Effect of Different Carbohydrate Intakes within 24 Hours after Glycogen Depletion on Muscle Glycogen Recovery in Japanese Endurance Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Habitual Intakes of Energy and Macronutrients and Habitual Energy Expenditure
2.4. Dietary Intervention
2.5. Muscle Glycogen Concentration
2.6. Blood Analysis
2.7. Statistical Analysis
3. Results
3.1. Habitual Intakes of Energy and Macronutrients
3.2. Muscle Glycogen Concentration
3.3. Blood Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, B.; Rosenbloom, C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr. Rev. 2018, 76, 243–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigh-Larsen, J.F.; Ørtenblad, N.; Spriet, L.L.; Overgaard, K.; Mohr, M. Muscle glycogen metabolism and high-intensity exercise performance: A narrative review. Sports Med. 2021, 51, 1855–1874. [Google Scholar] [CrossRef]
- Bergström, J.; Hermansen, L.; Hultman, E.; Saltin, B. Diet, muscle glycogen and physical performance. Acta Physiol. Scand. 1967, 71, 140–150. [Google Scholar] [CrossRef]
- Costill, D.L.; Miller, J.M. Nutrition for endurance sport: Carbohydrate and fluid balance. Int. J. Sports Med. 1980, 1, 2–14. [Google Scholar] [CrossRef]
- Hawley, J.A.; Schabort, E.J.; Noakes, T.D.; Dennis, S.C. Carbohydrate-loading and exercise performance. An update. Sports Med. 1997, 24, 73–81. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Castell, L.M.; Casa, D.J.; Close, G.L.; Costa, R.J.S.; Desbrow, B.; Halson, S.L.; Lis, D.M.; Melin, A.K.; Peeling, P.; et al. International Association of Athletics Federations Consensus Statement 2019: Nutrition for athletics. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costill, D.L.; Pearson, D.R.; Fink, W.J. Impaired muscle glycogen storage after muscle biopsy. J. Appl. Physiol. 1988, 64, 2245–2248. [Google Scholar] [CrossRef]
- Burke, L.M.; Collier, G.R.; Hargreaves, M. Muscle glycogen storage after prolonged exercise: Effect of the glycemic index of carbohydrate feedings. J. Appl. Physiol. 1993, 75, 1019–1023. [Google Scholar] [CrossRef]
- Burke, L.M.; Collier, G.R.; Beasley, S.K.; Davis, P.G.; Fricker, P.A.; Heeley, P.; Walder, K.; Hargreaves, M. Effect of coingestion of fat and protein with carbohydrate feedings on muscle glycogen storage. J. Appl. Physiol. 1995, 78, 2187–2192. [Google Scholar] [CrossRef]
- Burke, L.M.; Collier, G.R.; Davis, P.G.; Fricker, P.A.; Sanigorski, A.J.; Hargreaves, M. Muscle glycogen storage after prolonged exercise: Effect of the frequency of carbohydrate feedings. Am. J. Clin. Nutr. 1996, 64, 115–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkin, J.A.; Carey, M.F.; Martin, I.K.; Stojanovska, L.; Febbraio, M.A. Muscle glycogen storage following prolonged exercise: Effect of timing of ingestion of high glycemic index food. Med. Sci. Sports Exerc. 1997, 29, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Starling, R.D.; Trappe, T.A.; Parcell, A.C.; Kerr, C.G.; Fink, W.J.; Costill, D.L. Effects of diet on muscle triglyceride and endurance performance. J. Appl. Physiol. 1997, 82, 1185–1189. [Google Scholar] [CrossRef] [PubMed]
- Kiens, B.; Richter, E.A. Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans. Am. J. Physiol. 1998, 275, E332–E337. [Google Scholar] [CrossRef]
- Bussau, V.A.; Fairchild, T.J.; Rao, A.; Steele, P.; Fournier, P.A. Carbohydrate loading in human muscle: An improved 1 day protocol. Eur. J. Appl. Physiol. 2002, 87, 290–295. [Google Scholar] [CrossRef]
- Burke, L.M.; Collier, G.R.; Broad, E.M.; Davis, P.G.; Martin, D.T.; Sanigorski, A.J.; Hargreaves, M.J. Effect of alcohol intake on muscle glycogen storage after prolonged exercise. Appl. Physiol. 2003, 95, 983–990. [Google Scholar] [CrossRef] [Green Version]
- Kodama, K.; Tojjar, D.; Yamada, S.; Toda, K.; Patel, C.J.; Butte, A.J. Ethnic differences in the relationship between insulin sensitivity and insulin response: A systematic review and meta-analysis. Diabetes Care 2013, 36, 1789–1796. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, M.; Venn, B.J.; Williams, S.M.; te Morenga, L.A.; Heemels, I.M.; Mann, J.I. Glycaemic responses to glucose and rice in people of Chinese and European ethnicity. Diabet. Med. 2013, 30, e101–e107. [Google Scholar] [CrossRef]
- Nakanishi, Y.; Nethery, V. Anthropometric comparison between Japanese and Caucasian American male university students. Appl. Hum. Sci. 1999, 18, 9–11. [Google Scholar] [CrossRef] [Green Version]
- Kagawa, M.; Binns, C.B.; Hills, A.P. Body composition and anthropometry in Japanese and Australian Caucasian males and Japanese females. Asia Pac. J. Clin. Nutr. 2007, 16, 31–36. [Google Scholar]
- WWEIA Data Tables. Food Surveys Research Group: Beltsville, MD. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/wweia-data-tables (accessed on 14 January 2022).
