Screening for Sarcopenia among Elderly Arab Females: Influence of Body Composition, Lifestyle, Irisin, and Vitamin D
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Demographic and Lifestyle Assessment
2.3. Anthropometric and Body Composition Measurements
2.4. Muscle Mass, Strength, and Performance
2.5. Biochemical Analysis
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Clinical Differences among Participants with and without Sarcopenia
3.3. Factors Associated with Sarcopenia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.-K.; Liu, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Bahyah, K.S.; Chou, M.-Y.; Chen, L.-Y.; Hsu, P.-S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus Report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doherty, T.J. Invited Review: Aging and sarcopenia. J. Appl. Physiol. 2003, 95, 1717–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petermann-Rocha, F.; Chen, M.; Gray, S.R.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Factors associated with sarcopenia: A cross-sectional analysis using UK Biobank. Maturitas 2020, 133, 60–67. [Google Scholar] [CrossRef]
- Curcio, F.; Ferro, G.; Basile, C.; Liguori, I.; Parrella, P.; Pirozzi, F.; DELLA Morte, D.; Gargiulo, G.; Testa, G.; Tocchetti, C.G.; et al. Biomarkers in sarcopenia: A multifactorial approach. Exp. Gerontol. 2016, 85, 1–8. [Google Scholar] [CrossRef]
- Remelli, F.; Vitali, A.; Zurlo, A.; Volpato, S. Vitamin D Deficiency and Sarcopenia in Older Persons. Nutrients 2019, 11, 2861. [Google Scholar] [CrossRef] [Green Version]
- Hirani, V.; Cumming, R.; Naganathan, V.; Blyth, F.; Le Couteur, D.G.; Hsu, B.; Handelsman, D.J.; Waite, L.M.; Seibel, M. Longitudinal Associations Between Vitamin D Metabolites and Sarcopenia in Older Australian men: The Concord Health and Aging in Men Project. J. Gerontol.—Ser. A Biol. Sci. Med. Sci. 2018, 73, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Shuler, F.D.; Wingate, M.K.; Moore, G.H.; Giangarra, C. Sports Health Benefits of Vitamin D. Sports Health 2012, 4, 496–501. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Zhou, X.; Yuan, C.; Li, R.; Ma, Y.; Tang, X. Association between serum irisin concentrations and sarcopenia in patients with liver cirrhosis: A cross-sectional study. Sci. Rep. 2020, 10, 16093. [Google Scholar] [CrossRef]
- Park, H.-S.; Kim, H.C.; Zhang, D.; Yeom, H.; Lim, S.-K. The novel myokine irisin: Clinical implications and potential role as a biomarker for sarcopenia in postmenopausal women. Endocrine 2019, 64, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.S.; Kim, T.H.; Nguyen, T.T.; Park, K.-S.; Kim, N.; Kong, I.D. Circulating irisin levels as a predictive biomarker for sarcopenia: A cross-sectional community-based study. Geriatr. Gerontol. Int. 2017, 17, 2266–2273. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.Y.; Kim, S.; Park, J.W.; Lee, N.S.; Hwang, S.Y.; Huh, J.Y.; Hong, H.C.; Yoo, H.J.; Baik, S.H.; Youn, B.-S.; et al. Implication of Circulating Irisin Levels with Brown Adipose Tissue and Sarcopenia in Humans. J. Clin. Endocrinol. Metab. 2014, 99, 2778–2785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martone, A.M.; Marzetti, E.; Calvani, R.; Picca, A.; Tosato, M.; Santoro, L.; Di Giorgio, A.; Nesci, A.; Sisto, A.; Santoliquido, A.; et al. Exercise and Protein Intake: A Synergistic Approach against Sarcopenia. BioMed Res. Int. 2017, 2017, 2672435. