Influence of Heating during Cooking on Trans Fatty Acid Content of Edible Oils: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Risk of Bias Assessment
2.5. Data Analysis
3. Results
3.1. Study Characteristics
3.2. Heating Temperature and Change in Level of TFA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mozaffarian, D.; Aro, A.; Willett, W.C. Health effects of trans-fatty acids: Experimental and observational evidence. Eur. J. Clin. Nutr. 2009, 63 (Suppl. S2), S5–S21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D.; Clarke, R. Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. Eur. J. Clin. Nutr. 2009, 63, S22–S33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C. Trans Fatty Acids and Cardiovascular Disease. N. Engl. J. Med. 2006, 354, 1601–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, R.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019). Dietary Risk Exposure Estimates 1990–2019; Institute for Health Metrics and Evaluation (IHME): Seattle, WA, USA, 2021. [Google Scholar] [CrossRef]
- Nishida, C.; Uauy, R. WHO Scientific Update on health consequences of trans fatty acids: Introduction. Eur. J. Clin. Nutr. 2009, 63 (Suppl. S2), S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Zähringer, J.; Beyerbach, J.; Werner, S.S.; Nagavci, B.; Heseker, H.; Koletzko, B.; Meerpohl, J.J. A scoping review of current guidelines on dietary fat and fat quality. Ann. Nutr. Metab. 2021, 77, 65–82. [Google Scholar] [CrossRef]
- Wanders, A.J.; Zock, P.L.; Brouwer, I.A. Trans fat intake and its dietary sources in general populations worldwide: A systematic review. Nutrients 2017, 9, 840. [Google Scholar] [CrossRef]
- Micha, R.; Khatibzadeh, S.; Shi, P.; Fahimi, S.; Lim, S.; Andrews, K.G.; Engell, R.E.; Powles, J.; Ezzati, M.; Mozaffarian, D. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys. BMJ 2014, 348, g2272. [Google Scholar] [CrossRef] [Green Version]
- Marinova, E.M.; Seizova, K.A.; Totseva, I.R.; Panayotova, S.; Marekov, I.; Momchilova, S. Oxidative changes in some vegetable oils during heating at frying temperature. Bulg. Chem. Commun. 2012, 44, 57–63. [Google Scholar]
- Zribi, A.; Jabeur, H.; Aladedunye, F.; Rebai, A.; Matthaus, B.; Bouaziz, M. Monitoring of quality and stability characteristics and fatty acid compositions of refined olive and seed oils during repeated pan- and deep-frying using GC, FT-NIRS, and chemometrics. J. Agric. Food Chem. 2014, 62, 10357–10367. [Google Scholar] [CrossRef]
- Tena, N.; Aparicio, R.; Garcia-Gonzalez, D.L. Thermal deterioration of virgin olive oil monitored by ATR-FTIR analysis of trans content. J. Agric. Food Chem. 2009, 57, 9997–10003. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Park, J.; Jung, J.; Lee, C.; Gim, S.Y.; Ka, H.; Yi, B.; Kim, M.-J.; Kim, C.-I.; Lee, J. Analysis of trans fat in edible oils with cooking process. Toxicol. Res. 2015, 31, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Przybylski, O.; Aladedunye, F.A. Formation of trans fats during food preparation. Can. J. Diet. Pract. Res. 2012, 73, 98–101. [Google Scholar] [CrossRef]
- Liu, W.H.; Inbaraj, B.S.; Chen, B.H. Analysis and formation of trans fatty acids in hydrogenated soybean oil during heating. Food Chem. 2007, 104, 1740–1749. [Google Scholar] [CrossRef]
- Moya Moreno, M.C.M.; Mendoza Olivares, D.; Amézquita López, F.J.; Gimeno Adelantado, J.V.; Bosch Reig, F. Determination of unsaturation grade and trans isomers generated during thermal oxidation of edible oils and fats by FTIR. J. Mol. Struct. 1999, 482–483, 551–556. [Google Scholar] [CrossRef]
