Screening for Low Energy Availability in Male Athletes: Attempted Validation of LEAM-Q
Abstract
:1. Introduction
2. Materials and Methods
2.1. Internal Consistency and Reliability
2.2. Clinical Verification of Self-Reported Symptoms
2.3. Statistics
3. Results
3.1. Questionnaire Validation Process
3.2. Subject Characteristics for Main Analysis
3.3. Case Control Comparison
3.4. Utility of Clinical Variables
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loucks, A.B. Energy availability, not body fatness, regulates reproductive function in women. Exerc. Sport Sci. Rev. 2003, 31, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Loucks, A.B.; Thuma, J.R. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J. Clin. Endocrinol. Metab. 2003, 88, 297–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, M.J.; Koltun, K.J.; Williams, N.I. The role of energy availability in reproductive function in the female athlete triad and extension of its effects to men: An initial working model of a similar syndrome in male athletes. Sports Med. 2019, 49, 125–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nattiv, A.; Loucks, A.B.; Manore, M.M.; Sanborn, C.F.; Sundgot-Borgen, J.; Warren, M.P.; American College of Sports Medicine. American College of Sports Medicine position stand. The Female Athlete Triad. Med. Sci. Sports Exerc. 2007, 39, 1867–1882. [Google Scholar] [PubMed]
- Fredericson, M.; Kussman, A.; Misra, M.; Barrack, M.T.; De Souza, M.J.; Kraus, E.; Koltun, K.J.; Williams, N.I.; Joy, E.; Nattiv, A. The Male Athlete Triad-A consensus statement from the Female and Male Athlete Triad Coalition Part II: Diagnosis, treatment, and return-to-play. Clin. J. Sport Med. 2021, 31, 349–366. [Google Scholar] [CrossRef]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Carter, S.; Constantini, N.; Lebrun, C.; Meyer, N.; Sherman, R.; Steffen, K.; Budgett, R.; et al. The IOC consensus statement: Beyond the Female Athlete Triad-Relative Energy Deficiency in Sport (RED-S). Br. J. Sports Med. 2014, 48, 491–497. [Google Scholar] [CrossRef]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.; Meyer, N.; et al. International Olympic Committee (IOC) Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 update. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Nattiv, A.; De Souza, M.J.; Koltun, K.J.; Misra, M.; Kussman, A.; Williams, N.I.; Barrack, M.T.; Kraus, E.; Joy, E.; Fredericson, M. The Male Athlete Triad-A Consensus Statement from the Female and Male Athlete Triad Coalition Part 1: Definition and scientific basis. Clin. J. Sport Med. 2021, 31, 335–348. [Google Scholar] [CrossRef]
- Heikura, I.A.; Burke, L.M.; Bergland, D.; Uusitalo, A.L.T.; Mero, A.A.; Stellingwerff, T. Impact of Energy Availability, Health, and Sex on Hemoglobin-Mass Responses Following Live-High-Train-High Altitude Training in Elite Female and Male Distance Athletes. Int. J. Sports Physiol. Perform. 2018, 13, 1090–1096. [Google Scholar] [CrossRef]
- Keay, N.; Francis, G.; Hind, K. Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists. BMJ Open Sport Exerc. Med. 2018, 4, e000424. [Google Scholar] [CrossRef] [Green Version]
- Dolan, E.; O’Connor, H.; McGoldrick, A.; O’Loughlin, G.; Lyons, D.; Warrington, G. Nutritional, lifestyle, and weight control practices of professional jockeys. J. Sports Sci. 2011, 29, 791–799. [Google Scholar] [CrossRef]
- McCormack, W.P.; Shoepe, T.C.; LaBrie, J.; Almstedt, H.C. Bone mineral density, energy availability, and dietary restraint in collegiate cross-country runners and non-running controls. Eur. J. Appl. Physiol. 2019, 119, 1747–1756. [Google Scholar] [CrossRef]
- Viner, R.T.; Harris, M.; Berning, J.R.; Meyer, N.L. Energy availability and dietary patterns of adult male and female competitive cyclists with lower than expected bone mineral density. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 594–602. [Google Scholar] [CrossRef]
- Koehler, K.; Hoerner, N.R.; Gibbs, J.C.; Zinner, C.; Braun, H.; De Souza, M.J.; Schaenzer, W. Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones. J. Sports Sci. 2016, 34, 1921–1929. [Google Scholar] [CrossRef] [Green Version]
- McKay, A.K.A.; Peeling, P.; Pyne, D.B.; Tee, N.; Whitfield, J.; Sharma, A.P.; Heikura, I.A.; Burke, L.M. Six days of low carbohydrate, not energy availability, alters the iron and immune response to exercise in elite athletes. Med. Sci. Sports Exerc. 2022, 54, 377–387. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Elliott-Sale, K.J.; Parsons, A.; Tang, J.C.Y.; Greeves, J.P.; Fraser, W.D.; Sale, C. Effects of reduced energy availability on bone metabolism in women and men. Bone 2017, 105, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Murphy, C.; Bilek, L.D.D.; Koehler, K. Low energy availability with and without a high-protein diet suppresses bone formation and increases bone resorption in men: A randomized controlled pilot study. Nutrients 2021, 13, 802. [Google Scholar] [CrossRef]