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Locquet, M.; Touvier, M.; Reginster, J.-Y.; Bruyère, O. Association between dietary nutrient intake and sarcopenia in the SarcoPhAge study. Aging Clin. Exp. Res. 2019, 31, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sánchez, J.L.; Mañas, A.; García-García, F.J.; Ara, I.; Carnicero, J.A.; Walter, S.; Rodríguez-Mañas, L. Sedentary behaviour, physical activity, and sarcopenia among older adults in the TSHA: Isotemporal substitution model. J. Cachex. Sarcopenia Muscle 2019, 10, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Curcio, F.; Liguori, I.; Cellulare, M.; Sasso, G.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Physical Activity Scale for the Elderly (PASE) Score Is Related to Sarcopenia in Noninstitutionalized Older Adults. J. Geriatr. Phys. Ther. 2019, 42, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Suga, H.; Hashimoto, H. Age threshold for recommending higher protein intake to prevent age-related muscle weakness: A cross-sectional study in Japan. PLoS ONE 2018, 13, e0208169. [Google Scholar] [CrossRef]
- Kuczmarski, M.F.; Pohlig, R.T.; Shupe, E.S.; Zonderman, A.B.; Evans, M.K. Dietary Protein Intake and Overall Diet Quality are Associated with Handgrip Strength in African American and White Adults. J. Nutr. Health Aging 2018, 22, 700–709. [Google Scholar] [CrossRef]
- Muscariello, E.; Nasti, G.; Siervo, M.; Di Maro, M.; Lapi, D.; D’Addio, G.; Colantuoni, A. Dietary protein intake in sarcopenic obese older women. Clin. Interv. Aging 2016, 11, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.M.; Verlaan, S.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; McMurdo, M.E.; Mets, T.; Seal, C.; Wijers, S.L.; et al. Effects of a Vitamin D and Leucine-Enriched Whey Protein Nutritional Supplement on Measures of Sarcopenia in Older Adults, the PROVIDE Study: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Am. Med. Dir. Assoc. 2015, 16, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Ryu, M.; Jo, J.; Lee, Y.; Chung, Y.-S.; Kim, K.-M.; Baek, W.-C. Association of physical activity with sarcopenia and sarcopenic obesity in community-dwelling older adults: The Fourth Korea National Health and Nutrition Examination Survey. Age Ageing 2013, 42, 734–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoyagi, Y.; Park, H.; Kakiyama, T.; Park, S.; Yoshiuchi, K.; Shephard, R.J. Yearlong physical activity and regional stiffness of arteries in older adults: The Nakanojo Study. Eur. J. Appl. Physiol. 2010, 109, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Geirsdottir, O.G.; Arnarson, A.; Ramel, A.; Jonsson, P.V.; Thorsdottir, I. Dietary protein intake is associated with lean body mass in community-dwelling older adults. Nutr. Res. 2008, 33, 608–612. [Google Scholar] [CrossRef]
- Beaudart, C.; The IOF-ESCEO Sarcopenia Working Group; Dawson, A.; Shaw, S.C.; Harvey, N.; Kanis, J.A.; Binkley, N.; Reginster, J.Y.; Chapurlat, R.; Chan, D.C.; et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: Systematic review. Osteoporos. Int. 2017, 28, 1817–1833. [Google Scholar] [CrossRef] [Green Version]
