Iron Supplementation at the Crossroads of Nutrition and Gut Microbiota: The State of the Art
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Methods
2.2. Selection Criteria and Eligibility
3. Intervention Studies Performed in Infants and Toddlers
Study Subjects | Intervention | Effects on Gut Microbiota | Author and Year |
---|---|---|---|
Newborn babies (n = 23) from The Netherlands. | (1) Cow-milk preparation supplemented with iron (5 mg/L), (2) unfortified cow-milk preparation or (3) Breast milk in the prior 7 days of life. | -High levels of Bifidobacteria and low of Enterobacteriaceae, Bacteroides and Clostridia in infants fed with breast milk. -High levels of Enterobacteriaceae, Bifidobacteria and putrefactive bacteria such as Bacteroides and Clostridia in infants receiving iron-fortified milk. -Slow increase in both Enterobacteriaceae and Bifidobacteria counts in infants receiving unfortified milk. | Mevissen-Verhage et al., 1985 [67] |
Newborn babies (n = 23) from The Netherlands. | (1) Cow-milk preparation supplemented with iron (5 mg/L), (2) unfortified cow-milk preparation or (3) Breast milk for 3 months. | -Predominant presence of Bifidobacteria in infants fed with breast milk with rare detection of other bacteria. -Low presence of Bifidobacteria and high counts of E. coli and Clostridia in infants fed with iron-fortified cow milk formulations -Bacterial gut flora similar to that of infants fed with breast milk in infants who received unfortified cow milk. | Mevissen-Verhage et al., 1985 [68] |
Malnourished Nigerian toddlers (n = 184) aged 12 to 36 months) with mild–moderate anemia. | (1) 200, (2) 400 or (3) 600 mL (containing 2.24, 4.48 and 6.72 mg of elemental iron, respectively) of a multi-nutrient-fortified dairy based drink per day for six months. | -Decrease in Enterobacteriaceae relative abundance over time (highest relative abundance in infants receiving 400 mL and lowest in infants receiving 600 mL). -No differences in the relative abundance of Bifidobacteriacea between dose groups, with a slight decrease over time. -Decrease in pathogenic E. coli at the end of the intervention, without differences among groups. | Owolabi et al., 2021 [69] |
Exclusively breastfed infants 5 months aged, from Minneapolis (n = 45). | (1) Pureed meats, (2) iron- and zinc-fortified cereals or (3) iron-only-fortified cereals (containing 1.0, 7.8 or 6.2 mg of iron, respectively) from 3 months. | -Significant increase of bacteria from phylum Firmicutes in volunteers who received meat vs. volunteers fed with cereals. -Decrease in Enterobacteriaceae (especially in meat volunteers), without significant differences among groups. -Significant decrease in Lactobacillales in participants receiving only iron-fortified cereals (no changes over time in the other groups). | Krebs et al., 2013 [71] |
Non- or mildly anemic Kenyan infants of 6 months age (n = 45). | (1) MNPs+Fe (containing 12.5 mg iron/day and 5 mg zinc/day), (2) MNPs-Fe (the same MNPs without iron) and (3) control group (MNPs without micronutrients) for 3 months. | -Decrease in the relative abundance of Bifidobacterium in MNPs+Fe group and in controls but not in MNPs-Fe group. -Significant decrease in the relative abundance of Escherichia in MNPs-Fe and controls but not in the MNPs+Fe group | Tang et al., 2017 [72] |
Infants aged 6 months from Pakistan (n = 80). | (1) MNPs with microencapsulated iron (12.5 mg) with zinc (10 mg) or (2) MNPs with microencapsulated iron (12.5 mg) without zinc or (3) control for 12 months. | -Increase of protozoa and fungi prevalence (including species with known potential to cause symptomatic infections and disrupt gut microbiome) in infants supplemented without zinc. -Zinc supplementation ameliorated these increases and decreased the prevalence of Toxoplasma and the overall richness of protozoa. | Popovic et al., 2021 [77]. |
