Anti-Inflammatory Dietary Diversity and Depressive Symptoms among Older Adults: A Nationwide Cross-Sectional Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Dietary Diversity
2.3. Assessment of Depressive Symptoms
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. The Characteristics of Study Participants
3.2. DDI and Depressive Symptoms
3.3. Sensitivity Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Xu, X.; Huang, Y.; Li, T.; Ma, C.; Xu, G.; Yin, H.; Xu, X.; Ma, Y.; Wang, L.; et al. Prevalence of depressive disorders and treatment in China: A cross-sectional epidemiological study. Lancet Psychiatry 2021, 8, 981–990. [Google Scholar] [CrossRef]
- Wilkinson, P.; Ruane, C.; Tempest, K. Depression in older adults. BMJ 2018, 363, k4922. [Google Scholar] [CrossRef] [PubMed]
- Jacka, F.N.; O’Neil, A.; Opie, R.; Itsiopoulos, C.; Cotton, S.; Mohebbi, M.; Castle, D.; Dash, S.; Mihalopoulos, C.; Chatterton, M.L.; et al. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med. 2017, 15, 23. [Google Scholar] [CrossRef] [PubMed]
- Cena, H.; Calder, P.C. Defining a Healthy Diet: Evidence for The Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef]
- Rienks, J.; Dobson, A.J.; Mishra, G.D. Mediterranean dietary pattern and prevalence and incidence of depressive symptoms in mid-aged women: Results from a large community-based prospective study. Eur. J. Clin. Nutr. 2013, 67, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Parletta, N.; Zarnowiecki, D.; Cho, J.; Wilson, A.; Bogomolova, S.; Villani, A.; Itsiopoulos, C.; Niyonsenga, T.; Blunden, S.; Meyer, B.; et al. A Mediterranean-style dietary intervention supplemented with fish oil improves diet quality and mental health in people with depression: A randomized controlled trial (HELFIMED). Nutr. Neurosci. 2019, 22, 474–487. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.S.; Hiles, S.; Bisquera, A.; Hure, A.J.; McEvoy, M.; Attia, J. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am. J. Clin. Nutr. 2014, 99, 181–197. [Google Scholar] [CrossRef]
- Perez-Cornago, A.; Sanchez-Villegas, A.; Bes-Rastrollo, M.; Gea, A.; Molero, P.; Lahortiga-Ramos, F.; Martinez-Gonzalez, M. Relationship between adherence to Dietary Approaches to Stop Hypertension (DASH) diet indices and incidence of depression during up to 8 years of follow-up. Public Health Nutr. 2017, 20, 2383–2392. [Google Scholar] [CrossRef]
- Akbaraly, T.N.; Brunner, E.J.; Ferrie, J.E.; Marmot, M.G.; Kivimaki, M.; Singh-Manoux, A. Dietary pattern and depressive symptoms in middle age. Br. J. Psychiatry 2009, 195, 408–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolkien, K.; Bradburn, S.; Murgatroyd, C. An anti-inflammatory diet as a potential intervention for depressive disorders: A systematic review and meta-analysis. Clin. Nutr. 2019, 38, 2045–2052. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Fei, Z.; Qiu, C.; Brasher, M.S.; Kraus, V.B.; Zhao, W.; Shi, X.; Zeng, Y. Dietary Diversity and Cognitive Function among Elderly People: A Population-Based Study. J. Nutr. Health Aging 2017, 21, 1089–1094. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Brasher, M.S.; Kraus, V.B.; Lv, Y.; Shi, X.; Zeng, Y. Dietary Diversity Was Positively Associated with Psychological Resilience among Elders: A Population-Based Study. Nutrients 2019, 11, 650. [Google Scholar] [CrossRef] [PubMed]
- Duke University Center for the Study of Aging and Human Development. Chinese Longitudinal Healthy Longevity Survey (CLHLS). Available online: https://sites.duke.edu/centerforaging/programs/chinese-longitudinal-healthy-longevity-survey-clhls/ (accessed on 28 September 2022).