- Sobestiansky, S.; Åberg, A.C.; Cederholm, T. Sarcopenia and malnutrition in relation to mortality in hospitalised patients in geriatric care—predictive validity of updated diagnoses. Clin. Nutr. ESPEN 2021, 45, 442–448. [Google Scholar] [CrossRef]
- Nakanishi, S.; Iwamoto, M.; Shinohara, H.; Iwamoto, H.; Kaneto, H. Significance of body mass index for diagnosing sarcopenia is equivalent to slow gait speed in Japanese individuals with type 2 diabetes: Cross-sectional study using outpatient clinical data. J. Diabetes Investig. 2020, 12, 417–424. [Google Scholar] [CrossRef]
- Pang, B.W.J.; Wee, S.-L.; Lau, L.K.; Jabbar, K.A.; Seah, W.T.; Ng, D.H.M.; Tan, Q.L.L.; Chen, K.K.; Jagadish, M.U.; Ng, T.P. Prevalence and Associated Factors of Sarcopenia in Singaporean Adults—The Yishun Study. J. Am. Med. Dir. Assoc. 2021, 22, 885.e1–885.e10. [Google Scholar] [CrossRef]
- Esteves, C.L.; Ohara, D.G.; Matos, A.P.; Ferreira, V.T.K.; Iosimuta, N.C.R.; Pegorari, M.S. Anthropometric indicators as a discriminator of sarcopenia in community-dwelling older adults of the Amazon region: A cross-sectional study. BMC Geriatr. 2020, 20, 518. [Google Scholar] [CrossRef]
- Fung, F.Y.; Koh, Y.L.E.; Malhotra, R.; Ostbye, T.; Lee, P.Y.; Ghazali, S.S.; Tan, N.C. Prevalence of and factors associated with sarcopenia among multi-ethnic ambulatory older Asians with type 2 diabetes mellitus in a primary care setting. BMC Geriatr. 2019, 19, 122. [Google Scholar] [CrossRef]
- Santos, L.A.; Lima, T.B.; Ietsugu, M.D.V.; Nunes, H.R.D.C.; Qi, X.; Romeiro, F.G. Anthropometric measures associated with sarcopenia in outpatients with liver cirrhosis. Nutr. Diet. 2019, 76, 613–619. [Google Scholar] [CrossRef]
- Kim, S.; Kim, M.; Lee, Y.; Kim, B.; Yoon, T.Y.; Won, C.W. Calf Circumference as a Simple Screening Marker for Diagnosing Sarcopenia in Older Korean Adults: The Korean Frailty and Aging Cohort Study (KFACS). J. Korean Med. Sci. 2018, 33, e151. [Google Scholar] [CrossRef] [PubMed]
- Akin, S.; Mucuk, S.; Öztürk, A.; Mazicioʇlu, M.; Göçer, S.; Arguvanli, S.; Şafak, E.D. Muscle function-dependent sarcopenia and cut-off values of possible predictors in community-dwelling Turkish elderly: Calf circumference, midarm muscle circumference and walking speed. Eur. J. Clin. Nutr. 2015, 69, 1087–1090. [Google Scholar] [CrossRef] [PubMed]
- Yakout, S.M.; Alkahtani, S.A.; Al-Disi, D.; Aljaloud, K.S.; Khattak, M.N.K.; Alokail, M.S.; Reginster, J.-Y.; Sabico, S.; Al-Daghri, N.M. Coexistence of Pre-sarcopenia and Metabolic Syndrome in Arab Men. Calcif Tissue Int. 2018, 104, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Alhussain, M.H.; Alkahtani, S.; Aljuhani, O.; Habib, S.S. Effects of Nutrient Intake on Diagnostic Measures of Sarcopenia among Arab Men: A Cross-Sectional Study. Nutrients 2020, 13, 114. [Google Scholar] [CrossRef] [PubMed]
- Alkahtani, S.A. A cross-sectional study on sarcopenia using different methods: Reference values for healthy Saudi young men. BMC Musculoskelet. Disord. 2017, 18, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alodhayani, A.A.; Alsaad, S.M.; Almofarej, N.; Alrasheed, N.; Alotaibi, B. Frailty, sarcopenia and health related outcomes among elderly patients in Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 1213–1217. [Google Scholar] [CrossRef]