Kenyan infants aged 6 months (n = 115). | (1) MNPs containing 2.5 mg iron/day as NaFeEDTA or (2) not for 4 months and (3) MNPs containing 12.5 mg iron/day as ferrous fumarate or (4) not for 4 months. | -Lower presence of Bifidobacterium after ferrous fumarate MNPs administration. -Greater effect on Escherichia/Shigella, the ratio Enterobacteria to Bifidobacteria and pathogenic E. coli in infants receiving NaFeEDTA MNPs. -Increase in Faecalibacterium and Prevotella and a decrease in Enterobacteriaceae, compared to baseline, in infants receiving MNPs without Fe. | Jaeggi et al., 2015 [73] |
Kenyan infants (n = 155) aged 6.5–9.5 months. | (1) MNPs without iron, (2) MNPs with 5 mg of iron (2.5 mg as NaFeEDTA and 2.5 mg as ferrous fumarate) or (3) the same MNPs with iron, with 7.5 g of GOS for 4 months. | -Lower concentrations of genus Lactobacillus and Bifidobacterium and greater abundances of the order Clostridiales and family Enterobacteriaceae, but no differences in phylum Bacteroidetes, in participants receiving iron alone. -Comparison of participants receiving iron alone vs. iron with GOS showed lower abundances of genera Lactobacillus and Bifidobacterium and higher concentrations of order Clostridiales, but no differences in Enterobacteriaceae or Bacteroidetes. | Paganini et al., 2017 [75] |
Kenyan infants between 8 and 10 months of age (n = 28) | (1) Antibiotic and MNPs with 2.5 mg of iron (Ab+Fe+), (2) antibiotics and MNPs without iron (Ab+Fe), (3) no antibiotics and MNPs with 2.5 mg of iron (Ab−Fe+) or (4) no antibiotics and no iron MNPs (Ab−Fe−). Antibiotic treatment lasted 5 days whereas supplementation with MNPs, 40 days. | -Large differences in gut microbiota composition in infants receiving antibiotics with iron vs. those receiving antibiotics without iron. Decrease in abundances of Bifidobacterium in infants from the Ab+Fe+ group and increase in those from the Ab+Fe− subgroup. -Decrease in pathogenic E. coli in the Ab+Fe− subgroup. -Increase in Clostridium difficile in the Ab+Fe+ subgroup. | Paganini et al., 2019 [74]. |
Healthy Malawian infants (n = 160) aged 6 months | (1) 71 g/day of micronutrient-fortified corn-soy blend (5.46 mg/day of iron), (2) 54 g/day of micronutrient-fortified LONS with milk protein base (6 mg/day of iron), (3) 54 g/day of micronutrient-fortified LONS with soy protein base (6 mg/day of iron) or (4) any supplementary food for 6 months. | -No differences observed in bacterial diversity or colony counts between the intervention groups. -In the total study population, lower counts of Bifidobacterium infantis, Bifidobacterium lactis and Bibidobacterium longum detected, coupled with higher counts of total bacterial, Bifidobacterium genus and Bifidobacterium catenulatum. -Decrease in Staphylococcus aureus over time in the total study infants. | Aakko et al., 2017 [37]. |
Healthy Malawian infants (n = 160) aged 6 months | (1) No supplementary food during the primary follow-up period and 71 g/day of micronutrient-fortified corn-soy blend (5.46 mg/day of iron) for 6 months or (2) 71 g/day of micronutrient-fortified corn-soy blend (5.46 mg/day of iron), (3) 54 g/day of micronutrient-fortified LONS with milk protein base (6 mg/day of iron) or (4) 54 g/day of micronutrient-fortified LONS with soy protein base (6 mg/day of iron) for 12 months. | -No significant differences among intervention groups. -Greater counts of some Lactobacillus strains in participants supplemented with soy LONS. -Bifidobacterium longus was the most abundant species at both ages, mainly at the baseline. -Significant decrease in Bifidobacteriaceae and Enterobacteriaceae with age, whereas Prevotella and Faecalibacterium significantly increased. -No differences in Salmonella, Shigella and Escherichia between groups or time points. | Cheung et al., 2016 [80]. |
