sample+Size+Calculator (accessed on 2 March 2017).
- Eysenbach, G. Improving the quality of Web surveys: The Checklist for reporting results of internet E-Surveys (CHERRIES). J. Med. Internet Res. 2004, 6, e34. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mearns, G.J.; Rush, E.C. Screening for inadequate dietary vitamin B-12 intake in South Asian women using a nutrient-specific, semi-quantitative food frequency questionnaire. Asia Pac. J. Clin. Nutr. 2017, 26, 1119–1124. [Google Scholar] [CrossRef]
- Standard 1.3.2; Australia New Zealand Food Standards Code. Food Standards Australia New Zealand: Canberra, Australia, 2016.
- Cade, J.E.; Consortium, O.B.O.T.D.; Warthon-Medina, M.; Albar, S.; Alwan, N.A.; Ness, A.; Roe, M.; Wark, P.A.; Greathead, K.; Burley, V.J. DIET@NET: Best Practice Guidelines for dietary assessment in health research. BMC Med. 2017, 15, 202. [Google Scholar] [CrossRef] [Green Version]
- Little, R.J. A Test of Missing Completely at Random for Multivariate Data with Missing Values. J. Am. Stat. Assoc. 1988, 83, 1198–1202. [Google Scholar] [CrossRef]
- Mollin, D.L. Radioactive vitamin B12 in the study of blood diseases. Br. Med. Bull. 1959, 15, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Glass, G.B.J.; Boyd, L.J.; Stephanson, L. Intestinal Absorption of Vitamin B12 in Humans as Studied by Isotope Technic. Exp. Biol. Med. 1954, 86, 522–526. [Google Scholar] [CrossRef]
- Adams, J.F.; Ross, S.K.; Mervyn, L.; Boddy, K.; King, P. Absorption of Cyanocobalamin, Coenzyme B12, Methylcobalamin, and Hydroxocobalamin at Different Dose Levels. Scand. J. Gastroenterol. 1971, 6, 249–252. [Google Scholar] [CrossRef]
- Silbergleit, A. Vitamin B12 Absorption in man and dog. Ph.D. Thesis, Wayne State University, Ann Arbor, Michigan, 1965. [Google Scholar]
- Devi, S.; Pasanna, R.; Shamshuddin, Z.; Bhat, K.; Sivadas, A.; Mandal, A.; Kurpad, A. Measuring Oral Vitamin B12 Bioavailability Using [13C]-cyanocobalamin in Humans. Curr. Dev. Nutr. 2020, 4 (Suppl. S2), 1794. [Google Scholar] [CrossRef]
- Heinrich, H. Die experimentellen Grundlagen einer hochdosierten oralen Vitamin B12-Therapie beim Menschen. Ergeb. Inn. Med. Kinderheilkd. 1967, 25, 1–24. [Google Scholar]
- Hertz, H.; Kristensen, H.P.; Hoff-Jørgensen, E. Studies on Vitamin B12 Retention Comparison of Retention Following Intramuscular Injection of Cyanocobalamin and Hydroxocobalamin. Scand. J. Haematol. 2009, 1, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Bor, M.V.; Lydeking-Olsen, E.; Møller, J.; Nexø, E. A daily intake of approximately 6 μg vitamin B-12 appears to saturate all the vitamin B-12–related variables in Danish postmenopausal women. Am. J. Clin. Nutr. 2006, 83, 52–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bor, M.V.; Von Castel-Roberts, K.M.; Kauwell, G.P.; Stabler, S.P.; Allen, R.H.; Maneval, D.R.; Bailey, L.B.; Nexo, E. Daily intake of 4 to 7 μg dietary vitamin B-12 is associated with steady concentrations of vitamin B-12–related biomarkers in a healthy young population. Am. J. Clin. Nutr. 2010, 91, 571–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goraya, J.S.; Kaur, S.; Mehra, B. Neurology of Nutritional Vitamin B12 Deficiency in Infants. J. Child Neurol. 