Effects of Multi-Ingredient Pre-Workout Supplement and Caffeine on Bench Press Performance: A Single-Blind Cross-Over Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Training Load Determination
2.4. Method of Training Load Assessment
2.5. Psychological Measures—Feeling Scale, Felt Arousal Scale and Session Rate of Perceived Exertion
2.6. Dosage and Supplementation Method
2.7. Market Query
2.8. Statistical Analysis
3. Results
3.1. Effects of Supplementation
3.2. Price Comparison
4. Discussion
5. Conclusions
- -
- In a group of resistance-trained men, supplementation of caffeine may lead to greater ergogenic benefits than MIPS with no differences in psychological aspects. This conclusion is aggravated by the results of the market query and prices of supplements in both categories, since:
- -
- In the Polish market, the dose of caffeine is, on average, tenfold cheaper in the form of a pill and as much as 50-fold cheaper in the form of powder than MIPS. Results of this research may suggest a shift in supplementation habits of those participating in resistance exercise. It is supported by both the ecologically valid evaluation of the MIPS in our study and higher caffeine efficacy, as well as economic calculation. Nevertheless, more research on varied populations and products with different ingredient profiles may be needed to draw final conclusions about MIPS efficacy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dietary Supplements Market Size & Trends Report, 2021–2028. Available online: https://www.grandviewresearch.com/industry-analysis/dietary-supplements-market (accessed on 4 February 2022).
- Czerwinski, A.; Liebers, D. Polski Regulacja Rynku Suplementów Diety: Czy Polska ma Szanse Zostac Europejskim Liderem; Polski Instytut Ekonomiczny: Warszawa, Poland, 2019; ISBN 978-83-66306-58-5. (In Polish) [Google Scholar]
- Jagim, A.R.; Camic, C.L.; Harty, P.S. Common Habits, Adverse Events, and Opinions Regarding Pre-Workout Supplement Use Among Regular Consumers. Nutrients 2019, 11, 855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagim, A.R.; Harty, P.S.; Camic, C.L. Common Ingredient Profiles of Multi-Ingredient Pre-Workout Supplements. Nutrients 2019, 11, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magrini, M.A.; Colquhoun, R.J.; Dawes, J.J.; Smith, D.B. Effects of a Pre-Workout Energy Drink Supplement on Upper Body Muscular Endurance Performance. Int. J. Exerc. Sci. 2016, 9, 667–676. [Google Scholar] [PubMed]
- Campbell, B.; Richmond, J.; Dawes, J. The Effects of a Commercial, Pre-Exercise Energy Drink Supplement on Power, Muscular Endurance, and Repeated Sprint Speed. Int. J. Exerc. Sci. 2016, 9, 205–213. [Google Scholar]
- Blake, M.S.; Johnson, N.R.; Trautman, K.A.; Grier, J.W.; Stastny, S.N.; Hackney, K.J. Neither a Multi-Ingredient Pre-Workout Supplement nor Caffeine Were Effective at Improving Markers of Blood Flow or Upper-Body Resistance Exercise Performance. Int. J. Exerc. Sci. 2020, 13, 167–182. [Google Scholar]
- Martin, J.S.; Mumford, P.W.; Haun, C.T.; Luera, M.J.; Muddle, T.W.D.; Colquhoun, R.J.; Feeney, M.P.; Mackey, C.S.; Roberson, P.A.; Young, K.C.; et al. Effects of a Pre-Workout Supplement on Hyperemia Following Leg Extension Resistance Exercise to Failure with Different Resistance Loads. J. Int. Soc. Sports Nutr. 2017, 14, 38. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Ratamess, N.A.; Ross, R.; Shanklin, M.; Kang, J.; Faigenbaum, A.D. Effect of a Pre-Exercise Energy Supplement on the Acute Hormonal Response to Resistance Exercise. J. Strength Cond. Res. 2008, 22, 874–882. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, A.M.; Walsh, A.L.; Ratamess, N.A.; Kang, J.; Hoffman, J.R. Effect of a Pre-Workout Energy Supplement on Acute Multi-Joint Resistance Exercise. J. Sports Sci. Med. 2011, 10, 261–266. [Google Scholar]