Pregnant women (n = 869) from Malawi. | (1) Iron and folic acid (60 mg and 400 μg, respectively); (2) 20 mg of iron, 400 μg of folic acid and 16 additional micronutrients or (3) the same micronutrients than (2) but as LONS with four additional minerals, proteins, and fat, daily during pregnancy and until 6 months postpartum. Infants from group (3) received the same supplements as mothers from 6 to 18 months and infants from groups (1) and (2) did not receive any supplements. | -No differences in microbiota diversity and maturation between groups (1) and (2). -Higher microbiota diversity in group (3) at 18 months (12 months of infant supplementation) but not in the remaining time points. -No alteration of microbiota maturation due to supplementation. -After 1 month, Bifidobacterium (mainly Bifidobacterium longum) was the most abundant genus and then gradually decrease until 30 months. -Increase of Prevotella abundance (predominantly Prevotella copri) with age, becoming one of the most abundant species at the end of the intervention. -Stabilization of Streptococcus abundance over time and Faecalibacterium increase from 6 to 30 months. | Kamng’ona et al., 2020 [81]. |
Gambian children with IDA aged 6–35 months (n = 705). | (1) Ferrous sulphate (12.5 mg of elemental iron equivalent daily), (2) IHAT (20 mg elemental iron equivalent daily, the bioequivalent dose considering the bioavailability of IHAT relative to ferrous sulphate) or (3) placebo (around 30 mg of pharmaceutical-grade sucrose daily) for 12 weeks. | -Iron supplementation did not significantly affect gut microbiota and age was main factor that determined bacterial composition of fecal samples. -Development of a Prevotella-rich gut microbiota during the study timeframe. | de Goffau et al., 2022 [85]. |
Swedish infants aged 6 months (n = 72) | (1) Low-iron-fortified formula (1.2 mg iron/day), (2) high iron-fortified formula (6.6 mg iron/day) or (3) no added iron formula with liquid ferrous sulfate supplementation (iron drops; 6.6 mg iron/day) for 45 days. | -Decrease in the relative abundance of Bifidobacterium compared with low-iron formula -No differences in pathogenic bacteria growth. -Lower relative abundance of Lactobacillus spp. in infants receiving iron drops vs. high-iron formula group. -Higher relative abundance of Lactobacillus spp. in high-iron vs. low-iron. -Lower relative abundance of Streptococcus in infants receiving iron drops -Greater relative abundance of Clostridium and Bacteroides in infants receiving high-iron formula. | Sjödin et al., 2019 [41]. |
Infants with IDA (n = 37) aged 9 to 24 months from Denver (Colorado) | (1) Iron supplementation (6 mg/kg/day) alone or (2) combined with vitamin E (18 mg/day) for 8 weeks. | -Decrease in Bacteroidetes and increase in Firmicutes infants receiving iron and vitamin E, relative to the iron alone group. -Decrease in genus Escherichia (either commensals or pathogens) among all participants. | Tang et al., 2016 [86]. |
4. Intervention Studies Performed in Children and Adolescents
5. Intervention Studies Performed in Adults
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Albenberg, L.G.; Wu, G.D. Diet and the Intestinal Microbiome: Associations, Functions, and Implications for Health and Disease. Gastroenterology 2014, 146, 1564–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut Microbiota in Health and Disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolte, L.A.; Vich Vila, A.; Imhann, F.; Collij, V.; Gacesa, R.; Peters, V.; Wijmenga, C.; Kurilshikov, A.; Campmans-Kuijpers, M.J.E.; Fu, J.; et al. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut 2021, 70, 1287–1298. [Google Scholar] [CrossRef] [PubMed]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the Human Intestinal Microbial Flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef] [Green Version]
- Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-Bacterial Mutualism in the Human Intestine. Science 2005, 307, 1915–1920. [Google Scholar] [CrossRef] [Green Version]
- Maslowski, K.M.; Mackay, C.R. Diet, gut microbiota and immune responses. Nat. Immunol. 2010, 12, 5–9. [Google Scholar] [CrossRef]