- National Health and Nutrition Survey > National Health and Nutrition Survey Results: Nutritional Intake Status Survey. Available online: https://www.nibiohn.go.jp/eiken/kenkounippon21/en/eiyouchousa/kekka_eiyou_chousa_koumoku.html (accessed on 14 January 2022).
- Fryar, C.D.; Carroll, M.D.; Gu, Q.; Afful, J.; Ogden, C.L. Anthropometric reference data for children and adults: United States, 2015–2018. In Vital and Health Statistics Series 3; National Center for Health Statistics: Hyattsville, MD, USA, 2021; Volume 36, pp. 1–44. [Google Scholar]
- Price, T.B.; Rothman, D.L.; Taylor, R.; Avison, M.J.; Shulman, G.I.; Shulman, R.G. Human muscle glycogen resynthesis after exercise: Insulin-dependent and -independent phases. J. Appl. Physiol. 1994, 76, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Ivy, J.L.; Goforth, H.W., Jr.; Damon, B.M.; McCauley, T.R.; Parsons, E.C.; Price, T.B. Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J. Appl. Physiol. 2002, 93, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Kamei, A.; Osawa, T.; Kawahara, T.; Takizawa, O.; Maruyama, K. ¹³C MRS reveals a small diurnal variation in the glycogen content of human thigh muscle. NMR Biomed. 2015, 28, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Shiose, K.; Yamada, Y.; Motonaga, K.; Sagayama, H.; Higaki, Y.; Tanaka, H.; Takahashi, H. Segmental extracellular and intracellular water distribution and muscle glycogen after 72-h carbohydrate loading using spectroscopic techniques. J. Appl. Physiol. 2016, 121, 205–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, E.; Shiose, K.; Osawa, T.; Motonaga, K.; Kamei, A.; Nakajima, K.; Sagayama, H.; Wada, T.; Nishiguchi, S.; Takahashi, H. Effects of an overnight high-carbohydrate meal on muscle glycogen after rapid weight loss in male collegiate wrestlers. BMC Sports Sci. Med. Rehabil. 2021, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- Ivy, J.L.; Katz, A.L.; Cutler, C.L.; Sherman, W.M.; Coyle, E.F. Muscle glycogen synthesis after exercise: Effect of time of carbohydrate ingestion. J. Appl. Physiol. 1988, 64, 1480–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, L.M.; Kiens, B.; Ivy, J.L. Carbohydrates and fat for training and recovery. J. Sports Sci. 2004, 22, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Costill, D.L.; Sherman, W.M.; Fink, W.J.; Maresh, C.; Witten, M.; Miller, J.M. The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. Am. J. Clin. Nutr. 1981, 34, 1831–1836. [Google Scholar] [CrossRef] [Green Version]
- Goff, L.M.; Whyte, N.B.; Samuel, M.; Harding, S.V. Significantly greater triglyceridemia in Black African compared to White European men following high added fructose and glucose feeding: A randomized crossover trial. Lipids Health Dis. 2016, 15, 145. [Google Scholar] [CrossRef] [Green Version]
- Do Vale Moreira, N.C.; Ceriello, A.; Basit, A.; Balde, N.; Mohan, V.; Gupta, R.; Misra, A.; Bhowmik, B.; Lee, M.K.; Zuo, H.; et al. Race/ethnicity and challenges for optimal insulin therapy. Diabetes Res. Clin. Pract. 2021, 175, 108823. [Google Scholar] [CrossRef]