- Jagim, A.R.; Jones, M.T.; Wright, G.A.; St Antoine, C.; Kovacs, A.; Oliver, J.M. The Acute Effects of Multi-Ingredient Pre-Workout Ingestion on Strength Performance, Lower Body Power, and Anaerobic Capacity. J. Int. Soc. Sports Nutr. 2016, 13, 11. [Google Scholar] [CrossRef] [Green Version]
- Collins, P.; Earnest, C.; Dalton, R.; Sowinski, R.; Grubic, T.; Favot, C.; Coletta, A.; Rasmussen, C.; Greenwood, M.; Kreider, R. Short-Term Effects of a Ready-to-Drink Pre-Workout Beverage on Exercise Performance and Recovery. Nutrients 2017, 9, 823. [Google Scholar] [CrossRef] [Green Version]
- Bergstrom, H.C.; Byrd, M.T.; Wallace, B.J.; Clasey, J.L. Examination of a Multi-Ingredient Preworkout Supplement on Total Volume of Resistance Exercise and Subsequent Strength and Power Performance. J. Strength Cond. Res. 2018, 32, 1479–1490. [Google Scholar] [CrossRef] [PubMed]
- Cameron, M.; Camic, C.L.; Doberstein, S.; Erickson, J.L.; Jagim, A.R. The Acute Effects of a Multi-Ingredient Pre-Workout Supplement on Resting Energy Expenditure and Exercise Performance in Recreationally Active Females. J. Int. Soc. Sports Nutr. 2018, 15, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, N.A.; McKinley-Barnard, S.K.; Blahnik, Z.J. Effect of Bang® Pre-Workout Master Blaster® Combined with Four Weeks of Resistance Training on Lean Body Mass, Maximal Strength, MircoRNA Expression, and Serum IGF-1 in Men: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Int. Soc. Sports Nutr. 2019, 16, 54. [Google Scholar] [CrossRef] [Green Version]
- Kaczka, P.; Batra, A.; Kubicka, K.; Maciejczyk, M.; Rzeszutko-Bełzowska, A.; Pezdan-Śliż, I.; Michałowska-Sawczyn, M.; Przydział, M.; Płonka, A.; Cięszczyk, P.; et al. Effects of Pre-Workout Multi-Ingredient Supplement on Anaerobic Performance: Randomized Double-Blind Crossover Study. Int. J. Environ. Res. Public. Health 2020, 17, 8262. [Google Scholar] [CrossRef] [PubMed]
- Shelmadine, B.; Cooke, M.; Buford, T.; Hudson, G.; Redd, L.; Leutholtz, B.; Willoughby, D.S. Effects of 28 Days of Resistance Exercise and Consuming a Commercially Available Pre-Workout Supplement, NO-Shotgun(R), on Body Composition, Muscle Strength and Mass, Markers of Satellite Cell Activation, and Clinical Safety Markers in Males. J. Int. Soc. Sports Nutr. 2009, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Spillane, M.; Schwarz, N.; Leddy, S.; Correa, T.; Minter, M.; Longoria, V.; Willoughby, D.S. Effects of 28 Days of Resistance Exercise While Consuming Commercially Available Pre- and Post-Workout Supplements, NO-Shotgun® and NO-Synthesize® on Body Composition, Muscle Strength and Mass, Markers of Protein Synthesis, and Clinical Safety Markers in Males. Nutr. Metab. 2011, 8, 78. [Google Scholar] [CrossRef] [Green Version]
- Kudrna, R.; Moodie, N.; McCartney, M.; Bustamante, J.; Fry, A.; Gallagher, P. The Effect of a Multi-Ingredient High Caffeine Pre-Exercise Supplement on Strength Power and Body Composision in 8 Weeks of Resistance Training. J. Strength Cond. Res. 2011, 25, S112. [Google Scholar] [CrossRef]
- Directo, D.; Wong, M.W.H.; Elam, M.L.; Falcone, P.; Osmond, A.; Jo, E. The Effects of a Multi-Ingredient Performance Supplement Combined with Resistance Training on Exercise Volume, Muscular Strength, and Body Composition. Sports 2019, 7, 152. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and Smell the Coffee: Caffeine Supplementation and Exercise Performance-an Umbrella Review of 21 Published Meta-Analyses. Br. J. Sports Med. 2020, 54, 681–688. [Google Scholar] [CrossRef]