- Matamoros, S.; Guen, C.G.-L.; Le Vacon, F.; Potel, G.; de La Cochetiere, M.-F. Development of intestinal microbiota in infants and its impact on health. Trends Microbiol. 2013, 21, 167–173. [Google Scholar] [CrossRef]
- Lyons, K.E.; Ryan, C.A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients 2020, 12, 1039. [Google Scholar] [CrossRef]
- Fabiano, V.; Indrio, F.; Verduci, E.; Calcaterra, V.; Pop, T.L.; Mari, A.; Zuccotti, G.V.; Cokugras, F.C.; Pettoello-Mantovani, M.; Goulet, O. Term Infant Formulas Influencing Gut Microbiota: An Overview. Nutrients 2021, 13, 4200. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bull, M.J.; Plummer, N.T. Part 1: The Human Gut Microbiome in Health and Disease. Integr. Med. 2014, 13, 17–22. [Google Scholar]
- O’Keefe, S.J.D. Nutrition and colonic health: The critical role of the microbiota. Curr. Opin. Gastroenterol. 2008, 24, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 14691–14696. [Google Scholar] [CrossRef] [Green Version]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef]
- Kortekangas, E.; Kamng’Ona, A.W.; Fan, Y.; Cheung, Y.B.; Ashorn, U.; Matchado, A.; Poelman, B.; Maleta, K.; Dewey, K.G.; Ashorn, P. Environmental exposures and child and maternal gut microbiota in rural Malawi. Paediatr. Périnat. Epidemiol. 2020, 34, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Tomova, A.; Bukovsky, I.; Rembert, E.; Yonas, W.; Alwarith, J.; Barnard, N.D.; Kahleova, H. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Front. Nutr. 2019, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut Microbiota 2016, 65, 1812–1821. [Google Scholar] [CrossRef]
- Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients 2021, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 2016, 167, 1339–1353.e21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slavin, J. Why whole grains are protective: Biological mechanisms. Proc. Nutr. Soc. 2003, 62, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.; Boneh, R.S.; Wine, E. Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases. Gut 2018, 67, 1726–1738. [Google Scholar] [CrossRef]
- Forbes, J.D.; Chen, C.-Y.; Knox, N.C.; Marrie, R.-A.; El-Gabalawy, H.; De Kievit, T.; Alfa, M.; Bernstein, C.N.; Van Domselaar, G. A comparative study of the gut microbiota in immune-mediated inflammatory diseases—Does a common dysbiosis exist? Microbiome 2018, 6, 221. [Google Scholar] [CrossRef]
- Kalinkovich, A.; Livshits, G. A cross talk between dysbiosis and gut-associated immune system governs the development of inflammatory arthropathies. Semin. Arthritis Rheum. 2019, 49, 474–484. [Google Scholar] [CrossRef]
- Zitvogel, L.; Pietrocola, F.; Kroemer, G. Nutrition, inflammation and cancer. Nat. Immunol. 2017, 18, 843–850. [Google Scholar] [CrossRef]
- Erridge, C. Diet, commensals and the intestine as sources of pathogen-associated molecular patterns in atherosclerosis, type 2 diabetes and non-alcoholic fatty liver disease. Atherosclerosis 2011, 216, 1–6. [Google Scholar] [CrossRef]
- Arrieta, M.-C.; Arévalo, A.; Stiemsma, L.; Dimitriu, P.; Chico, M.E.; Loor, S.; Vaca, M.; Boutin, R.C.; Morien, E.; Jin, M.; et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J. Allergy Clin. Immunol. 2017, 142, 424–434.e10. [Google Scholar] [CrossRef] [Green Version]
- Vatanen, T.; Franzosa, E.A.; Schwager, R.; Tripathi, S.; Arthur, T.D.; Vehik, K.; Lernmark, Å.; Hagopian, W.A.; Rewers, M.J.; She, J.-X.; et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 2018, 562, 589–594. [Google Scholar] [CrossRef]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2014, 19, 164–174. [Google Scholar]
- Haas, J.D.; Brownlie IV, T. Iron deficiency and reduced work capacity: A critical review of the research to determine a causal relationship. J. Nutr. 2001, 131, 676S–690S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Weekly Iron and Folic Acid Supplementation as an Anaemia-Prevention Strategy in Women and Adolescent Girls: Lessons Learnt from Implementation of Programmes among Non-Pregnant Women of Reproductive Age; World Health Organization: Geneva, Switzerland, 2018.