2015, 30, 1831–1837. [Google Scholar] [CrossRef]
- Paul, C.; Brady, D.M. Comparative Bioavailability and Utilization of Particular Forms of B12 Supplements With Potential to Mitigate B12-related Genetic Polymorphisms. Integr. Med. (Encinitas) 2017, 16, 42–49. [Google Scholar]
- Hutchins, H.H.; Cravioto, P.J.; Macek, T.J. A Comparison of the Stability of Cyanocobalamin and Its Analogs in Ascorbate Solution. J. Am. Pharm. Assoc. (Sci. Ed.) 1956, 45, 806–808. [Google Scholar] [CrossRef]
- Obeid, R.; Fedosov, S.; Nexo, E. Cobalamin coenzyme forms are not likely to be superior to cyano- and hydroxyl-cobalamin in prevention or treatment of cobalamin deficiency. Mol. Nutr. Food Res. 2015, 59, 1364–1372. [Google Scholar] [CrossRef]
- Thakkar, K.; Billa, G. Treatment of vitamin B12 deficiency–Methylcobalamine? Cyancobalamine? Hydroxocobalamin?—Clearing the confusion. Eur. J. Clin. Nutr. 2014, 69, 1–2. [Google Scholar] [CrossRef]
- Zugravu, C.-A.; Macri, A.; Belc, N.; Bohiltea, R. Efficacy of supplementation with methylcobalamin and cyancobalamin in maintaining the level of serum holotranscobalamin in a group of plant-based diet (vegan) adults. Exp. Ther. Med. 2021, 22, 993. [Google Scholar] [CrossRef]
- NHS. The Vegan Diet: Eat Well. National Health Service. 2018. Available online: https://www.nhs.uk/live-well/eat-well/the-vegan-diet/ (accessed on 14 June 2021).
- Agnoli, C.; Baroni, L.; Bertini, I.; Ciappellano, S.; Fabbri, A.; Papa, M.; Pellegrini, N.; Sbarbati, R.; Scarino, M.; Siani, V. Position paper on vegetarian diets from the working group of the Italian Society of Human Nutrition. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 1037–1052. [Google Scholar] [CrossRef]
- Baroni, L.; Goggi, S.; Battaglino, R.; Berveglieri, M.; Fasan, I.; Filippin, D.; Griffith, P.; Rizzo, G.; Tomasini, C.; Tosatti, M.A. Vegan Nutrition for Mothers and Children: Practical Tools for Healthcare Providers. Nutrients 2018, 11, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NIH. Vitamin B12 Fact Sheet for Health Professionals. National Institutes of Health Office of Dietary Supplements. 2021. Available online: https://ods.od.nih.gov/factsheets/VitaminB12-HealthProfessional/ (accessed on 21 July 2021).
- NIH. Vitamin B12 Fact Sheet for Consumers. National Institute of Health Office of Dietary Supplements. 2021. Available online: https://ods.od.nih.gov/pdf/factsheets/VitaminB12-Consumer.pdf (accessed on 20 July 2021).