- Farahat, M.; Alam, I.; Aldisi, D.; Abulmeaty, M. Designing and Validation of an Instrument for the Assessment of Dietary Habits, Physical Activity, Sun Exposure, and Sleeping Patterns Among Saudi Adults. Curr. Dev. Nutr. 2021, 5 (Suppl. S2), 123. [Google Scholar] [CrossRef]
- Teo, B.W.; Toh, Q.C.; Chan, X.W.; Xu, H.; Li, J.; Lee, E.J. Assessment of muscle mass and its association with protein intake in a multi-ethnic Asian population: Relevance in chronic kidney disease. Asia Pac. J. Clin. Nutr. 2014, 23, 619–625. [Google Scholar]
- Santos, A.L.; De Sá, C.M.A.T.; Brito, D.C.; Batista, C.L.; Da Costa, M.K.M.E.; De Lima, K.B.A.G.; Souza, M.; Ramos, T. Accuracy parameters as indicatores of anthropometric adiposity visceral scheduled for two-dimensional equation. Nutr. Hosp. 2015, 32, 2046–2053. [Google Scholar]
- Al-Musharaf, S.; Fouda, M.A.; Turkestani, I.Z.; Al-Ajlan, A.; Sabico, S.; Alnaami, A.M.; Wani, K.; Hussain, S.D.; Alraqebah, B.; Al-Serehi, A.; et al. Vitamin D Deficiency Prevalence and Predictors in Early Pregnancy among Arab Women. Nutrients 2018, 10, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Daghri, N.M.; Alokail, M.S.; Rahman, S.; Amer, O.E.; Al-Attas, O.S.; Alfawaz, H.; Tripathi, G.; Sabico, S.; Chrousos, G.P.; McTernan, P.G.; et al. Habitual physical activity is associated with circulating irisin in healthy controls but not in subjects with diabetes mellitus type 2. Eur. J. Clin. Investig. 2015, 45, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Strasser, B.; Volaklis, K.; Fuchs, D.; Burtscher, M. Role of Dietary Protein and Muscular Fitness on Longevity and Aging. Aging Dis. 2018, 9, 119–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregorio, L.; Brindisi, J.; Kleppinger, A.; Sullivan, R.; Mangano, K.; Bihuniak, J.D.; Kenny, A.M.; Kerstetter, J.E.; Insogna, K. Adequate dietary protein is associated with better physical performance among post-menopausal women 60–90 years. J. Nutr. Health Aging 2014, 18, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Bollwein, J.; Diekmann, R.; Kaiser, M.J.; Bauer, J.M.; Uter, W.; Sieber, C.C.; Volkert, D. Dietary Quality Is Related to Frailty in Community-Dwelling Older Adults. J. Gerontol.—Ser. A Biol. Sci. Med. Sci. 2013, 68, 483–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zbeida, M.; Goldsmith, R.; Shimony, T.; Vardi, H.; Naggan, L.; Shahar, D.R. Mediterranean diet and functional indicators among older adults in non-Mediterranean and Mediterranean countries. J. Nutr. Health Aging 2014, 18, 411–418. [Google Scholar] [CrossRef]
- Hai, S.; Cao, L.; Wang, H.; Zhou, J.; Liu, P.; Yang, Y.; Hao, Q.; Dong, B. Association between sarcopenia and nutritional status and physical activity among community-dwelling Chinese adults aged 60 years and older. Geriatr. Gerontol. Int. 2017, 17, 1959–1966. [Google Scholar] [CrossRef]
- Lee, P.; Linderman, J.D.; Smith, S.; Brychta, R.J.; Wang, J.; Idelson, C.; Perron, R.M.; Werner, C.D.; Phan, G.Q.; Kammula, U.S.; et al. Irisin and FGF21 Are Cold-Induced Endocrine Activators of Brown Fat Function in Humans. Cell Metab. 2014, 19, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Perakakis, N.; Triantafyllou, G.A.; Huh, Y.; Fernandez-Real, J.M.; Park, K.H.; Seufert, J.; Mantzoros, C.S. Physiology and role of irisin in glucose homeostasis. Nat. Rev. Endocrinol. 2017, 13(6), 324–337. [Google Scholar] [CrossRef] [Green Version]
