Supervised Exercise in Water: Is It a Viable Alternative in Overweight/Obese People with or without Type 2 Diabetes? A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. The C.U.R.I.A.Mo. Clinical Model
2.4. The Exercise Intervention
2.5. Clinical Assessments
2.5.1. Anthropometric Variables
2.5.2. Clinical Variables
2.6. Statistical Analysis
3. Results
3.1. Baseline Results
3.2. Follow-Up Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shawahna, R.; Batta, A.; Asa’ad, M.; Jomaah, M.; Abdelhaq, I. Exercise as a complementary medicine intervention in type 2 diabetes mellitus: A systematic review with narrative and qualitative synthesis of evidence. Diabetes Metab. Syndr. 2021, 15, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Cugusi, L.; Cadeddu, C.; Nocco, S.; Orrù, F.; Bandino, S.; Deidda, M.; Caria, A.; Bassareo, P.P.; Piras, A.; Cabras, S.; et al. Effects of an aquatic-based exercise program to improve cardiometabolic profile, quality of life, and physical activity levels in men with type 2 diabetes mellitus. Pm&R 2015, 7, 141–148. [Google Scholar] [CrossRef]
- Heberle, I.; de Barcelos, G.T.; Silveira, L.M.P.; Costa, R.R.; Gerage, A.M.; Delevatti, R.S. Effects of aerobic training with and without progression on blood pressure in patients with type 2 diabetes: A systematic review with meta-analyses and meta-regressions. Diabetes Res. Clin. Pract. 2021, 171, 108581. [Google Scholar] [CrossRef] [PubMed]
- Sbroma Tomaro, E.; Pippi, R.; Reginato, E.; Aiello, C.; Buratta, L.; Mazzeschi, C.; Perrone, C.; Ranucci, C.; Tirimagni, A.; Russo, A.; et al. Intensive lifestyle intervention is particularly advantageous in poorly controlled type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 688–694. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Colberg, S.R.; Albright, A.L.; Blissmer, B.J.; Braun, B.; Chasan-Taber, L.; Fernhall, B.; Regensteiner, J.G.; Rubin, R.R.; Sigal, R.J. Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: Joint position statement. Exercise and type 2 diabetes. Med. Sci. Sports Exerc. 2010, 42, 2282–2303. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45, S60–S82. [Google Scholar] [CrossRef]
- Italian Standards for Diabetes Mellitus 2018. Available online: http://aemmedi.it/wp-content/uploads/2009/06/AMD-Standard-unico1.pdf (accessed on 8 October 2022).
- Guo, C.; Zhou, Q.; Zhang, D.; Qin, P.; Li, Q.; Tian, G.; Liu, D.; Chen, X.; Liu, L.; Liu, F.; et al. Association of total sedentary behaviour and television viewing with risk of overweight/obesity, type 2 diabetes and hypertension: A dose–response meta-analysis. Diabetes Obes. Metab. 2020, 22, 79–90. [Google Scholar] [CrossRef]
- Whipple, M.O.; Regensteiner, J.G.; Bergouignan, A. Is Being Physically Active Enough to Be Metabolically Healthy? The Key Role of Sedentary Behavior. Diabetes Care 2021, 44, 17–19. [Google Scholar] [CrossRef]
- Nakanishi, S.; Hirukawa, H.; Shimoda, M.; Tatsumi, F.; Kohara, K.; Obata, A.; Okauchi, S.; Katakura, Y.; Sanada, J.; Fushimi, Y.; et al. Impact of physical activity and sedentary time on glycated hemoglobin levels and body composition: Cross-sectional study using outpatient clinical data of Japanese patients with type 2 diabetes. J. Diabetes Investig. 2020, 11, 633–639. [Google Scholar] [CrossRef]