- Zheng, J.; Zhou, R.; Li, F.; Chen, L.; Wu, K.; Huang, J.; Liu, H.; Huang, Z.; Xu, L.; Yuan, Z.; et al. Association between dietary diversity and cognitive impairment among the oldest-old: Findings from a nationwide cohort study. Clin. Nutr. 2021, 40, 1452–1462. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jin, X.; Lutz, M.W.; Ju, S.-Y.; Liu, K.; Guo, G.; Zeng, Y.; Yao, Y. Interaction between APOE ε4 and dietary protein intake on cognitive decline: A longitudinal cohort study. Clin. Nutr. 2021, 40, 2716–2725. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Andresen, E.M.; Malmgren, J.A.; Carter, W.B.; Patrick, D.L. Screening for depression in well older adults: Evaluation of a short form of the CES-D (Center for Epidemiologic Studies Depression Scale). Am. J. Prev. Med. 1994, 10, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Chen, H.; Chen, L.; Ju, S.Y.; Yang, H.; Zeng, Y.; Gu, D.; Ng, T.P. Type of tea consumption and depressive symptoms in Chinese older adults. BMC Geriatr. 2021, 21, 331. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.T.; Chan, A.C. The Center for Epidemiologic Studies Depression Scale in older Chinese: Thresholds for long and short forms. Int. J. Geriatr. Psychiatry 2005, 20, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.T.; Chan, A.C. Detecting depression in Chinese adults with mild dementia: Findings with two versions of the Center for Epidemiologic Studies Depression Scale. Psychiatry Res. 2008, 159, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Feng, Q.; Hesketh, T.; Christensen, K.; Vaupel, J.W. Survival, disabilities in activities of daily living, and physical and cognitive functioning among the oldest-old in China: A cohort study. Lancet 2017, 389, 1619–1629. [Google Scholar] [CrossRef]
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. Studies of illness in the aged. The index of adl: A standardized measure of biological and psychosocial function. JAMA 1963, 185, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, W.; Gu, X.; Deng, F.; Wang, X.; Lin, H.; Guo, X.; Wu, S. Association between particulate matter air pollution and risk of depression and suicide: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. Int. 2021, 28, 9029–9049. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, A.; Quirk, S.E.; Housden, S.; Brennan, S.L.; Williams, L.J.; Pasco, J.A.; Berk, M.; Jacka, F.N. Relationship between diet and mental health in children and adolescents: A systematic review. Am. J. Public Health 2014, 104, e31–e42. [Google Scholar] [CrossRef] [PubMed]
- Poorrezaeian, M.; Siassi, F.; Milajerdi, A.; Qorbani, M.; Karimi, J.; Sohrabi-Kabi, R.; Pak, N.; Sotoudeh, G. Depression is related to dietary diversity score in women: A cross-sectional study from a developing country. Ann. Gen. Psychiatry 2017, 16, 39. [Google Scholar] [CrossRef]
- Yao, Y.; Fu, S.; Zhang, H.; Li, N.; Zhu, Q.; Zhang, F.; Luan, F.; Zhao, Y.; He, Y. The prevalence of depressive symptoms in Chinese longevous persons and its correlation with vitamin D status. BMC Geriatr. 2018, 18, 198. [Google Scholar] [CrossRef]
- Zhu, D.M.; Zhao, W.; Zhang, B.; Zhang, Y.; Yang, Y.; Zhang, C.; Wang, Y.; Zhu, J.; Yu, Y. The Relationship Between Serum Concentration of Vitamin D, Total Intracranial Volume, and Severity of Depressive Symptoms in Patients With Major Depressive Disorder. Front. Psychiatry 2019, 10, 322. [Google Scholar] [CrossRef]
- Pooyan, S.; Rahimi, M.H.; Mollahosseini, M.; Khorrami-Nezhad, L.; Nasir, Y.; Maghbooli, Z.; Mirzaei, K. A High-Protein/Low-Fat Diet May Interact with Vitamin D-Binding Protein Gene Variants to Moderate the Risk of Depression in Apparently Healthy Adults. Lifestyle Genom. 2018, 11, 64–72. [Google Scholar] [CrossRef]