- Baek, J.Y.; Jang, I.-Y.; Jung, H.-W.; Park, S.J.; Lee, J.Y.; Choi, E.; Lee, Y.S.; Lee, E.; Kim, B.-J. Serum irisin level is independent of sarcopenia and related muscle parameters in older adults. Exp. Gerontol. 2022, 162, 111744. [Google Scholar] [CrossRef]
- Park, K.H.; Zaichenko, L.; Peter, P.; Davis, C.R.; Crowell, J.A.; Mantzoros, C.S. Diet quality is associated with circulating C-reactive protein but not irisin levels in humans. Metabolism 2014, 63, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Shi, X.; Zhang, H.; Pan, L.; Ma, Z.; Liu, S.; Liu, Y.; Li, X.; Yang, S.; Li, Z. Association of Serum Irisin with Metabolic Syndrome in Obese Chinese Adults. PLoS ONE 2014, 9, e94235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Navarrete, J.M.; Ortega, F.J.; Serrano, M.; Guerra, E.; Pardo, G.; Tinahones, F.; Ricart, W.; Fernández-Real, J.M. Irisin Is Expressed and Produced by Human Muscle and Adipose Tissue in Association With Obesity and Insulin Resistance. J. Clin. Endocrinol. Metab. 2013, 98, E769–E778. [Google Scholar] [CrossRef] [PubMed]
- Arhire, L.I.; Mihalache, L.; Covasa, M. Irisin: A Hope in Understanding and Managing Obesity and Metabolic Syndrome. Front. Endocrinol. 2019, 10, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crujeiras, A.B.; Zulet, M.A.; Lopez-Legarrea, P.; de la Iglesia, R.; Pardo, M.; Carreira, M.C.; Martínez, J.A.; Casanueva, F.F. Association between circulating irisin levels and the promotion of insulin resistance during the weight maintenance period after a dietary weight-lowering program in obese patients. Metabolism 2014, 63, 520–531. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-J.; Wong, M.D.; Toy, W.C.; Tan, C.S.; Liu, S.; Ng, X.W.; Tavintharan, S.; Sum, C.F.; Lim, S.C. Lower circulating irisin is associated with type 2 diabetes mellitus. J. Diabetes Its Complicat. 2013, 27, 365–369. [Google Scholar] [CrossRef]
- Mai, S.; Grugni, G.; Mele, C.; Vietti, R.; Vigna, L.; Sartorio, A.; Aimaretti, G.; Scacchi, M.; Marzullo, P. Irisin levels in genetic and essential obesity: Clues for a potential dual role. Sci. Rep. 2020, 10, 1020. [Google Scholar] [CrossRef] [Green Version]
- Park, K.H.; Zaichenko, L.; Brinkoetter, M.; Thakkar, B.; Sahin-Efe, A.; Joung, K.E.; Tsoukas, M.; Geladari, E.V.; Huh, J.Y.; Dincer, F.; et al. Circulating Irisin in Relation to Insulin Resistance and the Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2013, 98, 4899–4907. [Google Scholar] [CrossRef]
- Stengel, A.; Hofmann, T.; Goebel-Stengel, M.; Elbelt, U.; Kobelt, P.; Klapp, B.F. Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity—Correlation with body mass index. Peptides 2013, 39, 125–130. [Google Scholar] [CrossRef]