- Friedl, K.E.; Moore, R.J.; Hoyt, R.W.; Marchitelli, L.J.; Martinez-Lopez, L.E.; Askew, E.W. Endocrine markers of semistarvation in healthy lean men in a multistressor environment. J. Appl. Physiol. 2000, 88, 1820–1830. [Google Scholar] [CrossRef] [Green Version]
- Hackney, A.C. Endurance training and testosterone levels. Sports Med. 1989, 8, 117–127. [Google Scholar] [CrossRef]
- Hackney, A.C. Hypogonadism in Exercising Males: Dysfunction or Adaptive-Regulatory Adjustment? Front. Endocrinol. 2020, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Filaire, E.; Rouveix, M.; Pannafieux, C.; Ferrand, C. Eating attitudes, perfectionism and body-esteem of elite male judoists and cyclists. J. Sports Sci. Med. 2007, 6, 50–57. [Google Scholar]
- Goltz, F.R.; Stenzel, L.M.; Schneider, C.D. Disordered eating behaviors and body image in male athletes. Braz. J. Psychiatry 2013, 35, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Bratland-Sanda, S.; Sundgot-Borgen, J. Eating disorders in athletes: Overview of prevalence, risk factors and recommendations for prevention and treatment. Eur. J. Sport Sci. 2013, 13, 499–508. [Google Scholar] [CrossRef]
- Torstveit, M.K.; Fahrenholtz, I.L.; Lichtenstein, M.B.; Stenqvist, T.B.; Melin, A.K. Exercise dependence, eating disorder symptoms and biomarkers of Relative Energy Deficiency in Sports (RED-S) among male endurance athletes. BMJ Open Sport Exerc. Med. 2019, 5, e000439. [Google Scholar] [CrossRef] [Green Version]
- Kraus, E.; Tenforde, A.S.; Nattiv, A.; Sainani, K.L.; Kussman, A.; Deakins-Roche, M.; Singh, S.; Kim, B.Y.; Barrack, M.T.; Fredericson, M. Bone stress injuries in male distance runners: Higher modified Female Athlete Triad Cumulative Risk Assessment scores predict increased rates of injury. Br. J. Sports Med. 2019, 53, 237–242. [Google Scholar] [CrossRef]
- Keay, N.; Overseas, A.; Francis, G. Indicators and correlates of low energy availability in male and female dancers. BMJ Open Sport Exerc. Med. 2020, 6, e000906. [Google Scholar] [CrossRef]
- Wilson, G.; Hill, J.; Sale, C.; Morton, J.P.; Close, G.L. Elite male Flat jockeys display lower bone density and lower resting metabolic rate than their female counterparts: Implications for athlete welfare. Appl. Physiol. Nutr. Metab. 2015, 40, 1318–1320. [Google Scholar] [CrossRef]
- Tornberg, A.B.; Melin, A.; Manderson Koivula, F.; Johansson, A.; Skouby, S.; Faber, J.; Sjodin, A. Reduced neuromuscular performance in amenorrheic elite endurance athletes. Med. Sci. Sports Exerc. 2017, 49, 2478–2485. [Google Scholar] [CrossRef] [PubMed]
- Vanheest, J.L.; Rodgers, C.D.; Mahoney, C.E.; De Souza, M.J. Ovarian suppression impairs sport performance in junior elite female swimmers. Med. Sci. Sports Exerc. 2014, 46, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Woods, A.L.; Garvican-Lewis, L.A.; Lundy, B.; Rice, A.J.; Thompson, K.G. New approaches to determine fatigue in elite athletes during intensified training: Resting metabolic rate and pacing profile. PLoS ONE 2017, 12, e0173807. [Google Scholar] [CrossRef] [PubMed]
- McColl, E.M.; Wheeler, G.D.; Gomes, P.; Bhambhani, Y.; Cumming, D.C. The effects of acute exercise on pulsatile LH release in high-mileage male runners. Clin. Endocrinol. 1989, 31, 617–621. [Google Scholar] [CrossRef]
- Hackney, A.C.; Sinning, W.E.; Bruot, B.C. Reproductive hormonal profiles of endurance-trained and untrained males. Med. Sci. Sports Exerc. 1988, 20, 60–65. [Google Scholar] [CrossRef]
- Roberts, A.C.; McClure, R.D.; Weiner, R.I.; Brooks, G.A. Overtraining affects male reproductive status. Fertil. Steril. 1993, 60, 686–692. [Google Scholar] [CrossRef]
- Stenqvist, T.B.; Torstveit, M.K.; Faber, J.; Melin, A.K. Impact of a 4-Week intensified endurance training intervention on markers of Relative Energy Deficiency in Sport (RED-S) and performance among well-trained male cyclists. Front. Endocrinol. 2020, 11, 512365. [Google Scholar] [CrossRef]
- Ayers, J.W.; Komesu, Y.; Romani, T.; Ansbacher, R. Anthropomorphic, hormonal, and psychologic correlates of semen quality in endurance-trained male athletes. Fertil. Steril. 1985, 43, 917–921. [Google Scholar] [CrossRef]
- MacConnie, S.E.; Barkan, A.; Lampman, R.M.; Schork, M.A.; Beitins, I.Z. Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. N. Engl. J. Med. 1986, 315, 411–417. [Google Scholar] [CrossRef]
- Hackney, A.C.; Sinning, W.E.; Bruot, B.C. Hypothalamic-pituitary-testicular axis function in endurance-trained males. Int. J. Sports Med. 1990, 11, 298–303. [Google Scholar] [CrossRef]