- Grgic, J.; Del Coso, J. Ergogenic Effects of Acute Caffeine Intake on Muscular Endurance and Muscular Strength in Women: A Meta-Analysis. Int. J. Environ. Res. Public. Health 2021, 18, 5773. [Google Scholar] [CrossRef]
- Grgic, J.; Pickering, C.; Bishop, D.J.; Del Coso, J.; Schoenfeld, B.J.; Tinsley, G.M.; Pedisic, Z. ADORA2A C Allele Carriers Exhibit Ergogenic Responses to Caffeine Supplementation. Nutrients 2020, 12, 741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International Society of Sports Nutrition Position Stand: Caffeine and Exercise Performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Hultman, E.; Söderlund, K.; Timmons, J.A.; Cederblad, G.; Greenhaff, P.L. Muscle Creatine Loading in Men. J. Appl. Physiol. 1996, 81, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Mielgo-Ayuso, J.; Calleja-Gonzalez, J.; Marqués-Jiménez, D.; Caballero-García, A.; Córdova, A.; Fernández-Lázaro, D. Effects of Creatine Supplementation on Athletic Performance in Soccer Players: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonio, J.; Candow, D.G.; Forbes, S.C.; Gualano, B.; Jagim, A.R.; Kreider, R.B.; Rawson, E.S.; Smith-Ryan, A.E.; VanDusseldorp, T.A.; Willoughby, D.S.; et al. Common Questions and Misconceptions about Creatine Supplementation: What Does the Scientific Evidence Really Show? J. Int. Soc. Sports Nutr. 2021, 18, 13. [Google Scholar] [CrossRef] [PubMed]
- Branch, J.D. Effect of Creatine Supplementation on Body Composition and Performance: A Meta-Analysis. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 198–226. [Google Scholar] [CrossRef]
- Dempsey, R.L.; Mazzone, M.F.; Meurer, L.N. Does Oral Creatine Supplementation Improve Strength? A Meta-Analysis. J. Fam. Pract. 2002, 51, 945–951. [Google Scholar]
- Lanhers, C.; Pereira, B.; Naughton, G.; Trousselard, M.; Lesage, F.-X.; Dutheil, F. Creatine Supplementation and Lower Limb Strength Performance: A Systematic Review and Meta-Analyses. Sports Med. 2015, 45, 1285–1294. [Google Scholar] [CrossRef]
- Arazi, H.; Eghbali, E.; Karimifard, M. Effect of Creatine Ethyl Ester Supplementation and Resistance Training on Hormonal Changes, Body Composition and Muscle Strength in Underweight Non-Athlete Men. Biomed. Hum. Kinet. 2019, 11, 158–166. [Google Scholar] [CrossRef] [Green Version]
- Willoughby, D.S.; Rosene, J. Effects of Oral Creatine and Resistance Training on Myosin Heavy Chain Expression. Med. Sci. Sports Exerc. 2001, 33, 1674–1681. [Google Scholar] [CrossRef]
- Cholewa, J.; Trexler, E.; Lima-Soares, F.; de Araújo Pessôa, K.; Sousa-Silva, R.; Santos, A.M.; Zhi, X.; Nicastro, H.; Cabido, C.E.T.; de Freitas, M.C.; et al. Effects of Dietary Sports Supplements on Metabolite Accumulation, Vasodilation and Cellular Swelling in Relation to Muscle Hypertrophy: A Focus on “Secondary” Physiological Determinants. Nutrition 2019, 60, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Contreras, B. The Muscle Pump: Potential Mechanisms and Applications for Enhancing Hypertrophic Adaptations. Strength Cond. J. 2014, 36, 21–25. [Google Scholar] [CrossRef]
