The Effects of Nutrition on Linear Growth
Abstract
:1. Introduction
2. Endocrinological Regulators
2.1. GH Axis
2.2. FGF21
2.3. Insulin
2.4. Leptin
2.5. Thyroid Hormone
3. Nutritional Regulators
3.1. Macronutrients
3.2. Micronutrients
4. Clinical Implications
4.1. Anorexia Nervosa
4.2. Obesity
5. Conclusions
Funding
Conflicts of Interest
References
- Benyi, E.; Sävendahl, L. The Physiology of Childhood Growth: Hormonal Regulation. Horm. Res. Paediatr. 2017, 88, 6–14. [Google Scholar] [CrossRef]
- Victora, C.G.; Adair, L.; Fall, C.; Hallal, P.C.; Martorell, R.; Richter, L.; Sachdev, H.S.; Maternal and Child Undernutrition Study Group. Maternal and child undernutrition: Consequences for adult health and human capital. Lancet 2008, 371, 340–357. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J. The fetal and infant origins of adult disease. BMJ 1990, 301, 1111. [Google Scholar] [CrossRef] [Green Version]
- Kilic, M.; Taskin, E.; Ustundag, B.; Aygun, A. The evaluation of serum leptin level and other hormonal parameters in children with severe malnutrition. Clin. Biochem. 2004, 37, 382–387. [Google Scholar] [CrossRef]
- Soliman, A.T.; ElZalabany, M.M.; Salama, M.; Ansari, B.M. Serum leptin concentrations during severe protein-energy malnutrition: Correlation with growth parameters and endocrine function. Metabolism 2000, 49, 819–825. [Google Scholar] [CrossRef]
- Kay’s, S.K.; Hindmarsh, P.C. Catch-up growth: An overview. Pediatr. Endocrinol. Rev. 2006, 3, 365–378. [Google Scholar]
- Haddad, L.; Achadi, E.; Bendech, M.A.; Ahuja, A.; Bhatia, K.; Bhutta, Z.; Blössner, M.; Borghi, E.; Colecraft, E.; de Onis, M.; et al. The Global Nutrition Report 2014: Actions and Accountability to Accelerate the World’s Progress on Nutrition. J. Nutr. 2015, 145, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Hermanussen, M.; Wit, J.M. How Much Nutrition for How Much Growth? Horm. Res. Paediatr. 2016, 88, 38–45. [Google Scholar] [CrossRef]
- Sguassero, Y.; De Onis, M.; Carroli, G. Community-based supplementary feeding for promoting the growth of young children in developing countries. Cochrane Database Syst. Rev. 2005, 4, Cd005039. [Google Scholar] [CrossRef]
- Hage, M.; Kamenický, P.; Chanson, P. Growth Hormone Response to Oral Glucose Load: From Normal to Pathological Conditions. Neuroendocrinology 2019, 108, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, E.; Nagaya, N.; Okumura, H.; Enomoto, M.; Oya, H.; Ono, F.; Hosoda, H.; Kojima, M.; Kangawa, K. Hyperglycaemia suppresses the secretion of ghrelin, a novel growth-hormone-releasing peptide: Responses to the intravenous and oral administration of glucose. Clin. Sci. 2002, 103, 325–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, J.; Glick, S.M.; Yalow, R.S.; Berson, S.A. Hypoglycemia: A Potent Stimulus to Secretion of Growth Hormone. Science 1963, 140, 987–988. [Google Scholar] [CrossRef] [PubMed]
- Kopchick, J.J.; Berryman, D.; Puri, V.; Lee, K.Y.; Jorgensen, J.O.L. The effects of growth hormone on adipose tissue: Old observations, new mechanisms. Nat. Rev. Endocrinol. 2020, 16, 135–146. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, J.; Wei, S.; Yang, R.; Gao, L.; Shao, S.; Zhao, J. Lipotoxicity suppresses the synthesis of growth hormone in pituitary somatotrophs via endoplasmic reticulum stress. J. Cell. Mol. Med. 2021, 25, 5250–5259. [Google Scholar] [CrossRef]
- Caputo, M.; Pigni, S.; Agosti, E.; Daffara, T.; Ferrero, A.; Filigheddu, N.; Prodam, F. Regulation of GH and GH Signaling by Nutrients. Cells 2021, 10, 1376. [Google Scholar] [CrossRef]