- Kondo, H.; Binder, M.J.; Kolhouse, J.F.; Smythe, W.R.; Podell, E.R.; Allen, R.H. Presence and formation of cobalamin analogues in multivitamin-mineral pills. J. Clin. Investig. 1982, 70, 889–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbert, V.; Drivas, G.; Foscaldi, R.; Manusselis, C.; Colman, N.; Kanazawa, S.; Das, K.; Gelernt, M.; Herzlich, B.; Jennings, J. Multivitamin/Mineral Food Supplements Containing Vitamin B12May Also Contain Analogues of Vitamin B12. New Engl. J. Med. 1982, 307, 255–256. [Google Scholar] [CrossRef] [PubMed]
- Guez, S.; Chiarelli, G.; Menni, F.; Salera, S.; Principi, N.; Esposito, S. Severe vitamin B12 deficiency in an exclusively breastfed 5-month-old Italian infant born to a mother receiving multivitamin supplementation during pregnancy. BMC Pediatr. 2012, 12, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Bo, C.; Riso, P.; Gardana, C.; Brusamolino, A.; Battezzati, A.; Ciappellano, S. Effect of two different sublingual dosages of vitamin B12 on cobalamin nutritional status in vegans and vegetarians with a marginal deficiency: A randomized controlled trial. Clin. Nutr. 2018, 38, 575–583. [Google Scholar] [CrossRef] [Green Version]
- Duggan, C.; Srinivasan, K.; Thomas, T.; Samuel, T.; Rajendran, R.; Muthayya, S.; Finkelstein, J.L.; Lukose, A.; Fawzi, W.; Allen, L.H. Vitamin B-12 Supplementation during Pregnancy and Early Lactation Increases Maternal, Breast Milk, and Infant Measures of Vitamin B-12 Status. J. Nutr. 2014, 144, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Siddiqua, T.; Ahmad, S.M.; Ahsan, K.B.; Rashid, M.; Roy, A.; Rahman, S.M.; Shahab-Ferdows, S.; Hampel, D.; Ahmed, T.; Allen, L.H. Vitamin B12 supplementation during pregnancy and postpartum improves B12 status of both mothers and infants but vaccine response in mothers only: A randomized clinical trial in Bangladesh. Eur. J. Nutr. 2015, 55, 281–293. [Google Scholar] [CrossRef]
Single Oral Dose (mcg) | % Absorbed | Mean Estimated Amount Absorbed (mcg) a | Reference |
---|---|---|---|
0.5 | 90.5 | 0.43 | [39] |
71.0 | 0.36 | [38] | |
1.0 | 49.2 | 0.49 | [40] |
44.4 (MCb) | 0.44 | [40] | |
56 | 0.56 | [38] | |
2.5 | 50.4 | 1.26 | [42] |
5 | 20.4 | 1.02 | [40] |
18.8 (MCb) | 0.94 | [40] | |
28.0 | 1.4 | [38] | |
10 | 16.0 | 1.6 | [38] |
20 | 6.0 | 1.2 | [42] |
25 | 5.5 | 1.4 | [40] |
6.1 (MCb) | 1.6 | ||
50 | 3.0 | 1.5 | [39] |
500 | 2.0 | 10.0 | [18] |
1.6 (empty stomach) | 7.8 | [24] | |
1.0 with food | 4.8 | [24] | |
1000 | 1.2 | 12.0 | [24] |
Dose of Vitamin B12 (mcg) | Estimated Amount Absorbed Using Heinrich Equation (Our Calculations) |
---|---|
1 | 0.6 |
2 | 0.9 |
5 | 1.2 |
10 | 1.4 |
20 | 1.6 |
25 | 1.6 |
50 | 1.9 |
100 | 2.4 |
200 | 3.3 |
250 | 3.7 |
500 | 6.0 |
1000 | 10.5 |
2000 | 19.5 |
Step | Calculation |
---|---|
1 | From each participant’s stated highest dose vitamin B12 supplement, the amount absorbed from that dose was estimated, using the Heinrich equation above. |
2 | The amount from Step 1 was multiplied by the estimated number of times per month that the participant reported that they took this supplement, (e.g., if daily, it was multiplied by 30) and then divided by 30 to give an estimated average amount absorbed daily. |
3 | If the participant reported taking a second supplement containing vitamin B12, once again the dose and the “Heinrich equation” were used to estimate the average amount absorbed per day, as above. |