- Tsuzuki, W.; Matsuoka, A.; Ushida, K. Formation of trans fatty acids in edible oils during the frying and heating process. Food Chem. 2010, 123, 976–982. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Y.; Nie, S.; Xie, M.; Chen, F.; Luo, P.G. Formation of trans fatty acids during the frying of chicken fillet in corn oil. Int. J. Food Sci. Nutr. 2014, 65, 306–310. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, F.; He, F.; Ha, Y.-M.; Li, Q.-P.; Jin, J.; Deng, Z.-X. The impact of technical cashew nut shell liquid on thermally-induced trans isomers in edible oils. J. Food Sci. Technol. 2015, 53, 1487–1495. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Hao, P.; Liu, B.; Meng, X. Effect of traditional Chinese cooking methods on fatty acid profiles of vegetable oils. Food Chem. 2017, 233, 77–84. [Google Scholar] [CrossRef]
- Matar, R.; Salami, M.; Al Assaf, Z. Factors affecting the formation of elaidic acid in syrian edible oils during frying with home conditions. Res. J. Pharm. Technol. 2019, 12, 5451. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Y.; Nie, S.; Xie, M.; Chen, F. Analysis and formation of trans fatty acids in corn oil during the heating process. J. Am. Oil Chem. Soc. 2011, 89, 859–867. [Google Scholar] [CrossRef]
- Segura-Campos, M.; Gonzalez-Barrios, G.; Acereto-Escoffie, P.; Rosado-Rubio, G.; Chel-Guerrero, L.; Betancur-Ancona, D. Fatty acid profile of mero (Epinephelus morio) raw and processed oil captured in the Yucatan Peninsula, Mexico. Nutr. Hosp. 2014, 31, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, S.; Passi, S.J.; Misra, A.; Pant, K.K.; Anwar, K.; Pandey, R.M.; Kardam, V. Effect of heating/reheating of fats/oils, as used by Asian Indians, on trans fatty acid formation. Food Chem. 2016, 212, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Ha, Y.; Wang, F.; Li, W.; Li, Q. Determination of thermally induced trans-fatty acids in soybean oil by attenuated total reflectance fourier transform infrared spectroscopy and gas chromatography analysis. J. Agric. Food Chem. 2012, 60, 10709–10713. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Yuan, B.; Li, W.; Wang, F.; Ha, Y. Thermally induced isomerization of linoleic acid in soybean oil. Chem. Phys. Lipids 2012, 166, 55–60. [Google Scholar] [CrossRef]
- Liu, W.H.; Lu, Y.F.; Inbaraj, B.S.; Chen, B.H. Formation of trans fatty acids in chicken legs during frying. Int. J. Food Sci. Nutr. 2008, 59, 368–382. [Google Scholar] [CrossRef]
- Sebedio, J.L.; Catte, M.; Boudier, M.A.; Prevost, J.; Grandgirard, A. Formation of fatty acid geometrical isomers and of cyclic fatty acid monomers during the finish frying of frozen prefried potatoes. Food Res. Int. 1996, 29, 109–116. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Vasishtha, A.K. Changes in the characteristics and composition of oils during deep-fat frying. J. Am. Oil Chem. Soc. 1996, 73, 499–506. [Google Scholar] [CrossRef]
- Filip, S.; Hribar, J.; Vidrih, R. Influence of natural antioxidants on the formation of trans-fatty-acid isomers during heat treatment of sunflower oil. Eur. J. Lipid Sci. Technol. 2010, 113, 224–230. [Google Scholar] [CrossRef]
- Rani, A.K.S.; Reddy, S.Y.; Chetana, R. Quality changes in trans and trans free fats/oils and products during frying. Eur. Food Res. Technol. 2010, 230, 803–811. [Google Scholar] [CrossRef]
- Romero, A.; Cuesta, C.; Sánchez-Muniz, F.J. Trans fatty acid production in deep fat frying of frozen foods with different oils and frying modalities. Nutr. Res. 2000, 20, 599–608. [Google Scholar] [CrossRef]
- Bansal, G.; Zhou, W.; Tan, T.-W.; Neo, F.-L.; Lo, H.-L. Analysis of trans fatty acids in deep frying oils by three different approaches. Food Chem. 2009, 116, 535–541. [Google Scholar] [CrossRef]
- Casal, S.; Malheiro, R.; Sendas, A.; Oliveira, B.P.; Pereira, J.A. Olive oil stability under deep-frying conditions. Food Chem. Toxicol. 2010, 48, 2972–2979. [Google Scholar] [CrossRef]
- Daniel, D.R.; Thompson, L.D.; Shriver, B.J.; Wu, C.-K.; Hoover, L.C. Nonhydrogenated cottonseed oil can be used as a deep fat frying medium to reduce trans-fatty acid content in french fries. J. Am. Diet. Assoc. 2005, 105, 1927–1932. [Google Scholar] [CrossRef] [PubMed]