- Ruoti, R.G.; Troup, J.T.; Berger, R.A. The effects of nonswimming water exercises on older adults. J. Orthop. Sports Phys. Ther. 1994, 19, 140–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bocalini, D.S.; Serra, A.J.; Murad, N.; Levy, R.F. Water-versus land-based exercise effects on physical fitness in older women. Geriatr. Gerontol. Int. 2008, 8, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Wu, Y.; Xu, S.; Zhang, L.; Ying, J.; Jin, H.; Wang, P.; Xiao, L.; Tong, P. Is aquatic exercise more effective than land-based exercise for knee osteoarthritis? Medicine 2018, 97, e13823. [Google Scholar] [CrossRef] [PubMed]
- Bonifazi, M. Federazione Italiana Nuoto. Il Fitness in Acqua; Multimedia Sport Service: Milano, Italy, 2005. [Google Scholar]
- Raimondi, P.; Vincenzini, O. Teoria, Metodologia e Didattica del Movimento; Margiacchi Galeno Editrice: Perugia, Italy, 2003. [Google Scholar]
- Bartels, E.M.; Lund, H.; Hagen, K.B.; Dagfinrud, H.; Christensen, R.; Danneskiold-Samsøe, B. Aquatic exercise for the treatment of knee and hip osteoarthritis. Cochrane Database Syst. Rev. 2007, 4, CD005523. [Google Scholar] [CrossRef] [Green Version]
- Becker, B.E. Aquatic Therapy: Scientific Foundations and Clinical Rehabilitation Applications. Pm&R 2009, 1, 859–872. [Google Scholar] [CrossRef]
- Kim, I.S.; Chung, S.H.; Park, Y.J.; Kang, H.Y. The effectiveness of an aquarobic exercise program for patients with osteoarthritis. Appl. Nurs. Res. 2012, 25, 181–189. [Google Scholar] [CrossRef]
- Scheer, A.S.; Naylor, L.H.; Gan, S.K.; Charlesworth, J.; Benjanuvatra, N.; Green, D.J.; Maiorana, A.J. The Effects of Water-based Exercise Training in People with Type 2 Diabetes. Med. Sci. Sports Exerc. 2020, 52, 417–424. [Google Scholar] [CrossRef]
- van den Ende, C.H.; Breedveld, F.C.; le Cessie, S.; Dijkmans, B.A.; de Mug, A.W.; Hazes, J.M. Effect of intensive exercise on patients with active rheumatoid arthritis: A randomised clinical trial. Ann. Rheum. Dis. 2000, 59, 615–621. [Google Scholar] [CrossRef]
- De Feo, P.; Fatone, C.; Burani, P.; Piana, N.; Pazzagli, C.; Battistini, D.; Capezzali, D.; Pippi, R.; Chipi, B.; Mazzeschi, C. An innovative model for changing the lifestyles of persons with obesity and/or Type 2 diabetes mellitus. J. Endocrinol. Investig. 2011, 34, e349–e354. [Google Scholar]
- Ma, W.Y.; Yang, C.Y.; Shih, S.R.; Hsieh, H.J.; Hung, C.S.; Chiu, F.C.; Lin, M.S.; Liu, P.H.; Hua, C.H.; Hsein, Y.C.; et al. Measurement of Waist Circumference: Midabdominal or iliac crest? Diabetes Care 2013, 36, 1660–1666. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H. Swimming Exercise. Sports Med. 2009, 39, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Gwinup, G. Weight loss without dietary restriction: Efficacy of different forms of aerobic exercise. Am. J. Sports Med. 1987, 15, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Kasch, F.W. Physiological changes with swimming and running during two years of training. Scand. J. Sports Sci. 1981, 3, 23–26. [Google Scholar]
- Rezaeipour, M. Effects of two water-based exercise programs on body weight and blood lipid parameters in elderly obese males with a sedentary lifestyle. Diabetes Metab. Syndr. 2021, 15, 102194. [Google Scholar] [CrossRef]
- Rezaeipour, M. Investigation of Pool Workouts on Weight, Body Composition, Resting Energy Expenditure, and Quality of Life among Sedentary Obese Older Women. Montenegrin J. Sports Sci. Med. 2020, 9, 67–72. [Google Scholar] [CrossRef]
- Gubiani, G.L.; Pires Neto, C.S.; Petroski, É.L.; Lopes, A.d.S. Efeitos da hidroginástica sobre indicadores antropométricos de mulheres entre 60 e 80 anos de idade. Rev. Bras. Cineantropometria Desempenho Hum. 2001, 3, 34–41. Available online: https://periodicos.ufsc.br/index.php/rbcdh/article/view/3982/16864 (accessed on 8 October 2022).