- Fazeli, P.K.; Klibanski, A. Determinants of GH resistance in malnutrition. J. Endocrinol. 2014, 220, R57–R65. [Google Scholar] [CrossRef] [Green Version]
- Heinrichs, C.; Colli, M.; Yanovski, J.A.; Laue, L.; Gerstl, N.A.; Kramer, A.D.; Uyeda, J.A.; Baron, J. Effects of Fasting on the Growth Plate: Systemic and Local Mechanisms 1. Endocrinology 1997, 138, 5359–5365. [Google Scholar] [CrossRef]
- Livingstone, C. Insulin-like growth factor-I (IGF-I) and clinical nutrition. Clin. Sci. 2013, 125, 265–280. [Google Scholar] [CrossRef] [Green Version]
- Freemark, M. Metabolomics in Nutrition Research: Biomarkers Predicting Mortality in Children with Severe Acute Malnutrition. Food Nutr. Bull. 2015, 36 (Suppl. S1), S88–S92. [Google Scholar] [CrossRef]
- Thissen, J.-P.; Ketelslegers, J.-M.; Underwood, L.E. Nutritional Regulation of the Insulin-Like Growth Factors. Endocr. Rev. 1994, 15, 80–101. [Google Scholar] [CrossRef]
- Clemmons, D.R.; Seek, M.M.; Underwood, L.E. Supplemental essential amino acids augment the somatomedin-C/insulin-like growth factor I response to refeeding after fasting. Metabolism 1985, 34, 391–395. [Google Scholar] [CrossRef]
- Abribat, T.; Nedelec, B.; Jobin, N.; Garrel, D.R. Decreased serum insulin-like growth factor-I in burn patients: Relationship with serum insulin-like growth factor binding protein-3 proteolysis and the influence of lipid composition in nutritional support. Crit. Care Med. 2000, 28, 2366–2372. [Google Scholar] [CrossRef] [PubMed]
- Gat-Yablonski, G.; Shtaif, B.; Abraham, E.; Phillip, M. Nutrition-induced Catch-up Growth at the Growth Plate. J. Pediatr. Endocrinol. Metab. 2008, 21, 879–894. [Google Scholar] [CrossRef] [PubMed]
- Millward, D.J. Nutrition, infection and stunting: The roles of deficiencies of individual nutrients and foods, and of inflammation, as determinants of reduced linear growth of children. Nutr. Res. Rev. 2017, 30, 50–72. [Google Scholar] [CrossRef]
- Smith, W.J.; Underwood, L.E.; Keyes, L.; Clemmons, D.R. Use of Insulin-Like Growth Factor I (IGF-I) and IGF-Binding Protein Measurements to Monitor Feeding of Premature Infants. J. Clin. Endocrinol. Metab. 1997, 82, 3982–3988. [Google Scholar] [CrossRef]
- Taylor, A.M.; Bush, A.; Thomson, A.; Oades, P.J.; Marchant, J.L.; Bruce-Morgan, C.; Holly, J.; Ahmed, L.; Dunger, P.D. Relation between insulin-like growth factor-I, body mass index, and clinical status in cystic fibrosis. Arch. Dis. Child. 1997, 76, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Kubicky, R.A.; Wu, S.; Kharitonenkov, A.; De Luca, F. Role of Fibroblast Growth Factor 21 (FGF21) in Undernutrition-Related Attenuation of Growth in Mice. Endocrinology 2012, 153, 2287–2295. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, T.; Lin, V.Y.; Goetz, R.; Mohammadi, M.; Mangelsdorf, D.; Kliewer, S.A. Inhibition of Growth Hormone Signaling by the Fasting-Induced Hormone FGF21. Cell Metab. 2008, 8, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Laeger, T.; Henagan, T.M.; Albarado, D.C.; Redman, L.M.; Bray, G.A.; Noland, R.C.; Münzberg, H.; Hutson, S.M.; Gettys, T.W.; Schwartz, M.W.; et al. FGF21 is an endocrine signal of protein restriction. J. Clin. Investig. 2014, 124, 3913–3922. [Google Scholar] [CrossRef] [Green Version]
- Gosby, A.K.; Lau, N.S.; Tam, C.S.; Iglesias, M.A.; Morrison, C.D.; Caterson, I.D.; Brand-Miller, J.; Conigrave, A.D.; Raubenheimer, D.; Simpson, S.J. Raised FGF-21 and Triglycerides Accompany Increased Energy Intake Driven by Protein Leverage in Lean, Healthy Individuals: A Randomised Trial. PLoS ONE 2016, 11, e0161003. [Google Scholar] [CrossRef]