- Milman, N.; Taylor, C.L.; Merkel, J.; Brannon, P.M. Iron status in pregnant women and women of reproductive age in Europe. Am. J. Clin. Nutr. 2017, 106, 1655S–1662S. [Google Scholar] [CrossRef] [PubMed]
- Hercberg, S.; Preziosi, P.; Galan, P. Iron deficiency in Europe. Public Health Nutr. 2001, 4, 537–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for iron. EFSA J. 2015, 13, 4254. [Google Scholar] [CrossRef]
- Aakko, J.; Grzeskowiak, L.; Asukas, T.; Päivänsäde, E.; Lehto, K.-M.; Fan, Y.-M.; Mangani, C.; Maleta, K.; Ashorn, P.; Salminen, S. Lipid-based Nutrient Supplements Do Not Affect Gut Bifidobacterium Microbiota in Malawian Infants: A Randomized Trial. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 610–615. [Google Scholar] [CrossRef]
- De Lourdes Samaniego-Vaesken, M.; Partearroyo, T.; Olza, J.; Aranceta-Bartrina, J.; Gil, Á.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G. Iron Intake and Dietary Sources in the Spanish Population: Findings from the ANIBES Study. Nutrients 2017, 9, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.; Abe, S.K.; Rahman, S.; Kanda, M.; Narita, S.; Bilano, V.; Ota, E.; Gilmour, S.; Shibuya, K. Maternal anemia and risk of adverse birth and health outcomes in low- and middle-income countries: Systematic review and meta-analysis1,2. Am. J. Clin. Nutr. 2016, 103, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. Available online: https://www.ncbi.nlm.nih.gov/books/NBK222310/ (accessed on 9 March 2022). [CrossRef] [Green Version]
- Sjödin, K.S.; Domellöf, M.; Lagerqvist, C.; Hernell, O.; Lönnerdal, B.; A Szymlek-Gay, E.; Sjödin, A.; E West, C.; Lind, T. Administration of ferrous sulfate drops has significant effects on the gut microbiota of iron-sufficient infants: A randomised controlled study. Gut 2018, 68, 2095–2097. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guideline: Daily Iron and Folic Acid Supplementation in Pregnant Women; World Health Organization: Geneva, Switzerland, 2012.
- Angoro, B.; Motshakeri, M.; Hemmaway, C.; Svirskis, D.; Sharma, M. Non-transferrin bound iron. Clin. Chim. Acta 2022, 531, 157–167. [Google Scholar] [CrossRef]
- Paganini, D.; Zimmermann, M.B. The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children: A review. Am. J. Clin. Nutr. 2017, 106, 1688S–1693S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naikare, H.; Palyada, K.; Panciera, R.; Marlow, D.; Stintzi, A. Major Role for FeoB in Campylobacter jejuni Ferrous Iron Acquisition, Gut Colonization, and Intracellular Survival. Infect. Immun. 2006, 74, 5433–5444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krebs, N.F.; Domellöf, M.; Ziegler, E. Balancing Benefits and Risks of Iron Fortification in Resource-Rich Countries. J. Pediatr. 2015, 167, S20–S25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lievin, V.; Peiffer, I.; Hudault, S.; Rochat, F.; Brassart, D.; Neeser, J.-R.; Servin, A.L. Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut 2000, 47, 646–652. [Google Scholar] [CrossRef] [Green Version]
- Goheen, M.M.; Bah, A.; Wegmüller, R.; Verhoef, H.; Darboe, B.; Danso, E.; Prentice, A.M.; Cerami, C. Host iron status and erythropoietic response to iron supplementation determines susceptibility to the RBC stage of falciparum malaria during pregnancy. Sci. Rep. 2017, 7, 17674. [Google Scholar] [CrossRef] [Green Version]
- UNICEF; WHO; World Bank Group. Levels and Trends in Child Malnutrition: UNICEF/WHO/The world Bank Group Joint Child Malnutrition Estimates: Key Findings of the 2021 Edition; World Health Organization: Geneva, Switzerland, 2021.