- Rodriguez, N.R.; di Marco, N.M.; Langley, S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med. Sci. Sports Exerc. 2009, 14, 709–731. [Google Scholar] [CrossRef]
- Betts, J.A.; Williams, C. Short-term recovery from prolonged exercise: Exploring the potential for protein ingestion to accentuate the benefits of carbohydrate supplements. Sports Med. 2010, 40, 941–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Meal | 5 g Meal | 7 g Meal | 10 g Meal | |
---|---|---|---|---|
Energy (kcal) | Lunch | 1159 ± 102 | 1162 ± 117 | 1169 ± 111 |
Dinner | 1159 ± 100 | 1158 ± 106 | 1170 ± 120 | |
Breakfast | 868 ± 88 | 861 ± 79 | 868 ± 71 | |
Total | 3186 ± 286 | 3181 ± 297 | 3207 ± 297 | |
Carbohydrate (g) | Lunch | 106 ± 16 | 146 ± 17 | 205 ± 25 |
Dinner | 102 ± 11 | 142 ± 20 | 201 ± 30 | |
Breakfast | 77 ± 10 | 108 ± 13 | 157 ± 14 | |
Total | 285 ± 37 | 396 ± 49 | 564 ± 67 | |
Carbohydrate (g/kg) | Lunch | 1.9 ± 0.1 | 2.6 ± 0.1 | 3.7 ± 0.1 |
Dinner | 1.8 ± 0.1 | 2.5 ± 0.1 | 3.6 ± 0.2 | |
Breakfast | 1.4 ± 0.1 | 1.9 ± 0.1 | 2.8 ± 0.1 | |
Total | 5.1 ± 0.2 | 7.1 ± 0.2 | 10.0 ± 0.2 | |
Protein (g) | Lunch | 42 ± 5 | 41 ± 5 | 36 ± 7 |
Dinner | 42 ± 5 | 43 ± 4 | 39 ± 5 | |
Breakfast | 29 ± 3 | 30 ± 3 | 25 ± 4 | |
Total | 113 ± 12 | 114 ± 12 | 100 ± 15 | |
Protein (g/ kg) | Lunch | 0.7 ± 0.0 | 0.7 ± 0.0 | 0.7 ± 0.1 |
Dinner | 0.7 ± 0.0 | 0.8 ± 0.0 | 0.7 ± 0.1 | |
Breakfast | 0.5 ± 0.0 | 0.5 ± 0.0 | 0.5 ± 0.1 | |
Total | 2.0 ± 0.0 | 2.0 ± 0.1 | 1.8 ± 0.4 | |
Fat (g) | Lunch | 61 ± 17 | 45 ± 19 | 22 ± 18 |
Dinner | 64 ± 16 | 44 ± 19 | 22 ± 21 | |
Breakfast | 49 ± 15 | 35 ± 14 | 15 ± 12 | |
Total | 174 ± 47 | 125 ± 52 | 58 ± 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namma-Motonaga, K.; Kondo, E.; Osawa, T.; Shiose, K.; Kamei, A.; Taguchi, M.; Takahashi, H. Effect of Different Carbohydrate Intakes within 24 Hours after Glycogen Depletion on Muscle Glycogen Recovery in Japanese Endurance Athletes. Nutrients 2022, 14, 1320. https://doi.org/10.3390/nu14071320
Namma-Motonaga K, Kondo E, Osawa T, Shiose K, Kamei A, Taguchi M, Takahashi H. Effect of Different Carbohydrate Intakes within 24 Hours after Glycogen Depletion on Muscle Glycogen Recovery in Japanese Endurance Athletes. Nutrients. 2022; 14(7):1320. https://doi.org/10.3390/nu14071320
Chicago/Turabian StyleNamma-Motonaga, Keiko, Emi Kondo, Takuya Osawa, Keisuke Shiose, Akiko Kamei, Motoko Taguchi, and Hideyuki Takahashi. 2022. "Effect of Different Carbohydrate Intakes within 24 Hours after Glycogen Depletion on Muscle Glycogen Recovery in Japanese Endurance Athletes" Nutrients 14, no. 7: 1320. https://doi.org/10.3390/nu14071320
APA StyleNamma-Motonaga, K., Kondo, E., Osawa, T., Shiose, K., Kamei, A., Taguchi, M., & Takahashi, H. (2022). Effect of Different Carbohydrate Intakes within 24 Hours after Glycogen Depletion on Muscle Glycogen Recovery in Japanese Endurance Athletes. Nutrients, 14(7), 1320. https://doi.org/10.3390/nu14071320