- Culbertson, J.Y.; Kreider, R.B.; Greenwood, M.; Cooke, M. Effects of Beta-Alanine on Muscle Carnosine and Exercise Performance: A Review of the Current Literature. Nutrients 2010, 2, 75–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, M.C.; Cholewa, J.; Panissa, V.; Quizzini, G.; de Oliveira, J.V.; Figueiredo, C.; Gobbo, L.A.; Caperuto, E.; Zanchi, N.E.; Lira, F.; et al. Short-Time β-Alanine Supplementation on the Acute Strength Performance after High-Intensity Intermittent Exercise in Recreationally Trained Men. Sports 2019, 7, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huerta Ojeda, Á.; Tapia Cerda, C.; Poblete Salvatierra, M.F.; Barahona-Fuentes, G.; Jorquera Aguilera, C. Effects of Beta-Alanine Supplementation on Physical Performance in Aerobic–Anaerobic Transition Zones: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2490. [Google Scholar] [CrossRef] [PubMed]
- Saunders, B.; Elliott-Sale, K.; Artioli, G.G.; Swinton, P.A.; Dolan, E.; Roschel, H.; Sale, C.; Gualano, B. β-Alanine Supplementation to Improve Exercise Capacity and Performance: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2017, 51, 658–669. [Google Scholar] [CrossRef]
- Rezende, N.S.; Swinton, P.; de Oliveira, L.F.; da Silva, R.P.; da Eira Silva, V.; Nemezio, K.; Yamaguchi, G.; Artioli, G.G.; Gualano, B.; Saunders, B.; et al. The Muscle Carnosine Response to Beta-Alanine Supplementation: A Systematic Review With Bayesian Individual and Aggregate Data E-Max Model and Meta-Analysis. Front. Physiol. 2020, 11, 913. [Google Scholar] [CrossRef]
- Meeusen, R.; Decroix, L. Nutritional Supplements and the Brain. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 200–211. [Google Scholar] [CrossRef]
- Meeusen, R.; Watson, P. Amino Acids and the Brain: Do They Play a Role in “Central Fatigue”? Int. J. Sport Nutr. Exerc. Metab. 2007, 17, S37–S46. [Google Scholar] [CrossRef]
- Pomeroy, D.E.; Tooley, K.L.; Probert, B.; Wilson, A.; Kemps, E. A Systematic Review of the Effect of Dietary Supplements on Cognitive Performance in Healthy Young Adults and Military Personnel. Nutrients 2020, 12, 545. [Google Scholar] [CrossRef] [Green Version]
- McLeay, Y.; Stannard, S.; Barnes, M. The Effect of Taurine on the Recovery from Eccentric Exercise-Induced Muscle Damage in Males. Antioxidants 2017, 6, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, L.A.; Tromm, C.B.; Bom, K.F.; Mariano, I.; Pozzi, B.; da Rosa, G.L.; Tuon, T.; da Luz, G.; Vuolo, F.; Petronilho, F.; et al. Effects of Taurine Supplementation Following Eccentric Exercise in Young Adults. Appl. Physiol. Nutr. Metab. 2014, 39, 101–104. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, M.B.; Brandao, C.F.C.; Fassini, P.G.; Bianco, T.M.; Batitucci, G.; Galan, B.S.M.; Carvalho, F.G.D.; Vieira, T.S.; Ferriolli, E.; Marchini, J.S.; et al. Taurine Supplementation Increases Post-Exercise Lipid Oxidation at Moderate Intensity in Fasted Healthy Males. Nutrients 2020, 12, 1540. [Google Scholar] [CrossRef]
- Milioni, F.; de Souza Malta, E.; do Amaral Rocha, L.G.S.; Mesquita, C.A.A.; de Freitas, E.C.; Zagatto, A.M. Acute Administration of High Doses of Taurine Does Not Substantially Improve High-Intensity Running Performance and the Effect on Maximal Accumulated Oxygen Deficit Is Unclear. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2016, 41, 498–503. [Google Scholar] [CrossRef]
- Waldron, M.; Patterson, S.D.; Tallent, J.; Jeffries, O. The Effects of an Oral Taurine Dose and Supplementation Period on Endurance Exercise Performance in Humans: A Meta-Analysis. Sports Med. 2018, 48, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Aguayo, E.; Martínez-Sánchez, A.; Fernández-Lobato, B.; Alacid, F. L-Citrulline: A Non-Essential Amino Acid with Important Roles in Human Health. Appl. Sci. 2021, 11, 3293. [Google Scholar] [CrossRef]