- Fazeli, P.K.; Lun, M.; Kim, S.M.; Bredella, M.A.; Wright, S.; Zhang, Y.; Lee, H.; Catana, C.; Klibanski, A.; Patwari, P.; et al. FGF21 and the late adaptive response to starvation in humans. J. Clin. Investig. 2015, 125, 4601–4611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arndt, M.B.; Richardson, B.A.; Mahfuz, M.; Ahmed, T.; Haque, R.; Gazi, M.A.; John-Stewart, G.C.; Denno, D.M.; Scarlett, J.M.; Walson, J.L.; et al. Plasma Fibroblast Growth Factor 21 Is Associated with Subsequent Growth in a Cohort of Underweight Children in Bangladesh. Curr. Dev. Nutr. 2019, 3, nzz024. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Levenson, A.; Kharitonenkov, A.; De Luca, F. Fibroblast Growth Factor 21 (FGF21) Inhibits Chondrocyte Function and Growth Hormone Action Directly at the Growth Plate. J. Biol. Chem. 2012, 287, 26060–26067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guasti, L.; Silvennoinen, S.; Bulstrode, N.W.; Ferretti, P.; Sankilampi, U.; Dunkel, L. Elevated FGF21 Leads to Attenuated Postnatal Linear Growth in Preterm Infants through GH Resistance in Chondrocytes. J. Clin. Endocrinol. Metab. 2014, 99, E2198–E2206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mericq, V.; De Luca, F.; Hernandez, M.I.; Peña, V.; Rossel, K.; García, M.; Ávila, A.; Cavada, G.; Iñiguez, G. Serum Fibroblast Growth Factor 21 Levels Are Inversely Associated with Growth Rates in Infancy. Horm. Res. Paediatr. 2014, 82, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Laron, Z. Insulin—A growth hormone. Arch. Physiol. Biochem. 2008, 114, 11–16. [Google Scholar] [CrossRef]
- Baumeister, F.A.M.; Engelsberger, I.; Schulze, A. Pancreatic Agenesis as Cause for Neonatal Diabetes Mellitus. Klin. Padiatr. 2005, 217, 76–81. [Google Scholar] [CrossRef]
- Gat-Yablonski, G.; Phillip, M. Nutritionally-Induced Catch-Up Growth. Nutrients 2015, 7, 517–551. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.J.; Milner, R.D.G. Insulin as a Growth Factor. Pediatr. Res. 1985, 19, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; He, Q.; Tsang, W.P.; Garvey, W.T.; Chan, W.Y.; Wan, C. Insulin exerts direct, IGF-1 independent actions in growth plate chondrocytes. Bone Res. 2014, 2, 14012. [Google Scholar] [CrossRef]
- Tannenbaum, G.S.; Gurd, W.; Lapointe, M. Leptin Is a Potent Stimulator of Spontaneous Pulsatile Growth Hormone (GH) Secretion and the GH Response to GH-Releasing Hormone. Endocrinology 1998, 139, 3871–3875. [Google Scholar] [CrossRef] [PubMed]
- Odle, A.; Haney, A.; Allensworth-James, M.; Akhter, N.; Childs, G.V. Adipocyte Versus Pituitary Leptin in the Regulation of Pituitary Hormones: Somatotropes Develop Normally in the Absence of Circulating Leptin. Endocrinology 2014, 155, 4316–4328. [Google Scholar] [CrossRef] [Green Version]
- Gat-Yablonski, G.; Ben-Ari, T.; Shtaif, B.; Potievsky, O.; Moran, O.; Eshet, R.; Maor, G.; Segev, Y.; Phillip, M. Leptin Reverses the Inhibitory Effect of Caloric Restriction on Longitudinal Growth. Endocrinology 2004, 145, 343–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gat-Yablonski, G.; Shtaif, B.; Phillip, M. Leptin Stimulates Parathyroid Hormone Related Peptide Expression in the Endochondral Growth Plate. J. Pediatr. Endocrinol. Metab. 2007, 20, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Steppan, C.M.; Crawford, D.; Chidsey-Frink, K.L.; Ke, H.; Swick, A.G. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul. Pept. 2000, 92, 73–78. [Google Scholar] [CrossRef]