- Littman, A.J.; Kristal, A.R.; White, E. Effects of physical activity intensity, frequency, and activity type on 10-y weight change in middle-aged men and women. Int. J. Obes. 2005, 29, 524–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penaforte, F.; Calhau, R.; Mota, G.R.; Chiarello, P.G. Impact of short-term water exercise programs on weight, body composition, metabolic profile and quality of life of obese women. J. Hum. Sport Exerc. 2015, 10, 915–926. [Google Scholar] [CrossRef] [Green Version]
- Charmas, M.; Gromisz, W. Effect of 12-week swimming training on body composition in young women. Int. J. Environ. Res. Public Health 2019, 16, 346. [Google Scholar] [CrossRef] [Green Version]
- Rezaeipour, M.; Apanasenko, G. Effects of Waterobics Programs on Body Mass, Body Composition, and Coronary Risk Profile of Sedentary Obese Middle-aged Women. Women’s Health Bull. 2019, 6, 13–17. [Google Scholar] [CrossRef]
- Russo, A.; Pirisinu, I.; Vacca, C.; Reginato, E.; Tomaro, E.S.; Pippi, R.; Aiello, C.; Talesa, V.N.; De Feo, P.; Romani, R. An intensive lifestyle intervention reduces circulating oxidised low-density lipoprotein and increases human paraoxonase activity in obese subjects. Obes. Res. Clin. Pract. 2018, 12, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Marini, E.; Mariani, P.G.; Ministrini, S.; Pippi, R.; Aiello, C.; Reginato, E.; Siepi, D.; Innocente, S.; Lombardini, R.; Paltriccia, R.; et al. Combined aerobic and resistance training improves microcirculation in metabolic syndrome. J. Sports Med. Phys. Fit. 2019, 59, 1571–1576. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, Y.; Nogami, Y. Response of Lipids and Lipoproteins to Regular Aquatic Endurance Exercise: A Meta-Analysis of Randomized Controlled Trials. J. Atheroscler. Thromb. 2019, 26, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, Y.; Nogami, Y. The effect of regular aquatic exercise on blood pressure: A meta-analysis of randomized controlled trials. Eur. J. Prev. Cardiol. 2018, 25, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Delevatti, R.S.; Kanitz, A.C.; Alberton, C.L.; Marson, E.C.; Lisboa, S.C.; Pinho, C.D.; Lovatel, G.A.; Korb, A.; Bertoldi, K.; Macedo, R.C.; et al. Glucose control can be similarly improved after aquatic or dry-land aerobic training in patients with type 2 diabetes: A randomized clinical trial. J. Sci. Med. Sport 2016, 19, 688–693. [Google Scholar] [CrossRef]
- Pippi, R.; Bini, V.; Reginato, E.; Aiello, C.; Fanelli, C. Are three months multidisciplinary lifestyle intervention enough to get benefits on blood pressure in overweight/obese adults? Phys. Act. Rev. 2021, 9, 40–53. [Google Scholar] [CrossRef]
- Zhu, Z.; Yan, W.; Yu, Q.; Wu, P.; Bigambo, F.M.; Chen, J. Association between Exercise and Blood Pressure in Hypertensive Residents: A Meta-Analysis. Evid. Based Complement. Altern. Med. 2022, 2022, 2453805. [Google Scholar] [CrossRef]