- Black, R.e.; Victora, C.g.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Liu, L.; Oza, S.; Hogan, D.; Chu, Y.; Perin, J.; Zhu, J.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, regional, and national causes of under-5 mortality in 2000–2015: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet 2016, 388, 3027–3035. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, S.; Huq, S.; Yatsunenko, T.; Haque, R.; Mahfuz, M.; Alam, M.A.; Benezra, A.; DeStefano, J.; Meier, M.F.; Muegge, B.; et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 2014, 510, 417–421. [Google Scholar] [CrossRef]
- Smith, M.I.; Yatsunenko, T.; Manary, M.J.; Trehan, I.; Mkakosya, R.; Cheng, J.; Kau, A.L.; Rich, S.S.; Concannon, P.; Mychaleckyj, J.C.; et al. Gut Microbiomes of Malawian Twin Pairs Discordant for Kwashiorkor. Science 2013, 339, 548–554. [Google Scholar] [CrossRef] [Green Version]
- Kortman, G.A.; Raffatellu, M.; Swinkels, D.W.; Tjalsma, H. Nutritional iron turned inside out: Intestinal stress from a gut microbial perspective. FEMS Microbiol. Rev. 2014, 38, 1202–1234. [Google Scholar] [CrossRef] [Green Version]
- Mayo-Wilson, E.; Junior, J.; Imdad, A.; Dean, S.; Chan, X.H.; Chan, E.S.; Jaswal, A.; A Bhutta, Z. Zinc supplementation for preventing mortality, morbidity, and growth failure in children aged 6 months to 12 years of age. Cochrane Database Syst. Rev. 2014, 15, CD009384. [Google Scholar] [CrossRef] [PubMed]
- Imdad, A.; Herzer, K.; Mayo-Wilson, E.; Yakoob, M.Y.; Bhutta, Z.A. Vitamin A supplementation for preventing morbidity and mortality in children from 6 months to 5 years of age. Cochrane Database Syst. Rev. 2010, 3, CD008524. [Google Scholar] [CrossRef] [Green Version]
- WHO/UNICEF/UNU. Iron Deficiency anaemia: Assessment, Prevention and Control: A Guide for Programme Managers; World Health Organization: Geneva, Switzerland, 2001.
- Gera, T. Effect of iron supplementation on incidence of infectious illness in children: Systematic review. BMJ 2002, 325, 1142. [Google Scholar] [CrossRef] [Green Version]
- Iannotti, L.L.; Tielsch, J.M.; Black, M.M.; Black, R.E. Iron supplementation in early childhood: Health benefits and risks. Am. J. Clin. Nutr. 2006, 84, 1261–1276. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Hurrell, R.F. Nutritional iron deficiency. Lancet 2007, 370, 511–520. [Google Scholar] [CrossRef]
- Muriuki, J.M.; Mentzer, A.J.; Mitchell, R.; Webb, E.L.; Etyang, A.O.; Kyobutungi, C.; Morovat, A.; Kimita, W.; Ndungu, F.M.; Macharia, A.W.; et al. Malaria is a cause of iron deficiency in African children. Nat. Med. 2021, 27, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Sazawal, S.; Black, R.E.; Ramsan, M.; Chwaya, H.M.; Stoltzfus, R.J.; Dutta, A.; Dhingra, U.; Kabole, I.; Deb, S.; Othman, M.K.; et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: Community-based, randomised, placebo-controlled trial. Lancet 2006, 367, 133–143. [Google Scholar] [CrossRef]
- Glinz, D.; Hurrell, R.F.; A Righetti, A.; Zeder, C.; Adiossan, L.G.; Tjalsma, H.; Utzinger, J.; Zimmermann, M.B.; N’Goran, E.K.; Wegmüller, R. In Ivorian school-age children, infection with hookworm does not reduce dietary iron absorption or systemic iron utilization, whereas afebrile Plasmodium falciparum infection reduces iron absorption by half. Am. J. Clin. Nutr. 2015, 101, 462–470. [Google Scholar] [CrossRef] [Green Version]