- Iwaniec, U.T.; Boghossian, S.; Lapke, P.D.; Turner, R.T.; Kalra, S.P. Central leptin gene therapy corrects skeletal abnormalities in leptin-deficient ob/ob mice. Peptides 2007, 28, 1012–1019. [Google Scholar] [CrossRef] [Green Version]
- Gat-Yablonski, G.; Yackobovitch-Gavan, M.; Phillip, M. Nutrition and Bone Growth in Pediatrics. Pediatr. Clin. N. Am. 2011, 58, 1117–1140. [Google Scholar] [CrossRef]
- Dadon, S.B.-E.; Shahar, R.; Katalan, V.; Monsonego-Ornan, E.; Reifen, R. Leptin administration affects growth and skeletal development in a rat intrauterine growth restriction model: Preliminary study. Nutrition 2011, 27, 973–977. [Google Scholar] [CrossRef]
- Farooqi, S.; Keogh, J.M.; Kamath, S.; Jones, S.; Gibson, W.; Trussell, R.; Jebb, S.A.; Lip, G.Y.H.; O’Rahilly, S. Partial leptin deficiency and human adiposity. Nature 2001, 414, 34–35. [Google Scholar] [CrossRef]
- Marouli, E.; Graff, M.; Medina-Gomez, C.; Lo, K.S.; Wood, A.R.; Kjaer, T.R.; Fine, R.S.; Lu, Y.; Schurmann, C.; Highland, H.M.; et al. Rare and low-frequency coding variants alter human adult height. Nature 2017, 542, 186–190. [Google Scholar] [CrossRef] [Green Version]
- Lam, B.Y.H.; Williamson, A.; Finer, S.; Day, F.R.; Tadross, J.A.; Soares, A.G.; Wade, K.; Sweeney, P.; Bedenbaugh, M.N.; Porter, D.T.; et al. MC3R links nutritional state to childhood growth and the timing of puberty. Nature 2021, 599, 436–441. [Google Scholar] [CrossRef]
- O’Kane, M.; Mulhern, M.S.; Pourshahidi, L.K.; Strain, J.J.; Yeates, A.J. Micronutrients, iodine status and concentrations of thyroid hormones: A systematic review. Nutr. Rev. 2018, 76, 418–431. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, C.H.A.; Miranda-Rodrigues, M.; Martins, G.M.; Neofiti-Papi, B. Thyroid Hormone and Skeletal Development. Vitam. Horm. 2018, 106, 383–472. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Chin, J.E.; Schalk, E.M.; Wuthier, R.E. Effect of amino acid levels on matrix vesicle formation by epiphyseal growth plate chondrocytes in primary culture. J. Cell. Physiol. 1986, 126, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Prentice, A.; Schoenmakers, I.; Laskey, M.A.; De Bono, S.; Ginty, F.; Goldberg, G.R. Nutrition and bone growth and development. Proc. Nutr. Soc. 2006, 65, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Yayha, Z.A.H.; Millward, D.J. Dietary Protein and the Regulation of Long-Bone and Muscle Growth in the Rat. Clin. Sci. 1994, 87, 213–224. [Google Scholar] [CrossRef]
- Hörnell, A.; Lagström, H.; Lande, B.; Thorsdottir, I. Protein intake from 0 to 18 years of age and its relation to health: A systematic literature review for the 5th Nordic Nutrition Recommendations. Food Nutr. Res. 2013, 57, 21083. [Google Scholar] [CrossRef] [Green Version]
- Dewey, K.G. Growth Characteristics of Breast-Fed Compared to Formula-Fed Infants. Neonatology 1998, 74, 94–105. [Google Scholar] [CrossRef]
- Heinig, M.J.; Nommsen, L.A.; Peerson, J.M.; Lonnerdal, B.; Dewey, K.G. Energy and protein intakes of breast-fed and formula-fed infants during the first year of life and their association with growth velocity: The DARLING Study. Am. J. Clin. Nutr. 1993, 58, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Räihä, N.C.R.; Fazzolari-Nesci, A.; Cajozzo, C.; Puccio, G.; Monestier, A.; Moro, G.; Minoli, I.; Haschke-Becher, E.; Bachmann, C.; Hof, M.V.; et al. Whey Predominant, Whey Modified Infant Formula with Protein/energy Ratio of 1.8 g/100 kcal: Adequate and Safe for Term Infants from Birth to Four Months. J. Pediatr. Gastroenterol. Nutr. 2002, 35, 275–281. [Google Scholar] [CrossRef]