- Degoutte, F.; Jouanel, P.; Begue, R.J.; Colombier, M.; Lac, G.; Pequignot, J.M.; Filaire, E. Food restriction, performance, biochemical, psychological, and endocrine changes in judo athletes. Int. J. Sports Med. 2006, 27, 9–18. [Google Scholar] [CrossRef]
- Hagmar, M.; Berglund, B.; Brismar, K.; Hirschberg, A.L. Body composition and endocrine profile of male Olympic athletes striving for leanness. Clin. J. Sport Med. 2013, 23, 197–201. [Google Scholar] [CrossRef]
- Fudge, B.W.; Wilson, J.; Easton, C.; Irwin, L.; Clark, J.; Haddow, O.; Kayser, B.; Pitsiladis, Y.P. Estimation of oxygen uptake during fast running using accelerometry and heart rate. Med. Sci. Sports Exerc. 2007, 39, 192–198. [Google Scholar] [CrossRef]
- Vogt, S.; Heinrich, L.; Schumacher, Y.O.; Grosshauser, M.; Blum, A.; Konig, D.; Berg, A.; Schmid, A. Energy intake and energy expenditure of elite cyclists during preseason training. Int. J. Sports Med. 2005, 26, 701–706. [Google Scholar] [CrossRef]
- Abedelmalek, S.; Chtourou, H.; Souissi, N.; Tabka, Z. Caloric Restriction Effect on Proinflammatory Cytokines, Growth Hormone, and Steroid Hormone Concentrations during Exercise in Judokas. Oxid. Med. Cell Longev. 2015, 2015, 809492. [Google Scholar] [CrossRef]
- Dolan, E.; McGoldrick, A.; Davenport, C.; Kelleher, G.; Byrne, B.; Tormey, W.; Smith, D.; Warrington, G.D. An altered hormonal profile and elevated rate of bone loss are associated with low bone mass in professional horse-racing jockeys. J. Bone Min. Metab. 2012, 30, 534–542. [Google Scholar] [CrossRef]
- Guillaume, G.; Chappard, D.; Audran, M. Evaluation of the bone status in high-level cyclists. J. Clin. Densitom. 2012, 15, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Olmedillas, H.; Gonzalez-Aguero, A.; Moreno, L.A.; Casajus, J.A.; Vicente-Rodriguez, G. Bone related health status in adolescent cyclists. PLoS ONE 2011, 6, e24841. [Google Scholar] [CrossRef] [Green Version]
- Cumming, D.C.; Wheeler, G.D.; McColl, E.M. The effects of exercise on reproductive function in men. Sports Med. 1989, 7, 1–17. [Google Scholar] [CrossRef]
- Murphy, C.; Koehler, K. Energy deficiency impairs resistance training gains in lean mass but not strength: A meta-analysis and meta-regression. Scand. J. Med. Sci. Sports 2022, 32, 125–137. [Google Scholar] [CrossRef]
- Burke, L.M.; Lundy, B.; Fahrenholtz, I.L.; Melin, A.K. Pitfalls of conducting and interpreting estimates of energy availability in free-living athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, K.E.; Holtzman, B.; Cooper, K.M.; Flynn, E.F.; Bruinvels, G.; Tenforde, A.S.; Popp, K.L.; Simpkin, A.J.; Parziale, A.L. Low energy availability surrogates correlate with health and performance consequences of Relative Energy Deficiency in Sport. Br. J. Sports Med. 2019, 53, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Melin, A.; Tornberg, A.B.; Skouby, S.; Moller, S.S.; Sundgot-Borgen, J.; Faber, J.; Sidelmann, J.J.; Aziz, M.; Sjodin, A. Energy availability and the female athlete triad in elite endurance athletes. Scand. J. Med. Sci. Sports 2015, 25, 610–622. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, B.A.; Warren, M.P.; Dominguez, J.E.; Wang, J.; Heymsfield, S.B.; Pierson, R.N. Bone density and amenorrhea in ballet dancers are related to a decreased resting metabolic rate and lower leptin levels. J. Clin. Endocrinol. Metab. 2002, 87, 2777–2783. [Google Scholar] [CrossRef]
- Grande, F.; Anderson, J.T.; Keys, A. Changes of basal metabolic rate in man in semistarvation and refeeding. J. Appl. Physiol. 1958, 12, 230–238. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Dolan, E.; Elliott-Sale, K.J.; Sale, C. Reduced energy availability: Implications for bone health in physically active populations. Eur. J. Nutr. 2018, 57, 847–859. [Google Scholar] [CrossRef]
- Gomez-Merino, D.; Chennaoui, M.; Drogou, C.; Bonneau, D.; Guezennec, C.Y. Decrease in serum leptin after prolonged physical activity in men. Med. Sci. Sports Exerc. 2002, 34, 1594–1599. [Google Scholar] [CrossRef]
- Wheeler, G.D.; Singh, M.; Pierce, W.D.; Epling, W.F.; Cumming, D.C. Endurance training decreases serum testosterone levels in men without change in luteinizing hormone pulsatile release. J. Clin. Endocrinol. Metab. 1991, 72, 422–425. [Google Scholar] [CrossRef]
- Bennell, K.L.; Brukner, P.D.; Malcolm, S.A. Effect of altered reproductive function and lowered testosterone levels on bone density in male endurance athletes. Br. J. Sports Med. 1996, 30, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Kyrolainen, H.; Karinkanta, J.; Santtila, M.; Koski, H.; Mantysaari, M.; Pullinen, T. Hormonal responses during a prolonged military field exercise with variable exercise intensity. Eur. J. Appl. Physiol. 2008, 102, 539–546. [Google Scholar] [CrossRef]