4 | The average daily amounts from Step 2 and 3 were summed to give a total estimated average amount absorbed per day. |
5 | To compare this amount to the EAR and RDI (which are based on 50% absorption), this amount was doubled. |
6 | To determine total intake to compare to the EAR and RDI, the amount from Step 5 was added to the estimated intake of vitamin B12 from food. |
Supplementation Practices | n | % of Whole Group (N = 1530) | % of Those Supplementing (N = 1131) |
---|---|---|---|
Frequency of Supplementation in past 3 months: | |||
never | 387 | 25.3 | - |
don’t know | 12 | 0.8 | - |
once a month or less | 72 | 4.7 | 6.4 |
2–3 times per month | 155 | 10.1 | 13.7 |
1–3 times per week | 402 | 26.3 | 35.6 |
4–6 times per week | 187 | 12.2 | 16.5 |
every day | 296 | 19.4 | 26.3 |
twice daily | 17 | 1.1 | 1.5 |
Type of supplement taken: | |||
Takes supplement containing vitamin B12 as only nutrient | 872 | 57.0 | 77.1 |
Takes multivitamin only | 150 | 9.8 | 13.3 |
Takes supplement containing vitamin B12 plus other nutrient/s | 110 | 7.2 | 9.7 |
Form of Supplement taken: | |||
Injections (cyanocobalamin or hydroxocobalamin) | 64 | 4.2 | 5.7 |
Oral supplement (liquid, tablet, capsule, lozenge) | 1067 | 69.7 | 94.3 |
Form of cobalamin (B12) taken | |||
Oral cyanocobalamin | 516 | 33.7 | 45.6 |
Oral hydroxocobalamin | 6 | 0.4 | 0.5 |
Oral adenosylcobalamin | 3 | 0.2 | 0.3 |
Oral methylcobalamin | 273 | 17.8 | 24.1 |
Don’t know/not answered | 318 | 20.8 | 28.1 |
Intake Calculated as Mean Intake/Day [1] | Intake Recalculated as Estimated Amount Absorbed | ||||
---|---|---|---|---|---|
from Fortified Food [1] (n = 1530) | from Supplements (n = 1419) | Total B12 Intake (n = 1426) | from Supplements (n = 1409) | from Total Intake (n = 1416) | |
Intake Category | % of group (n) | % of group (n) | % of group (n) | % of group (n) | % of group (n) |
Intake = 0 | 2.1 (32) | 27.1 (385) | 0.6 (8) | 27.3 (385) | 0.6 (8) |
>0 < EAR | 81.8 (1252) | 3.9 (55) | 23.3 (330) | 22.5 (317) | 33.5 (475) |
>=EAR < RDI | 5.4 (82) | 0.6 (8) | 2.2 (31) | 1.2 (17) | 4.4 (63) |
Intake < RDI | 89.3 (1366) | 31.6 (448) | 26.1 (370) | 51.0 (719) | 38.6 (546) |
>=RDI < EFSA AI | 7.9 (121) | 2.1 (30) | 5.3 (75) | 9.6 (135) | 15.6 (221) |
>=EFSA AI | 2.8 (43) | 66.4 (942) | 68.6 (971) | 39.4 555 | 45.8 (649) |
Intake Meets RDI | 10.7 (164) | 68.5 (972) | 73.9 (1046) | 49.0 (690) | 61.4 (870) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benham, A.J.; Gallegos, D.; Hanna, K.L.; Hannan-Jones, M.T. Vitamin B12 Supplementation Adequacy in Australian Vegan Study Participants. Nutrients 2022, 14, 4781. https://doi.org/10.3390/nu14224781
Benham AJ, Gallegos D, Hanna KL, Hannan-Jones MT. Vitamin B12 Supplementation Adequacy in Australian Vegan Study Participants. Nutrients. 2022; 14(22):4781. https://doi.org/10.3390/nu14224781
Chicago/Turabian StyleBenham, Amanda J., Danielle Gallegos, Katherine L. Hanna, and Mary T. Hannan-Jones. 2022. "Vitamin B12 Supplementation Adequacy in Australian Vegan Study Participants" Nutrients 14, no. 22: 4781. https://doi.org/10.3390/nu14224781
APA StyleBenham, A. J., Gallegos, D., Hanna, K. L., & Hannan-Jones, M. T. (2022). Vitamin B12 Supplementation Adequacy in Australian Vegan Study Participants. Nutrients, 14(22), 4781. https://doi.org/10.3390/nu14224781