- Millward, D.J. Knowledge Gained from Studies of Leucine Consumption in Animals and Humans. J. Nutr. 2012, 142, 2212S–2219S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laplante, M.; Sabatini, D.M. mTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backer, J.M. The regulation and function of Class III PI3Ks: Novel roles for Vps34. Biochem. J. 2008, 410, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Long, F. mTORC1 Signaling Promotes Osteoblast Differentiation from Preosteoblasts. PLoS ONE 2015, 10, e0130627. [Google Scholar] [CrossRef] [PubMed]
- Phornphutkul, C.; Wu, K.-Y.; Auyeung, V.; Chen, Q.; Gruppuso, P.A. mTOR signaling contributes to chondrocyte differentiation. Dev. Dyn. 2008, 237, 702–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moynahan, E.J. Letter: Acrodermatitis enteropathica: A lethal inherited human zinc-deficiency disorder. Lancet 1974, 2, 399–400. [Google Scholar] [CrossRef]
- Williams, R.B.; Mills, C.F. The experimental production of zinc deficiency in the rat. Br. J. Nutr. 1970, 24, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Rossi, L.; Migliaccio, S.; Corsi, A.; Marzia, M.; Bianco, P.; Teti, A.M.; Gambelli, L.; Cianfarani, S.; Paoletti, F.; Branca, F. Reduced Growth and Skeletal Changes in Zinc-Deficient Growing Rats Are Due to Impaired Growth Plate Activity and Inanition. J. Nutr. 2001, 131, 1142–1146. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, R.S. The Role of Zinc in Growth and Cell Proliferation. J. Nutr. 2000, 130 (Suppl. S5), 1500S–1508S. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.H.; Peerson, J.M.; Rivera, J.; Allen, L.H. Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2002, 75, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Imdad, A.; Bhutta, Z.A. Effect of preventive zinc supplementation on linear growth in children under 5 years of age in developing countries: A meta-analysis of studies for input to the lives saved tool. BMC Public Health 2011, 11 (Suppl. S3), S22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, E.; Pimpin, L.; Shulkin, M.; Kranz, S.; Duggan, C.P.; Mozaffarian, D.; Fawzi, W.W. Effect of Zinc Supplementation on Growth Outcomes in Children under 5 Years of Age. Nutrients 2018, 10, 377. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, U.; Aburto, N.; McCabe, G.; Martorell, R. Multimicronutrient Interventions but Not Vitamin A or Iron Interventions Alone Improve Child Growth: Results of 3 Meta-Analyses. J. Nutr. 2004, 134, 2592–2602. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, U.; Nguyen, P.; Martorell, R. Effects of micronutrients on growth of children under 5 y of age: Meta-analyses of single and multiple nutrient interventions. Am. J. Clin. Nutr. 2008, 89, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, N.; Bahl, R.; Taneja, S. Effect of micronutrient supplementation on linear growth of children. Br. J. Nutr. 2001, 85 (Suppl. S2), S131–S137. [Google Scholar] [CrossRef] [PubMed]
- Gera, T.; Shah, D.; Sachdev, H.S. Zinc Supplementation for Promoting Growth in Children under 5 years of age in Low- and Middle-income Countries: A Systematic Review. Indian Pediatr. 2019, 56, 391–406. [Google Scholar] [CrossRef]
- Roberts, J.L.; Stein, A.D. The Impact of Nutritional Interventions beyond the First 2 Years of Life on Linear Growth: A Systematic Review and Meta-Analysis. Adv. Nutr. 2017, 8, 323–336. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Cancio, M.; Audi, L.; Carrascosa, A.; Toran, N.; Andaluz, P.; Esteban, C.; Granada, M. Vitamin D and growth hormone regulate growth hormone/insulin-like growth factor (GH-IGF) axis gene expression in human fetal epiphyseal chondrocytes. Growth Horm. IGF Res. 2009, 19, 232–237. [Google Scholar] [CrossRef]