- Verlaan, S.; Aspray, T.J.; Bauer, J.M.; Cederholm, T.; Hemsworth, J.; Hill, T.R.; McPhee, J.S.; Piasecki, M.; Seal, C.; Sieber, C.C.; et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: A case-control study. Clin. Nutr. 2017, 36, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Ter Borg, S.; de Groot, L.C.; Mijnarends, D.M.; de Vries, J.H.; Verlaan, S.; Meijboom, S.; Luiking, Y.C.; Schols, J.M. Differences in Nutrient Intake and Biochemical Nutrient Status Between Sarcopenic and Nonsarcopenic Older Adults—Results From the Maastricht Sarcopenia Study. J. Am. Med. Dir. Assoc. 2016, 17, 393–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Saleh, Y.; Al-Daghri, N.M.; Sabico, S.; Alessa, T.; Al Emadi, S.; Alawadi, F.; Al Qasaabi, S.; Alfutaisi, A.; Al Izzi, M.; Mukhaimer, J.; et al. Diagnosis and management of osteoporosis in postmenopausal women in Gulf Cooperation Council (GCC) countries: Consensus statement of the GCC countries’ osteoporosis societies under the auspices of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Arch. Osteoporos. 2020, 15, 109. [Google Scholar] [PubMed]
- Al Saleh, Y.; Beshyah, S.A.; Hussein, W.; Almadani, A.; Hassoun, A.; Al Mamari, A.; Ba-Essa, E.; Al-Dhafiri, E.; Hassanein, M.; Fouda, M.A.; et al. Diagnosis and management of vitamin D deficiency in the Gulf Cooperative Council (GCC) countries: An expert consensus summary statement from the GCC vitamin D advisory board. Arch. Osteoporos. 2020, 15, 35. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, S.K.; Papadimitriou, K.; Voulgaridou, G.; Georgaki, E.; Tsotidou, E.; Zantidou, O.; Papandreou, D. Exercise and Nutrition Impact on Osteoporosis and Sarcopenia—The Incidence of Osteosarcopenia: A Narrative Review. Nutrients 2021, 13, 4499. [Google Scholar] [CrossRef] [PubMed]
Parameters | All | Non-Sarcopenia | Sarcopenia | p-Value |
---|---|---|---|---|
N | 131 | 105 | 26 | |
Age (years) | 65.9 ± 5.5 | 65.5 ± 5.4 | 67.5 ± 5.7 | 0.11 |
Education | ||||
Illiterate | 69 (52.3) | 55 (51.9) | 14 (53.8) | 0.86 |
Elementary | 26 (19.7) | 19 (17.9) | 7 (26.9) | |
Middle school | 13 (9.8) | 11 (10.4) | 2 (7.7) | |
High School | 8 (6.1) | 7 (6.6) | 1 (3.8) | |
College degree | 15 (11.4) | 13 (12.3) | 2 (7.7) | |
Postgraduate | 1 (0.8) | 1 (0.9) | 0 (0.0) | |
Marital Status | ||||
Married | 87 (65.9) | 71 (67.0) | 16 (61.5) | 0.63 |
Widowed | 43 (32.6) | 33 (31.1) | 10 (38.5) | |
Divorced | 2 (1.5) | 2 (1.9) | 0 (0.0) | |
Employment | ||||
None | 117 (88.6) | 94 (88.7) | 23 (88.5) | 0.75 |
Retired | 13 (9.8) | 10 (9.4) | 3 (11.5) | |
Home Business | 2 (1.5) | 2 (1.9) | 0 (0.0) | |
Medical history | ||||
Obesity | 81 (61.8) | 74 (70.5) | 7 (27) | <0.001 |
Type 2 diabetes | 78 (59.5) | 61 (58.1) | 17 (65.4) | 0.33 |
Hypertension | 84 (35.9) | 66 (62.9) | 18 (69.2) | 0.36 |
High cholesterol | 55 (42.0) | 45 (42.9) | 10 (38.5) | 0.43 |
Osteoporosis | 9 (6.9) | 7 (6.7) | 2 (7.7) | 0.86 |
Rheumatoid arthritis | 7 (5.3) | 6 (5.7) | 1 (3.8) | 0.70 |
Asthma | 10 (7.6) | 9 (8.6) | 1 (3.8) | 0.42 |
Hypothyroidism | 16 (12.2) | 16 (15.2) | 0 (0.0) | 0.02 |
Comorbidity | 89 (67.9) | 72 (68.6) | 17 (65.4) | 0.46 |
Anthropometrics | All | Non-Sarcopenia | Sarcopenia | p-Value |
---|---|---|---|---|
N | 131 | 105 | 26 | |
BMI (kg/m2) | 31.9 ± 5.4 | 32.9 ± 5.3 | 27.8 ± 2.7 | <0.001 |
Waist (cm) | 95.8 ± 11.7 | 97.9 ± 11.2 | 87.5 ± 9.7 | <0.001 |
Hips (cm) | 111.1 ± 12.4 | 113.2 ± 12.7 | 102.7 ± 6.6 | <0.001 |
WHR | 0.86 ± 0.07 | 0.86 ± 0.08 | 0.86 ± 0.07 | 0.82 |
MAC | 29.5 ± 4.6 | 30.3 ± 4.5 | 26.2 ± 3.1 | <0.001 |
TSF | 17.7 ± 3.6 | 17.9 ± 3.6 | 16.8 ± 3.2 | 0.16 |
CI | 1.2 ± 0.1 | 1.3 ± 0.10 | 1.2 ± 0.1 | 0.48 |