- Kala, A.L.A.; Joshi, V.; Gurudutt, K.N. Effect of heating oils and fats in containers of different materials on their trans fatty acid content. J. Sci. Food Agric. 2012, 92, 2227–2233. [Google Scholar] [CrossRef] [PubMed]
- Sanibal, E.A.A.; Mancini Filho, J. Perfil de ácidos graxos trans de óleo e gordura hidrogenada de soja no processo de fritura. Ciêne Tecnol. Aliment. 2004, 24, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Dhibi, M.; Issaoui, M.; Brahmi, F.; Mechri, B.; Mnari, A.; Cheraif, I.; Skhiri, F.; Gazzah, N.; Hammami, M. Nutritional quality of fresh and heated Aleppo pine (Pinus halepensis Mill.) seed oil: Trans-fatty acid isomers profiles and antioxidant properties. J. Food Sci. Technol. 2012, 51, 1442–1452. [Google Scholar] [CrossRef] [Green Version]
- Enríquez-Fernández, B.E.; Álvarez de la Cadena y Yañez, L.; Sosa-Morales, M.E. Comparison of the stability of palm olein and a palm olein/canola oil blend during deep-fat frying of chicken nuggets and French fries. Int. J. Food Sci. Technol. 2011, 46, 1231–1237. [Google Scholar] [CrossRef]
- Mishra, R.; Sharma, H.K. Effect of frying conditions on the physico-chemical properties of rice bran oil and its blended oil. J. Food Sci. Technol. 2011, 51, 1076–1084. [Google Scholar] [CrossRef] [Green Version]
- Aladedunye, F.; Przybylski, R. Degradation and nutritional quality changes of oil during frying. J. Am. Oil Chem. Soc. 2008, 86, 149–156. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Wang, Y.; Cao, P.; Liu, Y. Effects of frying oils’ fatty acids profile on the formation of polar lipids components and their retention in French fries over deep-frying process. Food Chem. 2017, 237, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, Y.; Nie, S.; Yang, X.; Wang, Y.; Yang, M.; Li, C.; Xie, M. The analysis of trans fatty acid profiles in deep frying palm oil and chicken fillets with an improved gas chromatography method. Food Control 2014, 44, 191–197. [Google Scholar] [CrossRef]
- Grandgirard, A.; Sebedio, J.L.; Fleury, J. Geometrical isomerization of linolenic acid during heat treatment of vegetable oils. J. Am. Oil Chem. Soc. 1984, 61, 1563–1568. [Google Scholar] [CrossRef]
- Sebedio, J.L.; Grandgirard, A.; Prevost, J. Linoleic acid isomers in heat treated sunflower oils. J. Am. Oil Chem. Soc. 1988, 65, 362–366. [Google Scholar] [CrossRef]
- Tarrago-Trani, M.T.; Phillips, K.M.; Lemar, L.E.; Holden, J.M. New and existing oils and fats used in products with reduced trans-fatty acid content. J. Am. Diet. Assoc. 2006, 106, 867–880. [Google Scholar] [CrossRef]
- Food Safety and Standards Authority of India. Guidance Note No. 06/2018: Handling and Disposal of Used Cooking Oil; Ministry of Health and Family Welfare: New Delhi, India, 2018.
- Azman, A.; Mohd Shahrul, S.; Chan, S.X.; Noorhazliza, A.P.; Khairunnisak, M.; Nur Azlina, M.F.; Qodriyah, H.M.; Kamisah, Y.; Jaarin, K. Level of knowledge, attitude and practice of night market food outlet operators in Kuala Lumpur regarding the usage of repeatedly heated cooking oil. Med. J. Malays. 2012, 67, 91–101. [Google Scholar]
- Abdul Aziz, A.; Mohd Elias, S.; Sabran, M.R. Repeatedly heating cooking oil among food premise operators in Bukit Mertajam, Pulau Pinang and determination of peroxide in cooking oil. Malays. J. Med. Health Sci. 2018, 14, 37–44. [Google Scholar]
- Thanusin, S.; Limpiteeprakan, P.; Lapkham, C.; Manwong, M. Quality of reused cooking oil of food stalls in the area of Muangsrikri Municipality, Warinchamrab, Ubon Ratchathani. Health Sci. J. Thail. 2021, 3, 17–28. [Google Scholar]
- Food Safety and Standards Authority of India. Food Safety and Standards (Licensing and Registration of Food Businesses), Regulations 2011; Ministry of Health and Family Welfare: New Delhi, India, 2011. Available online: https://fssai.gov.in/cms/food-safety-and-standards-regulations.php (accessed on 1 February 2022).