- Bergamin, M.; Zanuso, S.; Alvar, B.A.; Ermolao, A.; Zaccaria, M. Is water-based exercise training sufficient to improve physical fitness in the elderly? Eur. Rev. Aging Phys. Act. 2012, 9, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.E.; Rejeski, W.J.; Blair, S.N.; Duncan, P.W.; Judge, J.O.; King, A.C.; Macera, C.A.; Castaneda-Sceppa, C. Physical activity and public health in older adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1094–1105. [Google Scholar] [CrossRef]
Variables | All | Overweight/Obese with Diabetes | Overweight/Obese without Diabetes | ||||||
---|---|---|---|---|---|---|---|---|---|
T0 | Δ Test-T (T1 vs. T0) | p | T0 | Δ Test-T (T1 vs. T0) | p | T0 | Δ Test-T (T1 vs. T0) | p | |
Weight (kg) | 65.96 ± 47.62 | −2.61 ± 7.79 | 0.013 | 72.59 ± 46.99 | −4.16 ± 10.45 | 0.037 | 58.87 ± 48.08 | −1.00 ± 2.71 | 0.057 |
BMI (kg/m2) | 36.77 ± 6.21 | −0.90 ± 1.56 | 0.001 | 37.44 ± 7.25 | 1.24 ± 1.8 | 0.008 | 36.03 ± 4.89 | −0.54 ± 1.22 | 0.075 |
WC (cm) | 115.82 ± 12.89 | −4.32 ± 6.03 | <0.001 | 118.85 ± 15.63 | 5.55 ± 5.69 | <0.001 | 112.44 ± 8.11 | −2.94 ± 6.25 | 0.062 |
SBP (mmhg) | 136.08 ± 11.85 | −7.78 ± 13.37 | 0.001 | 136.75 ± 13.11 | −8.0 ± 15.08 | 0.028 | 135.29 ± 10.53 | −7.53 ± 11.48 | 0.016 |
DBP (mmhg) | 81.89 ± 7.67 | −6.30 ± 10.91 | 0.001 | 82.5 ± 7.86 | 9.15 ± 11.18 | 0.002 | 81.18 ± 7.61 | −2.94 ± 9.85 | 0.236 |
Fasting blood glucose (mg/dL) | 108.95 ± 30.37 | −1.49 ± 20.91 | 0.668 | 122.1 ± 36.09 | 1.10 ± 27.48 | 0.860 | 94.33 ± 11.02 | −4.53 ± 8.29 | 0.039 |
HbA1c (%) | 6.36 ± 1.22 | −0.28 ± 0.85 | 0.074 | 6.91 ± 1.46 | −0.33 ± 1.08 | 0.206 | 5.78 ± 0.48 | −0.22 ± 0.41 | 0.083 |
Total cholesterol (mg/dL) | 211 ± 51.41 | −8.00 ± 35.43 | 0.184 | 197.70 ± 57.34 | −5.26 ± 36.89 | 0.542 | 225.78 ± 40.48 | −11.06 ± 34.59 | 0.206 |
HDL (mg/dL) | 49.45 ± 9.79 | 1.00 ± 9.93 | 0.550 | 49.25 ± 10.65 | 0.47 ± 11.76 | 0.863 | 49.67 ± 9.04 | 1.59 ± 7.71 | 0.408 |
LDL cholesterol (mg/dL) | 132.41 ± 42.30 | −8.55 ± 27.67 | 0.072 | 114.72 ± 43.62 | −2.34 ± 26.68 | 0.707 | 152.07 ± 31.48 | −15.49 ± 6.76 | 0.036 |
Triglycerides (mg/dL) | 152.68 ± 82.58 | −8.62 ± 53.19 | 0.331 | 169.65 ± 92.95 | −17.05 ± 63.27 | 0.243 | 133.83 ± 66.88 | 1.29 ± 37.66 | 0.889 |
Uric acid (mg/dL) | 5.64 ± 1.36 | −0.10 ± 0.78 | 0.510 | 5.71 ± 1.44 | 0.02 ± 0.77 | 0.942 | 5.58 ± 1.33 | −0.22 ± 0.80 | 0.349 |
Variables | T0 | T1 (3 Months) | T2 (12 Months) | p | Delta Changes | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE | |||||||||||
T1 vs. T0 | p | T2 vs. T0 | p | T2 vs. T1 | p | |||||||
Weight (kg) | 58.70 ± 7.14 | 55.57 ± 7.00 | 52.06 ± 7.13 | 0.023 | −1.517 | 2.382 | −3.12 ± 1.21 | 0.038 | −6.64 ± 3.05 | 0.103 | −3.52 ± 2.83 | 0.659 |