- Wong, P.T.; Ong, Y.P. Acute antidepressant-like and antianxiety-like effects of tryptophan in mice. Pharmacology 2001, 62, 151–156. [Google Scholar] [CrossRef]
- Wolfe, A.R.; Arroyo, C.; Tedders, S.H.; Li, Y.; Dai, Q.; Zhang, J. Dietary protein and protein-rich food in relation to severely depressed mood: A 10 year follow-up of a national cohort. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 232–238. [Google Scholar] [CrossRef]
- Shivappa, N.; Hébert, J.R.; Veronese, N.; Caruso, M.G.; Notarnicola, M.; Maggi, S.; Stubbs, B.; Firth, J.; Fornaro, M.; Solmi, M. The relationship between the dietary inflammatory index (DII(®)) and incident depressive symptoms: A longitudinal cohort study. J. Affect. Disord. 2018, 235, 39–44. [Google Scholar] [CrossRef]
- Shivappa, N.; Schoenaker, D.A.; Hebert, J.R.; Mishra, G.D. Association between inflammatory potential of diet and risk of depression in middle-aged women: The Australian Longitudinal Study on Women’s Health. Br. J. Nutr. 2016, 116, 1077–1086. [Google Scholar] [CrossRef] [PubMed]
- Berk, M.; Williams, L.J.; Jacka, F.N.; O’Neil, A.; Pasco, J.A.; Moylan, S.; Allen, N.B.; Stuart, A.L.; Hayley, A.C.; Byrne, M.L.; et al. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med. 2013, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Villegas, A.; Ruíz-Canela, M.; de la Fuente-Arrillaga, C.; Gea, A.; Shivappa, N.; Hébert, J.R.; Martínez-González, M.A. Dietary inflammatory index, cardiometabolic conditions and depression in the Seguimiento Universidad de Navarra cohort study. Br. J. Nutr. 2015, 114, 1471–1479. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, G.; Farajdokht, F.; Mohaddes, G.; Babri, S.; Ebrahimi, V.; Ebrahimi, H. Garlic (Allium sativum) improves anxiety- and depressive-related behaviors and brain oxidative stress in diabetic rats. Arch. Physiol. Biochem. 2020, 126, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Tagliaferri, S.; Lauretani, F.; Pelá, G.; Meschi, T.; Maggio, M. The risk of dysphagia is associated with malnutrition and poor functional outcomes in a large population of outpatient older individuals. Clin. Nutr. 2019, 38, 2684–2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable/Subgroups | Total Sample N = 12192 | Q1 N = 3048 | Q2 N = 3048 | Q3 N = 3048 | Q4 N = 3048 | p Value |
---|---|---|---|---|---|---|
Dietary Diversity Index, score | 4.1 ± 2.1 | 1.4 ± 0.7 | 3.4 ± 0.5 | 4.7 ± 0.5 | 6.9 ± 1.0 | <0.001 |
Age, years | 83.6 ± 11.1 | 84.0 ± 11.0 | 83.6 ± 11.1 | 83.7 ± 11.0 | 83.1 ± 11.1 | 0.02 |
BMI, kg/m [2] | 22.5 ± 3.9 | 22.1 ± 4.0 | 22.6 ± 4.0 | 22.4 ± 3.9 | 22.9 ± 3.8 | <0.001 |
gender, % | ||||||
Men | 5666 (46.5%) | 1204 (39.5%) | 1397 (45.7%) | 1467 (48.2%) | 1598 (52.4%) | <0.001 |
Women | 6526 (53.5%) | 1843 (60.5%) | 1659 (54.3%) | 1575 (51.8%) | 1449 (47.6%) | |
Hukou, % | ||||||
Urban | 3499 (28.7%) | 385 (12.6%) | 675 (22.1%) | 898 (29.5%) | 1541 (50.6%) | <0.001 |
Rural | 8693 (71.3%) | 2662 (87.4%) | 2381 (77.9%) | 2144 (70.5%) | 1506 (49.4%) | |
Ethic, % | ||||||
Han | 11567 (94.9%) | 2795 (91.7%) | 2917 (95.5%) | 2894 (95.1%) | 2961 (97.2%) | <0.001 |
Others | 625 (5.1%) | 252 (8.3%) | 139 (4.5%) | 148 (4.9%) | 86 (2.8%) | |
Education, % | ||||||
0 | 6481 (53.2%) | 2012 (66.0%) | 1735 (56.8%) | 1575 (51.8%) | 1159 (38.0%) | <0.001 |
1–6 | 2472 (20.3%) | 587 (19.3%) | 643 (21.0%) | 662 (21.8%) | 580 (19.0%) | |
>6 | 3239 (26.6%) | 448 (14.7%) | 678 (22.2%) | 805 (26.5%) | 1308 (42.9%) | |
ADL, % | ||||||
Independency | 9965 (81.7%) | 2561 (84.0%) | 2459 (80.5%) | 2488 (81.8%) | 2457 (80.6%) | <0.001 |
Dependency | 2227 (18.3%) | 486 (16.0%) | 597 (19.5%) | 554 (18.2%) | 590 (19.4%) | |