- Torstveit, M.K.; Fahrenholtz, I.; Stenqvist, T.B.; Sylta, O.; Melin, A. Within-day energy deficiency and metabolic perturbation in male endurance athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 419–427. [Google Scholar] [CrossRef]
- Melin, A.; Tornberg, A.B.; Skouby, S.; Faber, J.; Ritz, C.; Sjodin, A.; Sundgot-Borgen, J. The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. Br. J. Sports Med. 2014, 48, 540–545. [Google Scholar] [CrossRef]
- Magee, M.K.; Lockard, B.L.; Zabriskie, H.A.; Schaefer, A.Q.; Luedke, J.A.; Erickson, J.L.; Jones, M.T.; Jagim, A.R. Prevalence of low energy availability in collegiate women soccer athletes. J. Funct. Morphol. Kinesiol. 2020, 5, 96. [Google Scholar] [CrossRef]
- Meng, K.; Qiu, J.; Benardot, D.; Carr, A.; Yi, L.; Wang, J.; Liang, Y. The risk of low energy availability in Chinese elite and recreational female aesthetic sports athletes. J. Int. Soc. Sports Nutr. 2020, 17, 13. [Google Scholar] [CrossRef] [Green Version]
- Folscher, L.L.; Grant, C.C.; Fletcher, L.; Janse van Rensberg, D.C. Ultra-marathon athletes at risk for the Female Athlete Triad. Sports Med. Open 2015, 1, 29. [Google Scholar] [CrossRef] [Green Version]
- Rogers, M.A.; Appaneal, R.N.; Hughes, D.; Vlahovich, N.; Waddington, G.; Burke, L.M.; Drew, M. Prevalence of impaired physiological function consistent with Relative Energy Deficiency in Sport (RED-S): An Australian elite and pre-elite cohort. Br. J. Sports Med. 2021, 55, 38–45. [Google Scholar] [CrossRef]
- Drew, M.K.; Vlahovich, N.; Hughes, D.; Appaneal, R.; Peterson, K.; Burke, L.; Lundy, B.; Toomey, M.; Watts, D.; Lovell, G.; et al. A multifactorial evaluation of illness risk factors in athletes preparing for the Summer Olympic Games. J. Sci. Med. Sport 2017, 20, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Black, K.; Slater, J.; Brown, R.C.; Cooke, R. Low energy availability, plasma lipids, and hormonal profiles of recreational athletes. J. Strength Cond. Res. 2018, 32, 2816–2824. [Google Scholar] [CrossRef] [PubMed]
- Kuikman, M.A.; Mountjoy, M.; Burr, J.F. Examining the relationship between exercise dependence, disordered eating, and low energy availability. Nutrients 2021, 13, 2601. [Google Scholar] [CrossRef] [PubMed]
- Slater, J. Low Energy availability in New Zealand recreational athletes. Master’s Thesis, University of Otago, Dunedin, New Zealand, 2015. [Google Scholar]
- Hackney, A.C.; Lane, A.R.; Register-Mihalik, J.; O’Leary, C.B. Endurance Exercise Training and Male Sexual Libido. Med. Sci. Sports Exerc. 2017, 49, 1383–1388. [Google Scholar] [CrossRef]
- Morley, J.E.; Charlton, E.; Patrick, P.; Kaiser, F.E.; Cadeau, P.; McCready, D.; Perry, H.M., III. Validation of a screening questionnaire for androgen deficiency in aging males. Metabolism 2000, 49, 1239–1242. [Google Scholar] [CrossRef]
- Logue, D.M.; Madigan, S.M.; Melin, A.; McDonnell, S.J.; Delahunt, E.; Heinen, M.; Corish, C.A. Self-reported reproductive health of athletic and recreationally active males in Ireland: Potential health effects interfering with performance. Eur. J. Sport Sci. 2021, 21, 275–284. [Google Scholar] [CrossRef]
- Foley Davelaar, C.M.; Ostrom, M.; Schulz, J.; Trane, K.; Wolkin, A.; Granger, J. Validation of an age-appropriate screening tool for Female Athlete Triad and Relative Energy Deficiency in Sport in young athletes. Cureus 2020, 12, e8579. [Google Scholar] [CrossRef]
- Parmigiano, T.R.; Zucchi, E.V.; Araujo, M.P.; Guindalini, C.S.; Castro Rde, A.; Di Bella, Z.I.; Girao, M.J.; Cohen, M.; Sartori, M.G. Pre-participation gynecological evaluation of female athletes: A new proposal. Einstein 2014, 12, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Carter, S.; Constantini, N.; Lebrun, C.; Meyer, N.; Sherman, R.; Steffen, K.; Budgett, R.; et al. RED-S CAT. Relative Energy Deficiency in Sport (RED-S) Clinical Assessment Tool (CAT). Br. J. Sports Med. 2015, 49, 421–423. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, O.; Freundlich, R.E.; Dakik, H.K.; Grober, E.D.; Najari, B.; Lipshultz, L.I.; Khera, M. The quantitative ADAM questionnaire: A new tool in quantifying the severity of hypogonadism. Int. J. Impot. Res. 2010, 22, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Kallus, W.; Kellmann, M. The Recovery-Stress Questionnaires: User Manual; Pearson Assessment & Information GmbH: Franfurt, Germany, 2016. [Google Scholar]
- Nana, A.; Slater, G.J.; Hopkins, W.G.; Halson, S.L.; Martin, D.T.; West, N.P.; Burke, L.M. Importance of standardized DXA protocol for assessing physique changes in athletes. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 259–267. [Google Scholar] [CrossRef]