BMI (kg/m2) | 37.27 ± 1.18 | 35.98 ± 1.19 | 36.1 ± 1.17 | 0.020 | −0.585 | 0.827 | −1.28 ± 0.34 | 0.003 | −1.17 ± 0.58 | 0.169 | 0.11 ± 0.51 | 1.000 |
WC (cm) | 117.22 ± 2.28 | 111.52 ± 2.35 | 110.09 ± 2.32 | <0.001 | −3.727 | 2.563 | −5.70 ± 0.97 | <0.001 | −7.13 ± 1.06 | <0.001 | −1.43 ± 0.56 | 0.050 |
SBP (mmhg) | 135.95 ± 2.20 | 129.14 ± 2.82 | 126.48 ± 2.37 | 0.013 | −4.435 | 1.604 | −6.81 ± 3.32 | 0.160 | −9.48 ± 3.24 | 0.025 | −2.67 ± 2.86 | 1.000 |
DBP (mmhg) | 82.62 ± 1.68 | 77 ± 1.61 | 76.71 ± 1.24 | 0.019 | −2.952 | 1.095 | −5.62 ± 2.66 | 0.141 | −5.90 ± 1.99 | 0.023 | −0.29 ± 2.05 | 1.000 |
Fasting blood glucose (mg/dL) | 117.83 ± 6.85 | 114.78 ± 6.47 | 120.57 ± 9.11 | 0.500 | −0.955 | 4.877 | −3.04 ± 4.18 | 1.000 | 2.74 ± 5.88 | 1.000 | 5.78 ± 4.39 | 0.604 |
HbA1c (%) | 6.63 ± 0.32 | 6.24 ± 0.22 | 6.30 ± 0.23 | 0.099 | −0.167 | 0.186 | −0.40 ± 0.21 | 0.234 | −0.33 ± 0.21 | 0.395 | 0.06 ± 0.06 | 0.894 |
Total cholesterol (mg/dL) | 222.75 ± 11.46 | 208.92 ± 8.76 | 201.17 ± 8.79 | 0.013 | −10.457 | 7.086 | −13.83 ± 7.30 | 0.212 | −21.58 ± 7.42 | 0.024 | −7.75 ± 4.24 | 0.242 |
HDL (mg/dL) | 48.29 ± 1.97 | 49.12 ± 2.45 | 49.17 ± 2.52 | 0.097 | 0.587 | 1.690 | 0.83 ± 2.23 | 1.000 | 0.88 ± 2.43 | 1.000 | 0.04 ± 2.05 | 1.000 |
LDL (mg/dL) | 140.34 ± 9.98 | 129.38 ± 7.73 | 123.97 ± 7.39 | 0.024 | −7.848 | 6.153 | −10.96 ± 5.87 | 0.224 | −16.38 ± 6.39 | 0.052 | −5.42 ± 3.28 | 0.336 |
Triglycerides (mg/dL) | 171.42 ± 19.35 | 152.04 ± 18.17 | 139.96 ± 11.40 | 0.066 | −16.522 | 12.212 | −19.38 ± 11.96 | 0.357 | −31.46 ± 14.96 | 0.140 | −12.08 ± 12.47 | 1.000 |
Uric acid (mg/dL) | 5.49 ± 0.33 | 5.37 ± 0.30 | 5.55 ± 0.24 | 0.612 | 0.031 | 0.201 | −0.12 ± 0.21 | 1.000 | 0.06 ± 0.16 | 1.000 | 0.18 ± 0.16 | 0.866 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pippi, R.; Vandoni, M.; Tortorella, M.; Bini, V.; Fanelli, C.G. Supervised Exercise in Water: Is It a Viable Alternative in Overweight/Obese People with or without Type 2 Diabetes? A Pilot Study. Nutrients 2022, 14, 4963. https://doi.org/10.3390/nu14234963
Pippi R, Vandoni M, Tortorella M, Bini V, Fanelli CG. Supervised Exercise in Water: Is It a Viable Alternative in Overweight/Obese People with or without Type 2 Diabetes? A Pilot Study. Nutrients. 2022; 14(23):4963. https://doi.org/10.3390/nu14234963
Chicago/Turabian StylePippi, Roberto, Matteo Vandoni, Matteo Tortorella, Vittorio Bini, and Carmine Giuseppe Fanelli. 2022. "Supervised Exercise in Water: Is It a Viable Alternative in Overweight/Obese People with or without Type 2 Diabetes? A Pilot Study" Nutrients 14, no. 23: 4963. https://doi.org/10.3390/nu14234963
APA StylePippi, R., Vandoni, M., Tortorella, M., Bini, V., & Fanelli, C. G. (2022). Supervised Exercise in Water: Is It a Viable Alternative in Overweight/Obese People with or without Type 2 Diabetes? A Pilot Study. Nutrients, 14(23), 4963. https://doi.org/10.3390/nu14234963