- Brzezińska-Rojek, J.; Rutkowska, M.; Brzezicha, J.; Konieczka, P.; Prokopowicz, M.; Grembecka, M. Mineral Composition of Dietary Supplements-Analytical and Chemometric Approach. Nutrients 2021, 14, 106. [Google Scholar] [CrossRef]
- Viribay, A.; Burgos, J.; Fernández-Landa, J.; Seco-Calvo, J.; Mielgo-Ayuso, J. Effects of Arginine Supplementation on Athletic Performance Based on Energy Metabolism: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1300. [Google Scholar] [CrossRef]
- Iraki, J.; Fitschen, P.; Espinar, S.; Helms, E. Nutrition Recommendations for Bodybuilders in the Off-Season: A Narrative Review. Sports 2019, 7, 154. [Google Scholar] [CrossRef] [Green Version]
- Trexler, E.T.; Persky, A.M.; Ryan, E.D.; Schwartz, T.A.; Stoner, L.; Smith-Ryan, A.E. Acute Effects of Citrulline Supplementation on High-Intensity Strength and Power Performance: A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 707–718. [Google Scholar] [CrossRef]
- Domínguez, R.; Cuenca, E.; Maté-Muñoz, J.L.; García-Fernández, P.; Serra-Paya, N.; Estevan, M.C.L.; Herreros, P.V.; Garnacho-Castaño, M.V. Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients 2017, 9, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez, R.; Maté-Muñoz, J.L.; Cuenca, E.; García-Fernández, P.; Mata-Ordoñez, F.; Lozano-Estevan, M.C.; Veiga-Herreros, P.; da Silva, S.F.; Garnacho-Castaño, M.V. Effects of Beetroot Juice Supplementation on Intermittent High-Intensity Exercise Efforts. J. Int. Soc. Sports Nutr. 2018, 15, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pryor, J.L.; Craig, S.A.; Swensen, T. Effect of Betaine Supplementation on Cycling Sprint Performance. J. Int. Soc. Sports Nutr. 2012, 9, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismaeel, A. Effects of Betaine Supplementation on Muscle Strength and Power: A Systematic Review. J. Strength Cond. Res. 2017, 31, 2338–2346. [Google Scholar] [CrossRef]
- Zourdos, M.C.; Klemp, A.; Dolan, C.; Quiles, J.M.; Schau, K.A.; Jo, E.; Helms, E.; Esgro, B.; Duncan, S.; Garcia Merino, S.; et al. Novel Resistance Training-Specific Rating of Perceived Exertion Scale Measuring Repetitions in Reserve. J. Strength Cond. Res. 2016, 30, 267–275. [Google Scholar] [CrossRef] [Green Version]
- IPF. Technical Rules Book 2021; IPF: Ayr, ON, Canada, 2020. [Google Scholar]
- Kruszewski, M. Weightlifting and Bodybuilding; COS Warszawa: Warszawa, Poland, 2005; ISBN 83-60052-07-7. (In Polish) [Google Scholar]
- Kruszewski, M.; Tabęcki, R.; Mastalerz, A. Effectiveness of the Proprietary Strength Training Program in Improving Individuals with Spinal Cord Injuries in the Cervical Segments; KS AnMar: Warsaw, Poland, 2018; ISBN 978-83-951919-0-9. (In Polish) [Google Scholar]
- Hardy, C.J.; Rejeski, W.J. Not What, but How One Feels: The Measurement of Affect during Exercise. J. Sport Exerc. Psychol. 1989, 11, 304–317. [Google Scholar] [CrossRef]
- Svebak, S.; Murgatroyd, S. Metamotivational Dominance: A Multimethod Validation of Reversal Theory Constructs. J. Pers. Soc. Psychol. 1985, 48, 107–116. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A New Approach to Monitoring Exercise Training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar]
- Haddad, M.; Stylianides, G.; Djaoui, L.; Dellal, A.; Chamari, K. Session-RPE Method for Training Load Monitoring: Validity, Ecological Usefulness, and Influencing Factors. Front. Neurosci. 2017, 11, 612. [Google Scholar] [CrossRef]
- Warren, G.L.; Park, N.D.; Maresca, R.D.; Mckibans, K.I.; Millard-Stafford, M.L. Effect of Caffeine Ingestion on Muscular Strength and Endurance: A Meta-Analysis. Med. Sci. Sports Exerc. 2010, 42, 1375–1387. [Google Scholar] [CrossRef]