- Huey, S.L.; Acharya, N.; Silver, A.; Sheni, R.; Yu, E.A.; Peña-Rosas, J.P.; Mehta, S. Effects of oral vitamin D supplementation on linear growth and other health outcomes among children under five years of age. Cochrane Database Syst. Rev. 2020, 12, CD012875. [Google Scholar] [CrossRef]
- Chen, H.; Hayakawa, D.; Emura, S.; Ozawa, Y.; Okumura, T.; Shoumura, S. Effect of low or high dietary calcium on the morphology of the rat femur. Histol. Histopathol. 2002, 17, 1129–1135. [Google Scholar]
- Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. Horm. Res. Paediatr. 2016, 85, 83–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Stuijvenberg, M.E.; Nel, J.; Schoeman, S.E.; Lombard, C.J.; du Plessis, L.M.; Dhansay, M.A. Low intake of calcium and vitamin D, but not zinc, iron or vitamin A, is associated with stunting in 2- to 5-year-old children. Nutrition 2015, 31, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Prentice, A.; Ginty, F.; Stear, S.J.; Jones, S.C.; Laskey, M.A.; Cole, T.J. Calcium Supplementation Increases Stature and Bone Mineral Mass of 16- to 18-Year-Old Boys. J. Clin. Endocrinol. Metab. 2005, 90, 3153–3161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagazio, A.; Piantedosi, R.; Alba, M.; Blaner, W.S.; Salvatori, R. Vitamin A deficiency does not influence longitudinal growth in mice. Nutrition 2007, 23, 483–488. [Google Scholar] [CrossRef]
- Yang, W.; Wang, J.; Zhu, X.; Gao, Y.; Liu, Z.; Zhang, L.; Chen, H.; Shi, X.; Yang, L.; Liu, G. High Lever Dietary Copper Promote Ghrelin Gene Expression in the Fundic Gland of Growing Pigs. Biol. Trace Elem. Res. 2012, 150, 154–157. [Google Scholar] [CrossRef]
- Roughead, Z.K.; Lukaski, H.C. Inadequate Copper Intake Reduces Serum Insulin-Like Growth Factor-I and Bone Strength in Growing Rats Fed Graded Amounts of Copper and Zinc. J. Nutr. 2003, 133, 442–448. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, M.B. Iodine Deficiency. Endocr. Rev. 2009, 30, 376–408. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.; Karumbunathan, V.; Zimmermann, M.B. Global Iodine Status in 2011 and Trends over the Past Decade. J. Nutr. 2012, 142, 744–750. [Google Scholar] [CrossRef]
- Markou, K.B.; Tsekouras, A.; Anastasiou, E.; Vlassopoulou, B.; Koukkou, E.; Vagenakis, G.A.; Mylonas, P.; Vasilopoulos, C.; Theodoropoulou, A.; Rottstein, L.; et al. Treating Iodine Deficiency: Long-Term Effects of Iodine Repletion on Growth and Pubertal Development in School-Age Children. Thyroid 2008, 18, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.H.; Peerson, J.M.; Olney, D.K. Provision of Multiple Rather Than Two or Fewer Micronutrients More Effectively Improves Growth and Other Outcomes in Micronutrient-Deficient Children and Adults. J. Nutr. 2009, 139, 1022–1030. [Google Scholar] [CrossRef] [Green Version]
- Adriani, M.; Wirjatmadi, B. The effect of adding zinc to vitamin A on IGF-1, bone age and linear growth in stunted children. J. Trace Elem. Med. Biol. 2014, 28, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Klibanski, A. Endocrine consequences of anorexia nervosa. Lancet Diabetes Endocrinol. 2014, 2, 581–592. [Google Scholar] [CrossRef] [Green Version]