- Nana, A.; Slater, G.J.; Stewart, A.D.; Burke, L.M. Methodology review: Using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 198–215. [Google Scholar] [CrossRef]
- Haugen, H.A.; Chan, L.N.; Li, F. Indirect calorimetry: A practical guide for clinicians. Nutr. Clin. Pr. 2007, 22, 377–388. [Google Scholar] [CrossRef]
- Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- Compher, C.; Frankenfield, D.; Keim, N.; Roth-Yousey, L.; Evidence Analysis Working Group. Best practice methods to apply to measurement of resting metabolic rate in adults: A systematic review. J. Am. Diet. Assoc. 2006, 106, 881–903. [Google Scholar] [CrossRef]
- Bone, J.L.; Burke, L.M. No difference in young adult athletes’ resting energy expenditure when measured under inpatient or outpatient conditions. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 464–467. [Google Scholar] [CrossRef]
- Cunningham, J.J. A reanalysis of the factors influencing basal metabolic rate in normal adults. Am. J. Clin. Nutr. 1980, 33, 2372–2374. [Google Scholar] [CrossRef]
- Hackney, A.C.; Viru, A. Research methodology: Endocrinologic measurements in exercise science and sports medicine. J. Athl. Train. 2008, 43, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeulen, A.; Verdonck, L.; Kaufman, J.M. A critical evaluation of simple methods for the estimation of free testosterone in serum. J. Clin. Endocrinol. Metab. 1999, 84, 3666–3672. [Google Scholar] [CrossRef] [PubMed]
- Hackney, A.C.; Lane, A.R. Increased prevalence of androgen deficiency in endurance-trained male runners across the life span. Aging Male 2020, 23, 168. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Fluss, R.; Faraggi, D.; Reiser, B. Estimation of the Youden Index and its associated cutoff point. Biom. J. J. Math. Methods Biosci. 2005, 47, 458–472. [Google Scholar] [CrossRef] [Green Version]
- Harrell, F.E. Hmisc: Harrell Miscellaneous. 2020. Available online: https://cran.r-project.org/web/packages/Hmisc/index.html (accessed on 1 March 2022).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Muller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Nindl, B.C.; Alemany, J.A.; Kellogg, M.D.; Rood, J.; Allison, S.A.; Young, A.J.; Montain, S.J. Utility of circulating IGF-I as a biomarker for assessing body composition changes in men during periods of high physical activity superimposed upon energy and sleep restriction. J. Appl. Physiol. 2007, 103, 340–346. [Google Scholar] [CrossRef] [Green Version]
- De Souza, M.J.; Nattiv, A.; Joy, E.; Misra, M.; Williams, N.I.; Mallinson, R.J.; Gibbs, J.C.; Olmsted, M.; Goolsby, M.; Matheson, G.; et al. 2014 Female Athlete Triad Coalition consensus statement on treatment and return to play of the Female Athlete Triad: 1st international conference held in San Francisco, California, May 2012 and 2nd international conference held in Indianapolis, Indiana, May 2013. Br. J. Sports Med. 2014, 48, 289. [Google Scholar]
- Friedl, K.E.; Moore, R.J.; Martinez-Lopez, L.E.; Vogel, J.A.; Askew, E.W.; Marchitelli, L.J.; Hoyt, R.W.; Gordon, C.C. Lower limit of body fat in healthy active men. J. Appl. Physiol. 1994, 77, 933–940. [Google Scholar] [CrossRef]
- Silla, J.K.E.; Brigham, S.K.; Goldstein, M.; Misra, M.; Singhal, V. Clinical, biochemical, and hematological characteristics of community-dwelling adolescent and young adult males with anorexia nervosa. Int. J. Eat. Disord. 2021, 54, 2213–2217. [Google Scholar] [CrossRef]
- Rogers, M.A.; Drew, M.K.; Appaneal, R.; Lovell, G.; Lundy, B.; Hughes, D.; Vlahovich, N.; Waddington, G.; Burke, L.M. The utility of the Low Energy Availability in Females Questionnaire to detect markers consistent with low energy availability-related conditions in a mixed-sport cohort. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 427–437. [Google Scholar] [CrossRef]
- Rauh, M.J.; Barrack, M.; Nichols, J.F. Associations between the female athlete triad and injury among high school runners. Int. J. Sports Phys. 2014, 9, 948–958. [Google Scholar]
- Heikura, I.A.; Uusitalo, A.L.T.; Stellingwerff, T.; Bergland, D.; Mero, A.A.; Burke, L.M. Low energy availability is difficult to assess but outcomes have large impact on bone injury rates in elite distance athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Stenqvist, T.B.; Melin, A.K.; Garthe, I.; Slater, G.; Paulsen, G.; Iraki, J.; Areta, J.; Torstveit, M.K. Prevalence of surrogate markers of Relative Energy Deficiency in male Norwegian Olympic-level athletes. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 497–506. [Google Scholar] [CrossRef]
- Hooper, D.R.; Kraemer, W.J.; Saenz, C.; Schill, K.E.; Focht, B.C.; Volek, J.S.; Maresh, C.M. The presence of symptoms of testosterone deficiency in the exercise-hypogonadal male condition and the role of nutrition. Eur. J. Appl. Physiol. 2017, 117, 1349–1357. [Google Scholar] [CrossRef]