- World Anti-Doping Agency. Prohibited List 2021; World Anti-Doping Agency: Montreal, QC, Canada, 2020. [Google Scholar]
- Sullivan, G.M.; Feinn, R. Using Effect Size—Or Why the p Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trexler, E.T.; Smith-Ryan, A.E. Creatine and Caffeine: Considerations for Concurrent Supplementation. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 607–623. [Google Scholar] [CrossRef] [PubMed]
- Vandenberghe, K.; Gillis, N.; Van Leemputte, M.; Van Hecke, P.; Vanstapel, F.; Hespel, P. Caffeine Counteracts the Ergogenic Action of Muscle Creatine Loading. J. Appl. Physiol. Bethesda Md 1985 1996, 80, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E. Caffeine and Exercise: Metabolism, Endurance and Performance. Sports Med. 2001, 31, 785–807. [Google Scholar] [CrossRef]
- Lima-Silva, A.E.; Cristina-Souza, G.; Silva-Cavalcante, M.D.; Bertuzzi, R.; Bishop, D.J. Caffeine during High-Intensity Whole-Body Exercise: An Integrative Approach beyond the Central Nervous System. Nutrients 2021, 13, 2503. [Google Scholar] [CrossRef]
- Hespel, P.; Op’t Eijnde, B.; Van Leemputte, M. Opposite Actions of Caffeine and Creatine on Muscle Relaxation Time in Humans. J. Appl. Physiol. 2002, 92, 513–518. [Google Scholar] [CrossRef] [Green Version]
- Pakulak, A.; Candow, D.G.; Totosy de Zepetnek, J.; Forbes, S.C.; Basta, D. Effects of Creatine and Caffeine Supplementation During Resistance Training on Body Composition, Strength, Endurance, Rating of Perceived Exertion and Fatigue in Trained Young Adults. J. Diet. Suppl. 2021, 1–16. [Google Scholar] [CrossRef]
- Outlaw, J.J.; Wilborn, C.D.; Smith-Ryan, A.E.; Hayward, S.E.; Urbina, S.L.; Taylor, L.W.; Foster, C.A. Acute Effects of a Commercially-Available Pre-Workout Supplement on Markers of Training: A Double-Blind Study. J. Int. Soc. Sports Nutr. 2014, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Lutsch, D.J.; Camic, C.L.; Jagim, A.R.; Johnston, N.J.; Musgjerd, T.L. Acute Effects of a Multi-Ingredient Pre-Workout Supplement On 5-KM Running Performance in Recreationally-Trained Athletes. Int. J. Exerc. Sci. 2019, 12, 1045–1056. [Google Scholar]
- Erickson, J.R.; Camic, C.L.; Jagim, A.R.; Pellersels, P.M.; Wright, G.A.; Henert, S.E.; Foster, C. Effects of One Versus Two Doses of a Multi-Ingredient Pre-Workout Supplement on Metabolic Factors and Perceived Exertion during Moderate-Intensity Running in Females. Sports 2020, 8, 52. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, C.; Lira, F.S.; Rossi, F.E.; Billaut, F.; Loschi, R.; Padilha, C.S. Multi-Ingredient Pre-Workout Supplementation Changes Energy System Contribution and Improves Performance during High-Intensity Intermittent Exercise in Physically Active Individuals: A Double-Blind and Placebo Controlled Study. J. Int. Soc. Sports Nutr. 2020, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Saldanha, L.G.; Dwyer, J.T.; Bailen, R.A.; Andrews, K.W.; Betz, J.W.; Chang, H.F.; Costello, R.B.; Ershow, A.G.; Goshorn, J.; Hardy, C.J.; et al. Characteristics and Challenges of Dietary Supplement Databases Derived from Label Information. J. Nutr. 2018, 148, 1422S–1427S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaffer, S.W.; Shimada, K.; Jong, C.J.; Ito, T.; Azuma, J.; Takahashi, K. Effect of Taurine and Potential Interactions with Caffeine on Cardiovascular Function. Amino Acids 2014, 46, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- The Best Pre-Workout Supplements of 2022. Available online: https://www.bodybuilding.com/content/the-best-pre-workout-supplements.html (accessed on 26 February 2022).