- Srivastava, S.; Singh, M.; George, J.; Bhui, K.; Shukla, Y. Genotoxic and carcinogenic risks associated with the consumption of repeatedly boiled sunflower oil. J. Agric. Food Chem. 2010, 58, 11179–11186. [Google Scholar] [CrossRef]
TFA Concentration (% of Total Fatty Acids) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Unheated | <200 °C | 200–240 °C | >240 °C | ||||||
Fatty acid | n studies (n samples) | Median (IQR)/ Estimate (95% CI); p | n studies (n samples) | Median (IQR)/ Estimate (95% CI); p | n studies (n samples) | Median (IQR)/ Estimate (95% CI); p | n studies (n samples) | Median (IQR)/ Estimate (95% CI); p | |
16:1t | Median | 0 (0) | - | 4 (60) | 0.02 (0.01; 0.03) | 2 (30) | 0.02 (0.01; 0.03) | 1 (16) | 0.02 (0.00; 0.02) |
Difference from usual cooking temperatures | - | Reference | 0.00 (−0.00, 0.01); p = 0.62 | −0.01 (−0.01, 0.00); p = 0.052 | |||||
18:1t | Median | 3 (14) | 0.35 (0.06, 0.56) | 13 (306) | 0.24 (0.03, 1.49) | 5 (79) | 0.07 (0.01, 3.72) | 3 (37) | 1.08 (0.08, 3.20) |
Difference from unheated | Reference | 0.71 (−1.11, 2.54); p = 0.45 | 0.61 (−1.26, 2.48); p = 0.52 | 2.06 (0.10, 4.02); p = 0.04 | |||||
Difference from usual cooking temperatures | Reference | −0.10 (−0.97, 0.77); p = 0.82 | 1.33 (0.07, 2.60); p = 0.039 | ||||||
18:2t | Median | 1 (1) | 0.13 (-) | 10 (178) | 0.31 (0.01, 0.50) | 4 (69) | 0.42 (0.03; 0.62) | 1 (48) | 0.48 (0.21; 0.98) |
Difference from unheated | Reference | 0.33 (−0.51, 1.18); p = 0.45 | 0.38 (−0.47, 1.23); p = 0.38 | 0.76 (−0.10, 1.61); p = 0.084 | |||||
Difference from usual cooking temperatures | Reference | 0.05 (−0.07, 0.18); p = 0.42 | 0.43 (0.28, 0.57); p < 0.001 | ||||||
18:3t | Median | 2 (7) | 0.01 (0.00, 0.20) | 4 (56) | 0.01 (0.00, 0.27) | 3 (27) | 0.01 (0.00, 0.30) | 1 (12) | 0.70 (0.53, 1.48) |
Difference from unheated | Reference | 0.11 (−0.23, 0.45); p = 0.52 | 0.20 (−1.14, 0.53); p = 0.25 | 0.80 (0.44, 1.15); p < 0.001 | |||||
Difference from usual cooking temperatures | Reference | 0.05 (−0.11, 0.21); p = 0.52 | 0.62 (0.37, 0.88); p < 0.001 | ||||||
Total TFA | Median | 1 (1) | 0.09 (-) | 10 (117) | 0.97 (0.62, 1.53) | 5 (52) | 1.42 (0.87; 3.70) | 2 (17) | 1.54 (0.97; 4.10) |
Difference from unheated | Reference | 2.14 (−8.24, 12.52); p = 0.69 | 2.49 (−7.93, 12.90); p = 0.64 | 3.78 (−6.84, 14.40); p = 0.49 | |||||
Difference from regular cooking temperatures | Reference | 0.34 (−1.42, 2.10); p = 0.70 | 1.64 (−1.22, 4.49); p = 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhat, S.; Maganja, D.; Huang, L.; Wu, J.H.Y.; Marklund, M. Influence of Heating during Cooking on Trans Fatty Acid Content of Edible Oils: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 1489. https://doi.org/10.3390/nu14071489
Bhat S, Maganja D, Huang L, Wu JHY, Marklund M. Influence of Heating during Cooking on Trans Fatty Acid Content of Edible Oils: A Systematic Review and Meta-Analysis. Nutrients. 2022; 14(7):1489. https://doi.org/10.3390/nu14071489
Chicago/Turabian StyleBhat, Saiuj, Damian Maganja, Liping Huang, Jason H. Y. Wu, and Matti Marklund. 2022. "Influence of Heating during Cooking on Trans Fatty Acid Content of Edible Oils: A Systematic Review and Meta-Analysis" Nutrients 14, no. 7: 1489. https://doi.org/10.3390/nu14071489
APA StyleBhat, S., Maganja, D., Huang, L., Wu, J. H. Y., & Marklund, M. (2022). Influence of Heating during Cooking on Trans Fatty Acid Content of Edible Oils: A Systematic Review and Meta-Analysis. Nutrients, 14(7), 1489. https://doi.org/10.3390/nu14071489