- Shimizu, K.; Suzuki, N.; Nakamura, M.; Aizawa, K.; Imai, T.; Suzuki, S.; Eda, N.; Hanaoka, Y.; Nakao, K.; Suzuki, N.; et al. Mucosal immune function comparison between amenorrheic and eumenorrheic distance runners. J. Strength Cond. Res. 2012, 26, 1402–1406. [Google Scholar] [CrossRef]
- Walsh, N.P. Nutrition and Athlete Immune Health: New Perspectives on an Old Paradigm. Sports Med. 2019, 49, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Hanstock, H.G.; Govus, A.D.; Stenqvist, T.B.; Melin, A.K.; Sylta, O.; Torstveit, M.K. Influence of Immune and Nutritional Biomarkers on Illness Risk During Interval Training. Int. J. Sports Physiol. Perform. 2019, 15, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Deutz, R.C.; Benardot, D.; Martin, D.E.; Cody, M.M. Relationship between energy deficits and body composition in elite female gymnasts and runners. Med. Sci. Sports Exerc. 2000, 32, 659–668. [Google Scholar] [CrossRef]
- Stone, N.J. Secondary causes of hyperlipidemia. Med. Clin. North Am. 1994, 78, 117–141. [Google Scholar] [CrossRef]
- Hildebrandt, T.; Walker, D.C.; Alfano, L.; Delinsky, S.; Bannon, K. Development and validation of a male specific body checking questionnaire. Int. J. Eat. Disord. 2010, 43, 77–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaefer, L.M.; Smith, K.E.; Leonard, R.; Wetterneck, C.; Smith, B.; Farrell, N.; Riemann, B.C.; Frederick, D.A.; Schaumberg, K.; Klump, K.L.; et al. Identifying a male clinical cutoff on the Eating Disorder Examination-Questionnaire (EDE-Q). Int. J. Eat. Disord. 2018, 51, 1357–1360. [Google Scholar] [CrossRef]
- Mond, J.; Hall, A.; Bentley, C.; Harrison, C.; Gratwick-Sarll, K.; Lewis, V. Eating-disordered behavior in adolescent boys: Eating disorder examination questionnaire norms. Int. J. Eat. Disord. 2014, 47, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Cartagena-Ramos, D.; Fuentealba-Torres, M.; Rebustini, F.; Leite, A.; Alvarenga, W.A.; Arcencio, R.A.; Dantas, R.A.S.; Nascimento, L.C. Systematic review of the psychometric properties of instruments to measure sexual desire. BMC Med. Res. Methodol. 2018, 18, 109. [Google Scholar] [CrossRef] [PubMed]
- Dipla, K.; Kraemer, R.R.; Constantini, N.W.; Hackney, A.C. Relative energy deficiency in sports (RED-S): Elucidation of endocrine changes affecting the health of males and females. Hormones 2021, 20, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Piontek, A.; Szeja, J.; Blachut, M.; Badura-Brzoza, K. Sexual problems in the patients with psychiatric disorders. Wiadomosci Lekarskie 2019, 72, 1984–1988. [Google Scholar] [CrossRef] [PubMed]
- Lane, A.R.; Hackney, A.C.; Smith-Ryan, A.E.; Kucera, K.; Register-Mihalik, J.K.; Ondrak, K. Energy availability and RED-S risk factors in competitive, non-elite male endurance athletes. Transl. Med. Exerc. Prescr. 2021, 1, 25–32. [Google Scholar] [CrossRef]
- Logue, D.; Madigan, S.M.; Delahunt, E.; Heinen, M.; Mc Donnell, S.J.; Corish, C.A. Low Energy Availability in Athletes: A Review of Prevalence, Dietary Patterns, Physiological Health, and Sports Performance. Sports Med. 2018, 48, 73–96. [Google Scholar] [CrossRef]
- Logue, D.M.; Madigan, S.M.; Melin, A.; Delahunt, E.; Heinen, M.; Donnell, S.M.; Corish, C.A. Low Energy Availability in Athletes 2020: An Updated Narrative Review of Prevalence, Risk, Within-Day Energy Balance, Knowledge, and Impact on Sports Performance. Nutrients 2020, 12, 835. [Google Scholar] [CrossRef] [Green Version]
- Koehler, K.; Achtzehn, S.; Braun, H.; Mester, J.; Schaenzer, W. Comparison of self-reported energy availability and metabolic hormones to assess adequacy of dietary energy intake in young elite athletes. Appl. Physiol. Nutr. Metab. 2013, 38, 725–733. [Google Scholar] [CrossRef]
Primary Indicators | Secondary Indicators |
---|---|
|
Questionnaire Item | Clinical Variable | N | Estimated Slope | SE | p-Value |
---|---|---|---|---|---|
Section 1: Dizziness | |||||
1. Dizziness score | Glucose | 264 | −0.075 | 0.032 | 0.018 |
Low insulin | 117 | 0.600 | 0.227 | 0.008 | |
Proximal Femur BMD Z-score | 302 | −0.196 | 0.063 | 0.002 | |
High cortisol:insulin ratio | 95 | 0.513 | 0.219 | 0.019 | |
Section 2: Gastrointestinal Score | |||||
2. Gastrointestinal score | AP Spine BMD Z-score | 304 | −0.136 | 0.0394 | 0.004 |
Proximal Femur Z-score | 302 | −0.078 | 0.039 | 0.046 | |
Section 3: Thermoregulation- no findings | |||||
Section 4: Injury and illness | |||||
4A How many acute injuries? | Low T3 | 177 | 0.683 | 0.279 | 0.014 |
T3 | 177 | −0.140 | 0.059 | 0.019 | |
4B How many overload injuries? | Low T3 | 177 | 0.537 | 0.230 | 0.020 |
T3 | 177 | −0.130 | 0.054 | 0.018 | |
High cortisol | 207 | 0.391 | 0.190 | 0.039 | |