- Cohen, P.A.; Wen, A.; Gerona, R. Prohibited Stimulants in Dietary Supplements After Enforcement Action by the US Food and Drug Administration. JAMA Intern. Med. 2018, 178, 1721–1723. [Google Scholar] [CrossRef] [Green Version]
- Cohen, P.A.; Maller, G.; DeSouza, R.; Neal-Kababick, J. Presence of Banned Drugs in Dietary Supplements Following FDA Recalls. JAMA 2014, 312, 1691–1693. [Google Scholar] [CrossRef] [Green Version]
- Crisp, P. The Line in the Sand for British Strength Sports. No Second Chances and the Creation of a Drug Free for Life Ethos. Phys. Cult. Sport Stud. Res. 2019, 84, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kruszewski, M. Effectiveness of Muscular Development and Nutritional Supplementation Techniques in the Aspect of Motor Potential and Body Composition Changes in Training Participans; Studia i Monografie AWF: Warszawa, Poland, 2009; ISBN 978-83-89630-84-1. (In Polish) [Google Scholar]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of Caffeine Intake on Muscle Strength and Power: A Systematic Review and Meta-Analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef] [Green Version]
- Kruszewski, M. Changes in Maximal Strength and Body Composition after Different Methods of Developing Muscle Strength and Supplementation with Creatine, L-Carnitine and HMB. Biol. Sport 2011, 28, 145–150. [Google Scholar] [CrossRef]
- Conrado de Freitas, M.; Rossi, F.E.; Colognesi, L.A.; de Oliveira, J.V.N.S.; Zanchi, N.E.; Lira, F.S.; Cholewa, J.M.; Gobbo, L.A. Postactivation Potentiation Improves Acute Resistance Exercise Performance and Muscular Force in Trained Men. J. Strength Cond. Res. 2021, 35, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, A.; Naito, H.; Chow, C.M. Hyperventilation-Aided Recovery for Extra Repetitions on Bench Press and Leg Press. J. Strength Cond. Res. 2020, 34, 1274–1284. [Google Scholar] [CrossRef]
- Douzi, W.; Dugué, B.; Vinches, L.; Al Sayed, C.; Hallé, S.; Bosquet, L.; Dupuy, O. Cooling during Exercise Enhances Performances, but the Cooled Body Areas Matter: A Systematic Review with Meta-Analyses. Scand. J. Med. Sci. Sports 2019, 29, 1660–1676. [Google Scholar] [CrossRef] [PubMed]
- Guilherme da Silva Telles, L.; Cristiano Carelli, L.; Dutra Bráz, I.; Junqueira, C.; Rios Monteiro, E.; Machado Reis, V.; Macedo Vianna, J.; da Silva Novaes, J. Effects of Ischemic Preconditioning as a Warm-Up on Leg Press and Bench Press Performance. J. Hum. Kinet. 2020, 75, 267–277. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Suggested Dose (mg) | Mean Dose (mg) | ± | SD |
---|---|---|---|---|
Beta-alanine | 3000 | 4986 | ± | 539 |
L-citrulline malate | 3000 | 4986 | ± | 539 |