MAMA | 43.6 ± 11.4 | 45.8 ± 11.0 | 35.3 ± 8.5 | <0.001 |
AVI | 18.4 ± 4.5 | 19.2 ± 4.4 | 15.5 ± 3.4 | <0.001 |
Muscle Mass, Strength, and Performance | ||||
Muscle mass | 41.1 ± 5.2 | 42.4 ± 4.8 | 35.9 ± 2.8 | <0.001 |
Right leg muscle | 6.9 ± 1.1 | 7.2 ± 1.0 | 6.1 ± 0.7 | <0.001 |
Left leg muscle | 7.0 ± 1.1 | 7.2 ± 1.0 | 6.4 ± 1.4 | 0.002 |
Right arm muscle | 2.0 ± 0.3 | 2.1 ± 0.3 | 1.7 ± 0.2 | <0.001 |
Left arm muscle | 2.1 ± 0.3 | 2.2 ± 0.3 | 1.8 ± 0.2 | <0.001 |
Trunk muscle | 22.9 ± 2.8 | 23.8 ± 2.5 | 19.9 ± 1.9 | <0.001 |
Predicted muscle | 6.8 ± 0.8 | 7.0 ± 0.8 | 5.9 ± 0.3 | <0.001 |
HGS | 16.3 ± 4.4 | 17.1 ± 4.3 | 13.4 ± 3.4 | <0.001 |
TUG | 15.6 ± 3.9 | 15.5 ± 4.1 | 16.0 ± 3.4 | 0.53 |
Biochemistry | ||||
Glucose (mmol/L) | 10.9 ± 4.0 | 10.9 ± 3.8 | 11.0 ± 4.6 | 0.98 |
HDL-cholesterol (mmol/L) | 1.5 ± 0.4 | 1.5 ± 0.4 | 1.4 ± 0.4 | 0.76 |
Total cholesterol (mmol/L) | 5.2 ± 1.1 | 5.2 ± 1.1 | 5.3 ± 1.1 | 0.78 |
25(OH)D # (nmol/L) | 54.6 (39.9–75.9) | 54.4 (40.9–75.6) | 55.5 (34.6–91.7) | 0.35 |
Irisin (ng/L) | 169.1 ± 40.2 | 180.8 ± 44.3 | 145.8 ± 11.6 | 0.001 |
Parameters | OR (95% CI) | p-Value |
---|---|---|
Anthropometrics | ||
BMI (kg/m2) | 0.79 (0.71–0.89) | <0.001 |
Waist circumference (cm) | 0.91 (0.86–0.96) | <0.001 |
Hip circumference (cm) | 0.91 (0.86–0.96) | <0.001 |
WHR | 0.50 (0.001–2.6) | 0.82 |
MAC | 0.75 (0.64–0.87) | <0.001 |
TSF | 0.91 (0.80–1.04) | 0.16 |
CI | 0.21 (0.002–16.9) | 0.48 |
MAMA | 0.90 (0.85–0.95) | <0.001 |
AVI | 0.79 (0.69–0.91) | 0.001 |
Biochemistry | ||
Total cholesterol (mmol/L) | 1.07 (0.67–1.72) | 0.78 |
HDL-cholesterol (mmol/L) | 0.80 (0.19–3.24) | 0.76 |
Glucose (mmol/L) | 1.0 (0.88–1.14) | 0.98 |
25(OH) D (nmol/L) | 1.28 (0.14–12.2) | 0.83 |
Irisin (ng/l) | 0.97 (0.95–0.99) | 0.002 |
Macronutrients | ||
Total calories (kcal) | 1.0 (0.99–1.01) | 0.86 |
Fats (kcal) | 1.0 (0.99–1.02) | 0.70 |
Protein (g) | 0.99 (0.97–1.03) | 0.93 |
Carbohydrate (g) | 0.99 (0.99–1.01) | 0.69 |
Total fiber (g) | 0.94 (0.88–0.99) | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaawi, T.A.; Aldisi, D.; Abulmeaty, M.M.A.; Khattak, M.N.K.; Alnaami, A.M.; Sabico, S.; Al-Daghri, N.M. Screening for Sarcopenia among Elderly Arab Females: Influence of Body Composition, Lifestyle, Irisin, and Vitamin D. Nutrients 2022, 14, 1855. https://doi.org/10.3390/nu14091855
Alsaawi TA, Aldisi D, Abulmeaty MMA, Khattak MNK, Alnaami AM, Sabico S, Al-Daghri NM. Screening for Sarcopenia among Elderly Arab Females: Influence of Body Composition, Lifestyle, Irisin, and Vitamin D. Nutrients. 2022; 14(9):1855. https://doi.org/10.3390/nu14091855
Chicago/Turabian StyleAlsaawi, Tafany A., Dara Aldisi, Mahmoud M. A. Abulmeaty, Malak N. K. Khattak, Abdullah M. Alnaami, Shaun Sabico, and Nasser M. Al-Daghri. 2022. "Screening for Sarcopenia among Elderly Arab Females: Influence of Body Composition, Lifestyle, Irisin, and Vitamin D" Nutrients 14, no. 9: 1855. https://doi.org/10.3390/nu14091855
APA StyleAlsaawi, T. A., Aldisi, D., Abulmeaty, M. M. A., Khattak, M. N. K., Alnaami, A. M., Sabico, S., & Al-Daghri, N. M. (2022). Screening for Sarcopenia among Elderly Arab Females: Influence of Body Composition, Lifestyle, Irisin, and Vitamin D. Nutrients, 14(9), 1855. https://doi.org/10.3390/nu14091855