High cortisol:insulin ratio | 95 | 0.506 | 0.238 | 0.034 | |
4D How many breaks in training have you had for acute injury? | High cortisol | 209 | 0.389 | 0.168 | 0.021 |
Cortisol | 209 | 22.725 | 9.856 | 0.022 | |
4F Number of days unable to train due to illness | Low T3 | 176 | 0.762 | 0.267 | 0.004 |
T3 | 176 | −0.191 | 0.054 | 0.001 | |
4 Injury and illness score | Low T3 | 177 | 0.173 | 0.065 | 0.008 |
T3 | 177 | −0.038 | 0.014 | 0.008 | |
High cortisol | 217 | 0.093 | 0.045 | 0.040 | |
Section 5: Wellbeing and recovery | |||||
5A Fatigue sub score | Total cholesterol | 241 | 0.048 | 0.022 | 0.028 |
5D Poor recovery sub score | Total cholesterol | 241 | 0.078 | 0.031 | 0.013 |
5E Low energy levels | Low insulin | 117 | 0.2133 | 0.098 | 0.030 |
5 Poor wellbeing score | Total cholesterol | 241 | 0.016 | 0.006 | 0.013 |
Section 6: Sex Drive | |||||
6A How would you rate your sex drive in general? | High cortisol:insulin ratio | 95 | 0.767 | 0.373 | 0.039 |
Weight flux | 115 | 1.908 | 0.579 | 0.001 | |
Training amount | 114 | 7.995 | 4.010 | 0.049 | |
Low insulin | 95 | 1.177 | 0.416 | 0.005 | |
Cortisol:insulin ratio | 95 | 4.959 | 1.897 | 0.011 | |
Total Testosterone | 115 | −1.882 | 0.826 | 0.025 | |
Proximal femur BMD Z-score | 112 | −0.326 | 0.130 | 0.014 | |
T3 | 114 | −0.195 | 0.090 | 0.033 | |
6B How would you rate it over the last month compared to normal? | T3 | 114 | −0.221 | 0.106 | 0.039 |
Glucose | 107 | −0.172 | 0.077 | 0.027 | |
Low insulin | 95 | 0.817 | 0.398 | 0.040 | |
6C How often would you wake with a morning erection? | AP Spine BMD Z-score | 115 | −0.177 | 0.074 | 0.019 |
Training amount | 114 | 4.734 | 2.265 | 0.039 | |
Low free testosterone:cortisol ratio | 114 | 0.4346 | 0.1946 | 0.026 | |
Proximal femur BMD Z-score | 112 | −0.228 | 0.073 | 0.002 | |
Low BMD | 115 | 0.520 | 0.211 | 0.014 | |
6D Over the last month how does the number of morning erections compare to normal for you? | Low RMRratio | 115 | 0.743 | 0.343 | 0.030 |
Low sex drive score | High cortisol:insulin ratio | 95 | 0.206 | 0.103 | 0.045 |
Weight flux | 115 | 0.4819 | 0.180 | 0.009 | |
Low insulin | 95 | 0.209 | 0.105 | 0.045 | |
Proximal femur BMD Z-score | 112 | −0.121 | 0.039 | 0.003 | |
Testosterone | 115 | −0.5874 | 0.2527 | 0.022 | |
T3 | 114 | −0.074 | 0.028 | 0.009 | |
Exercise Hypogonadal Male Condition | Weight flux | 118 | 2.049 | 0.887 | 0.023 |
Proximal femur BMD Z-score | 115 | −0.397 | 0.193 | 0.042 |
Questionnaire Item | Associated Clinical Variable | Score Threshold | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|
1 Dizziness score | High cortisol:insulin ratio | 0.5 | 70 | 52 |
Glucose | 0.5 | 62 | 49 | |
Low insulin | 0.5 | 70 | 54 | |
4F Illness score | Low T3 | 0.5 | 64 | 46 |
T3 | 0.5 | 67 | 47 | |
5 Poor wellbeing score | Total cholesterol | 19.5 | 61 | 56 |
5A Fatigue | Total cholesterol | 2.5 | 82 | 31 |
6 Low sex drive score | T3 | 1.5 | 64 | 86 |
Low insulin | 0.5 | 96 | 28 | |
Weight flux | 0.5 | 81 | 24 | |
6A Sex drive in general | Total testosterone | 0.5 | 87 | 26 |
Weight flux | 1.5 | 69 | 56 | |
6B Sex drive over the last month | T3 | 2.0 | 71 | 98 |
6C Morning erections | Low free testosterone:cortisol ratio | 0.5 | 63 | 57 |
Variable | All (n = 310) | Controls (n = 180) | LEA-Cases (n = 85) | p-Value |
---|---|---|---|---|
Age (years) | 27.9 ± 6.9 | 27.0 ± 6.7 | 31.2 ± 7.6 | <0.0001 |
Age at specialization (years) | 18.1 ± 7.7 (n = 303) | 17.9 ± 7.1 (n = 177) | 21.3 ± 8.6 (n = 77) | 0.0010 |
Height (cm) | 181.6 ± 7.7 | 182.1 ± 8.4 | 180.5 ± 6.5 | 0.1232 |
Body mass (kg) | 73.4 ± 10.1 | 74.9 ± 11.0 | 72.1 ± 9.3 | 0.0449 |
BMI (kg/m2) | 22.2 ± 2.0 | 22.5 ± 2.0 | 22.1 ± 2.1 | 0.1256 |
Weight flux (max min weight) | 9.1 ± 9.5 | 8.9 ± 5.7 | 10.1 ± 6.5 | 0.1390 |
VO2max (mL/kg/min) | 68.1±7.2 | 67.9 ± 7.1 (n = 129) | 67.9 ± 7.4 (n = 71) | 0.9369 |
DXA body fat % | 11.9 ± 3.8 | 12.5 ± 3.5 | 12.3 ± 3.7 | 0.6941 |
DXA FFM (kg) | 64.9 ± 8.7 | 65.7 ± 9.7 | 63.7 ± 7.6 | 0.1050 |
AP Spine BMD Z-score | −0.01 ± 1.00 (n = 259) | 0.05 ± 1.03 (n = 174) | −0.28 ± 1.01 | 0.0147 |
Proximal Femur BMD Z-score | 0.35 ± 1.0 (n = 257) | 0.31 ± 0.96 (n = 173) | 0.04 ± 0.92 (n = 84) | 0.0325 |
BP systolic (mmHg) | 118.6 ± 10.4 (n = 247) | 119.9 ± 10.7 (n = 149) | 116.9 ± 9.7 (n = 76) | 0.0373 |
BP diastolic (mmHg) | 67.6 ± 7.6 (n = 247) | 68.1 ± 6.5 (n = 149) | 67.3 ± 6.5 (n = 149) | 0.4088 |
RMR (kJ/kg FFM) | 125.7 ± 16.3 (n = 286) | 130.8 ± 15.1 | 120.1 ± 14.9 (n = 82) | <0.0001 |
RMRratio | 1.01 ± 0.13 (n = 288) | 1.05 ± 0.12 | 0.95 ± 0.12 (n = 83) | <0.0001 |
Total testosterone (nmol/L) | 19.8 ± 5.8 (n = 256) | 21.2 ± 5.5 (n = 168) | 17.3 ± 5.5 (n = 83) | <0.0001 |
Free testosterone (pmol/L) | 425.3 ± 139.1 (n =207) | 456.4 ± 136.2 | 383.7 ± 136.8 | 0.0008 |