Arginine alpha-ketoglutarate | 1200 | 1994 | ± | 216 |
L-taurine | 1200 | 1994 | ± | 216 |
L-tyrosine | 1000 | 1662 | ± | 180 |
Caffeine | 300 | 499 | ± | 54 |
Variable | Post-Caffeine ± SD | Post-MIPS ± SD | ES | ||||
---|---|---|---|---|---|---|---|
Set 1 repetition volume | 11.92 | ± | 0.86 | 11.69 | ± | 1.44 | 0.19 |
Set 2 repetition volume | 8.15 | ± | 1.46 | 8.15 | ± | 1.34 | - |
Set 3 repetition volume | 6.31 | ± | 1.11 * | 5.92 | ± | 0.95 * | 0.37 |
Set 4 repetition volume | 5.31 | ± | 1.03 | 5.15 | ± | 1.07 | 0.15 |
Set 5 repetition volume | 5.15 | ± | 1.41 | 4.92 | ± | 0.86 | 0.23 |
Total repetition volume | 36.85 | ± | 4.36 * | 35.85 | ± | 4.36 * | 0.20 |
Variable | Post-Caffeine ± SD | Post-MIPS ± SD | ES | ||||
---|---|---|---|---|---|---|---|
Pre-training FS | 3.88 | ± | 0.92 | 3.54 | ± | 1.31 | 0.31 |
Pre-training FAS | 3.85 | ± | 1.14 | 4.12 | ± | 1.06 | −0.24 |
Pre-training sRPE | 2.58 | ± | 1.61 | 2.88 | ± | 1.31 | −0.21 |
Post-training FS | 2.85 | ± | 2.17 | 3.54 | ± | 1.35 | −0.39 |
Post-training FAS | 3.85 | ± | 1.09 | 4.08 | ± | 1.59 | −0.17 |
Post-training sRPE | 6.62 | ± | 1.70 | 6.04 | ± | 1.90 | 0.32 |
Supplement | Mean Suggested Portion Size (g) ± SD | Mean Caffeine Content (mg) ± SD | Mean Price per Portion (PLN) ± SD |
---|---|---|---|
Local MIPS | 13.2 ± 6.54 | 187.45 ± 90.3 | 2.52 ± 1.41 |
Imported MIPS | 14.46 ± 7.95 | 202.91 ± 109.06 | 3.63 ± 1.78 * |
PC caffeine | 0.2 | 200 | 0.25 ± 0.07 ** |
Powder caffeine | 0.2 | 200 | 0.05 ± 0.03 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruszewski, M.; Merchelski, M.; Kruszewski, A.; Tabęcki, R.; Aksenov, M.O.; Pągowski, Ł. Effects of Multi-Ingredient Pre-Workout Supplement and Caffeine on Bench Press Performance: A Single-Blind Cross-Over Study. Nutrients 2022, 14, 1750. https://doi.org/10.3390/nu14091750
Kruszewski M, Merchelski M, Kruszewski A, Tabęcki R, Aksenov MO, Pągowski Ł. Effects of Multi-Ingredient Pre-Workout Supplement and Caffeine on Bench Press Performance: A Single-Blind Cross-Over Study. Nutrients. 2022; 14(9):1750. https://doi.org/10.3390/nu14091750
Chicago/Turabian StyleKruszewski, Marek, Maciej Merchelski, Artur Kruszewski, Rafał Tabęcki, Maksim Olegovich Aksenov, and Łukasz Pągowski. 2022. "Effects of Multi-Ingredient Pre-Workout Supplement and Caffeine on Bench Press Performance: A Single-Blind Cross-Over Study" Nutrients 14, no. 9: 1750. https://doi.org/10.3390/nu14091750
APA StyleKruszewski, M., Merchelski, M., Kruszewski, A., Tabęcki, R., Aksenov, M. O., & Pągowski, Ł. (2022). Effects of Multi-Ingredient Pre-Workout Supplement and Caffeine on Bench Press Performance: A Single-Blind Cross-Over Study. Nutrients, 14(9), 1750. https://doi.org/10.3390/nu14091750