Physical activities, % | ||||||
No | 8075 (66.2%) | 2307 (75.7%) | 2121 (69.4%) | 1968 (64.7%) | 1679 (55.1%) | <0.001 |
Yes | 4117 (33.8%) | 740 (24.3%) | 935 (30.6%) | 1074 (35.3%) | 1368 (44.9%) | |
Smoking, % | ||||||
No smoking | 10227 (83.9%) | 2583 (84.8%) | 2558 (83.7%) | 2531 (83.2%) | 2555 (83.9%) | 0.41 |
Smoking | 1965 (16.1%) | 464 (15.2%) | 498 (16.3%) | 511 (16.8%) | 492 (16.1%) | |
Drinking, % | ||||||
No drinking | 10321 (84.7%) | 2672 (87.7%) | 2607 (85.3%) | 2544 (83.6%) | 2498 (82.0%) | <0.001 |
Drinking | 1871 (15.3%) | 375 (12.3%) | 449 (14.7%) | 498 (16.4%) | 549 (18.0%) |
Diet Diversity Index (DDI) | Protein–Enriched Diet Diversity Index (PEDDI) | Anti–Inflammatory Diet Diversity Index (AIDDI) | |
---|---|---|---|
All–cause Mortality | |||
Model 1 | 0.88 (0.87–0.90) * | 0.88 (0.85–0.90) * | 0.77 (0.74–0.79) * |
Model 2 | 0.90 (0.88–0.92) * | 0.90 (0.88–0.93) * | 0.79 (0.76–0.81) * |
Model 3 | 0.91 (0.89–0.93) * | 0.91 (0.89–0.94) * | 0.81 (0.78–0.83) * |
Model 4 | 0.91 (0.89–0.93) * | 0.91 (0.88–0.93) * | 0.80 (0.78–0.83) * |
Variable/Subgroups | Diet Diversity Index (DDI) | P–Interaction | Protein–Enriched Diet Diversity Index (PEDDI) | P–Interaction | Anti–Inflammatory Diet Diversity Index (AIDDI) | P–Interaction |
---|---|---|---|---|---|---|
gender | ||||||
Men | 0.90 (0.87–0.92) * | 0.14 | 0.90 (0.86–0.94) * | 0.30 | 0.79 (0.75–0.83) * | 0.12 |
Women | 0.92 (0.89–0.94) * | 0.92 (0.88–0.95) * | 0.82 (0.78–0.86) * | |||
Age | ||||||
<75 | 0.91 (0.88–0.95) * | 0.76 | 0.94 (0.89–1.00) * | 0.34 | 0.77 (0.72–0.82) * | 0.13 |
75–89 | 0.89 (0.87–0.92) * | 0.88 (0.84–0.92) * | 0.79 (0.75–0.83) * | |||
>=90 | 0.92 (0.89–0.95) * | 0.91 (0.87–0.96) * | 0.85 (0.80–0.90) * | |||
Hukou | ||||||
Urban | 0.92 (0.89–0.95) * | 0.18 | 0.95 (0.90–1.01) * | 0.01 | 0.80 (0.76–0.85) * | 0.36 |
Rural | 0.90 (0.88–0.92) * | 0.89 (0.86–0.92) * | 0.80 (0.77–0.83) * | |||
Smoking | ||||||
No smoking | 0.92 (0.90–0.94) * | 0.03 | 0.92 (0.89–0.95) * | 0.04 | 0.81 (0.78–0.84) * | 0.04 |
Smoking | 0.86 (0.82–0.91) * | 0.85 (0.79–0.91) * | 0.74 (0.68–0.81) * | |||
Drinking | 0.20 | 0.33 | 0.14 | |||
No drinking | 0.91 (0.89–0.93) * | 0.91 (0.89–0.94) * | 0.81 (0.78–0.84) * | |||
Drinking | 0.87 (0.83–0.92) * | 0.86 (0.80–0.93) * | 0.76 (0.70–0.83) * | |||
With difficulty in self-feeding | ||||||
Yes | 0.94 (0.83–1.06) | 0.56 | 0.90 (0.75–1.07) | 0.94 | 0.95 (0.78–1.15) | 0.06 |
No | 0.91 (0.88–0.93) * | 0.91 (0.88–0.93) * | 0.80 (0.77–0.83) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, X.; Sun, S.; Wang, J.; Chen, H.; Li, S.; Hu, Y.; Yu, M.; Zeng, Y.; Gao, X.; Xu, Y.; et al. Anti-Inflammatory Dietary Diversity and Depressive Symptoms among Older Adults: A Nationwide Cross-Sectional Analysis. Nutrients 2022, 14, 5062. https://doi.org/10.3390/nu14235062
Lv X, Sun S, Wang J, Chen H, Li S, Hu Y, Yu M, Zeng Y, Gao X, Xu Y, et al. Anti-Inflammatory Dietary Diversity and Depressive Symptoms among Older Adults: A Nationwide Cross-Sectional Analysis. Nutrients. 2022; 14(23):5062. https://doi.org/10.3390/nu14235062
Chicago/Turabian StyleLv, Xiaoyang, Siwei Sun, Jingjing Wang, Huashuai Chen, Shaojie Li, Yang Hu, Mingzhi Yu, Yi Zeng, Xiangyang Gao, Yajun Xu, and et al. 2022. "Anti-Inflammatory Dietary Diversity and Depressive Symptoms among Older Adults: A Nationwide Cross-Sectional Analysis" Nutrients 14, no. 23: 5062. https://doi.org/10.3390/nu14235062
APA StyleLv, X., Sun, S., Wang, J., Chen, H., Li, S., Hu, Y., Yu, M., Zeng, Y., Gao, X., Xu, Y., & Yao, Y. (2022). Anti-Inflammatory Dietary Diversity and Depressive Symptoms among Older Adults: A Nationwide Cross-Sectional Analysis. Nutrients, 14(23), 5062. https://doi.org/10.3390/nu14235062