Free testosterone:cortisol ratio | 1.01 ± 0.47 (n = 199) | 1.10 ± 0.46 (n = 127) | 0.87 ± 0.43 (n = 727) | 0.0006 |
Total testosterone:cortisol ratio | 0.05 ± 0.02 (n = 217) | 0.05 ± 0.02 (n = 139) | 0.04 ± 0.02 (n = 78) | 0.0002 |
IGF-1 (nmol/L) | 28.7 ± 8.5 (n = 218) | 31.5 ± 8.3 (n = 123) | 24.8 ± 7.5 (n = 75) | <0.0001 |
T3 (pmol/L) | 5.3 ± 0.8 (n = 177) | 5.7 ± 0.5 (n = 104) | 4.9 ± 0.7 (n = 53) | <0.0001 |
Cortisol (nmol/L) | 461.5 ± 127.5 (n = 217) | 449.0 ±121.9 (n = 139) | 483.9 ± 134.7 (n = 78) | 0.0523 |
Insulin (pmol/L) | 24.2 ±10.3 (n = 117) | 26.4 ± 10.9 (n = 61) | 20.8 ± 7.4 (n = 36) | 0.0079 |
Cortisol:insulin ratio | 22.1 ± 14.5 (n = 95) | 19.3 ± 10.1 (n = 61) | 27.1 ± 14.7 (n = 34) | 0.0031 |
Blood glucose (mmol/L) | 5.0 ± 0.4 (n = 264) | 5.1 ± 0.5 (n = 168) | 4.9 ± 0.5 (n = 74) | 0.0893 |
Total cholesterol (mmol/L) | 4.6 ± 0.9 (n = 241) | 4.5 ± 0.8 (n = 159) | 4.8 ± 0.9 (n = 80) | 0.0292 |
LDL (mmol/L) | 2.7 ± 0.8 (n = 239) | 2.7 ± 0.7 (n = 159) | 2.9 ± 0.8 (n = 78) | 0.0680 |
HDL (mmol/L) | 1.5 ± 0.3 (n = 240) | 1.4 ± 0.3 (n = 159) | 1.5 ± 0.4 (n = 79) | 0.0303 |
Triglycerides (mmol/L) | 0.9 ± 0.3 (n = 241) | 0.94 ± 0.34 (n = 159) | 0.89 ± 0.37 (n = 80) | 0.2783 |
Questionnaire Item | Control (n = 180) | LEA Case (n = 85) | p-Value |
---|---|---|---|
1 Dizziness score * | 0.8 ± 0.8 | 0.8 ± 1.0 | 0.7738 |
4F Illness score * | 0.92 ± 0.98 | 0.76 ± 0.91 | 0.1997 |
5A Fatigue score * | 4.48 ± 2.74 | 3.84 ± 2.76 | 0.0764 |
5 Wellbeing score * | 18.71 ± 10.89 | 20.37 ± 10.32 | 0.2308 |
6 Low sex drive score * | 1.96 ± 1.93 (n = 77) | 3.00 ± 2.51 (n = 38) | 0.0160 |
6A Sex drive in general * | 0.86 ± 0.58 | 1.11 ± 0.80 | 0.0599 |
6B Sex drive over the last month * | 0.17 ± 0.47 | 0.32 ± 0.34 | 0.1979 |
6C Morning erections * | 0.75 ± 1.07 | 1.26 ± 1.33 | 0.0284 |
6D Over the last month how does the number of morning erections compare to normal for you? * | 0.18 ± 0.62 | 0.32 ± 0.74 | 0.3102 |
Low Testosterone (n = 66) | Low RMRratio (n = 71) | Low T3 (n = 46) | Low IGF-1 | High Cortisol (n = 60) | High Cortisol: Insulin Ratio (n = 27) | Low BMD (n = 63) | Underweight (n = 5) | High LDL (n = 73) |
Physique and Clinical markers | ||||||||
Lower Height *, BM **, BMI **, FFM * F and T testosterone:cortisol ratio *** T3 *** Systolic BP * Higher HDL * | Lower Height ***, BM ***, BMI *, FFM *** T testosterone * T3 *** IGF-1 ** Systolic BP ** Higher Age *** BMD femur Z-score * | Lower BM **, BMI **, % body fat * F and T testosterone *** F testosterone:cortisol ratio *** Systolic and diastolic BP ** Diastolic BP * Higher HDL * | Lower RMR *** Higher Age *** Weight flux *** % body fat ** HDL * | Lower % body fat * F testosterone *** F and T testosterone:cortisol ratio *** T3 *** Cortisol:insulin ratio *** Total cholesterol * | Lower % body fat * F testosterone ** F and T testosterone:cortisol ratio ** T3 ** Glucose * Higher Weight flux * | Lower None | Lower T testosterone * Systolic BP ** Higher Weight flux * | Lower Cortisol ** Higher Age ** T testosterone:cortisol ratio * Total cholesterol *** TG ** |
Higher TG ** | ||||||||
Questionnaire scores 2 | ||||||||
Higher poor recovery score * Lower injury and illness score * | Fewer morning erections compared to normal ** | Lower general sex drive score *, lower GI score | Lower poor fitness score *** Lower fatigue score *** Lower Wellbeing score *** | Higher Injury and illness score * | Increased dizziness * Lower general sex drive * | None | Higher poor fitness score * Fewer morning erections compared to normal *** Higher dizziness score * | None |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lundy, B.; Torstveit, M.K.; Stenqvist, T.B.; Burke, L.M.; Garthe, I.; Slater, G.J.; Ritz, C.; Melin, A.K. Screening for Low Energy Availability in Male Athletes: Attempted Validation of LEAM-Q. Nutrients 2022, 14, 1873. https://doi.org/10.3390/nu14091873
Lundy B, Torstveit MK, Stenqvist TB, Burke LM, Garthe I, Slater GJ, Ritz C, Melin AK. Screening for Low Energy Availability in Male Athletes: Attempted Validation of LEAM-Q. Nutrients. 2022; 14(9):1873. https://doi.org/10.3390/nu14091873
Chicago/Turabian StyleLundy, Bronwen, Monica K. Torstveit, Thomas B. Stenqvist, Louise M. Burke, Ina Garthe, Gary J. Slater, Christian Ritz, and Anna K. Melin. 2022. "Screening for Low Energy Availability in Male Athletes: Attempted Validation of LEAM-Q" Nutrients 14, no. 9: 1873. https://doi.org/10.3390/nu14091873
APA StyleLundy, B., Torstveit, M. K., Stenqvist, T. B., Burke, L. M., Garthe, I., Slater, G. J., Ritz, C., & Melin, A. K. (2022). Screening for Low Energy Availability in Male Athletes: Attempted Validation of LEAM-Q. Nutrients, 14(9), 1873. https://doi.org/10.3390/nu14091873