- Singhal, V.; Misra, M.; Klibanski, A. Endocrinology of anorexia nervosa in young people: Recent insights. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 64–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Léger, J.; Fjellestad-Paulsen, A.; Bargiacchi, A.; Doyen, C.; Ecosse, E.; Carel, J.-C.; Le Heuzey, M.-F. Can growth hormone treatment improve growth in children with severe growth failure due to anorexia nervosa? A preliminary pilot study. Endocr. Connect. 2017, 6, 839–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebenthal, Y.; Yackobovitch-Gavan, M.; Lazar, L.; Shalitin, S.; Tenenbaum, A.; Shamir, R.; Phillip, M. Effect of a Nutritional Supplement on Growth in Short and Lean Prepubertal Children: A Prospective, Randomized, Double-Blind, Placebo-Controlled Study. J. Pediatr. 2014, 165, 1190–1193.e1. [Google Scholar] [CrossRef]
- Swenne, I.; Stridsberg, M.; Thurfjell, B.; Rosling, A. Insulin-like growth factor-1 as an indicator of nutrition during treatment of adolescent girls with eating disorders. Acta Paediatr. 2007, 96, 1203–1208. [Google Scholar] [CrossRef]
- Ahmed, M.L.; Ong, K.K.; Dunger, D.B. Childhood obesity and the timing of puberty. Trends Endocrinol. Metab. 2009, 20, 237–242. [Google Scholar] [CrossRef]
- Williams, T.; Berelowitz, M.; Joffe, S.N.; Thorner, M.O.; Rivier, J.; Vale, W.; Frohman, L.A. Impaired Growth Hormone Responses to Growth Hormone-Releasing Factor in Obesity. A Pituitary Defect Reversed with Weight Reduction. N. Engl. J. Med. 1984, 311, 1403–1407. [Google Scholar] [CrossRef]
- Vanderschueren-Lodeweyckx, M. The Effect of Simple Obesity on Growth and Growth Hormone. Horm. Res. 1993, 40, 23–30. [Google Scholar] [CrossRef]
- Radetti, G.; Bozzola, M.; Pasquino, B.; Paganini, C.; Aglialoro, A.; Livieri, C.; Barreca, A. Growth hormone bioactivity, insulin-like growth factors (IGFs), and IGF binding proteins in obese children. Metabolism 1998, 47, 1490–1493. [Google Scholar] [CrossRef]
- Schneider, H.J.; Saller, B.; Klotsche, J.; März, W.; Erwa, W.; Wittchen, H.-U.; Stalla, G.K. Opposite associations of age-dependent insulin-like growth factor-I standard deviation scores with nutritional state in normal weight and obese subjects. Eur. J. Endocrinol. 2006, 154, 699–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fennoy, I. Effect of obesity on linear growth. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Caminos, J.E.; Gualillo, O.; Lago, F.; Otero, M.; Blanco, M.; Gallego, R.; Garcia-Caballero, T.; Goldring, M.B.; Casanueva, F.F.; Gomez-Reino, J.J.; et al. The Endogenous Growth Hormone Secretagogue (Ghrelin) Is Synthesized and Secreted by Chondrocytes. Endocrinology 2005, 146, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Lanzi, R.; Luzi, L.; Caumo, A.; Andreotti, A.C.; Manzoni, M.F.; Malighetti, M.E.; Sereni, L.P.; Pontiroli, A.E. Elevated insulin levels contribute to the reduced growth hormone (GH) response to GH-releasing hormone in obese subjects. Metabolism 1999, 48, 1152–1156. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inzaghi, E.; Pampanini, V.; Deodati, A.; Cianfarani, S. The Effects of Nutrition on Linear Growth. Nutrients 2022, 14, 1752. https://doi.org/10.3390/nu14091752
Inzaghi E, Pampanini V, Deodati A, Cianfarani S. The Effects of Nutrition on Linear Growth. Nutrients. 2022; 14(9):1752. https://doi.org/10.3390/nu14091752
Chicago/Turabian StyleInzaghi, Elena, Valentina Pampanini, Annalisa Deodati, and Stefano Cianfarani. 2022. "The Effects of Nutrition on Linear Growth" Nutrients 14, no. 9: 1752. https://doi.org/10.3390/nu14091752
APA StyleInzaghi, E., Pampanini, V., Deodati, A., & Cianfarani, S. (2022). The Effects of Nutrition on Linear Growth. Nutrients, 14(9), 1752. https://doi.org/10.3390/nu14091752