- Nemeth, E.; Tuttle, M.S.; Powelson, J.; Vaughn, M.B.; Donovan, A.; Ward, D.M.V.; Ganz, T.; Kaplan, J. Hepcidin Regulates Cellular Iron Efflux by Binding to Ferroportin and Inducing Its Internalization. Science 2004, 306, 2090–2093. [Google Scholar] [CrossRef] [Green Version]
- Jonker, F.A.M.; Calis, J.C.J.; Van Hensbroek, M.B.; Phiri, K.; Geskus, R.B.; Brabin, B.; Leenstra, T. Iron Status Predicts Malaria Risk in Malawian Preschool Children. PLoS ONE 2012, 7, e42670. [Google Scholar] [CrossRef] [Green Version]
- Nyakeriga, A.M.; Troye-Blomberg, M.; Chemtai, A.K.; Marsh, K.; Williams, T.N. Malaria and nutritional status in children living on the coast of Kenya. Am. J. Clin. Nutr. 2004, 80, 1604–1610. [Google Scholar] [CrossRef] [PubMed]
- Mevissen-Verhage, E.A.E.; Marcelis, J.H.; Amerongen, W.C.M.H.-V.; de Vos, N.M.; Berkel, J.; Verhoef, J. Effect of iron on neonatal gut flora during the first week of life. Eur. J. Clin. Microbiol. 1985, 4, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Mevissen-Verhage, E.A.E.; Marcelis, J.H.; Amerongen, W.C.M.H.-V.; De Vos, N.M.; Verhoef, J. Effect of iron on neonatal gut flora during the first three months of life. Eur. J. Clin. Microbiol. 1985, 4, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Owolabi, A.; Senbanjo, I.; Oshikoya, K.; Boekhorst, J.; Eijlander, R.; Kortman, G.; Hageman, J.; Samuel, F.; Melse-Boonstra, A.; Schaafsma, A. Multi-Nutrient Fortified Dairy-Based Drink Reduces Anaemia without Observed Adverse Effects on Gut Microbiota in Anaemic Malnourished Nigerian Toddlers: A Randomised Dose–Response Study. Nutrients 2021, 13, 1566. [Google Scholar] [CrossRef]
- Miniello, V.L.; Verga, M.C.; Miniello, A.; Di Mauro, C.; Diaferio, L.; Francavilla, R. Complementary Feeding and Iron Status: “The Unbearable Lightness of Being” Infants. Nutrients 2021, 13, 4201. [Google Scholar] [CrossRef]
- Krebs, N.F.; Sherlock, L.G.; Westcott, J.; Culbertson, D.; Hambidge, K.M.; Feazel, L.M.; Robertson, C.; Frank, D.N. Effects of Different Complementary Feeding Regimens on Iron Status and Enteric Microbiota in Breastfed Infants. J. Pediatr. 2013, 163, 416–423.e4. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Frank, D.N.; Hendricks, A.E.; Ir, D.; Esamai, F.; Liechty, E.; Hambidge, K.M.; Krebs, N.F. Iron in Micronutrient Powder Promotes an Unfavorable Gut Microbiota in Kenyan Infants. Nutrients 2017, 9, 776. [Google Scholar] [CrossRef] [Green Version]
- Jaeggi, T.; Kortman, G.A.M.; Moretti, D.; Chassard, C.; Holding, P.; Dostal, A.; Boekhorst, J.; Timmerman, H.M.; Swinkels, D.W.; Tjalsma, H.; et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 2014, 64, 731–742. [Google Scholar] [CrossRef]
- Paganini, D.; A Uyoga, M.; Kortman, G.A.M.; I Cercamondi, C.; Winkler, H.; Boekhorst, J.; Moretti, D.; Lacroix, C.; Karanja, S.; Zimmermann, M.B. Iron-containing micronutrient powders modify the effect of oral antibiotics on the infant gut microbiome and increase post-antibiotic diarrhoea risk: A controlled study in Kenya. Gut 2018, 68, 645–653. [Google Scholar] [CrossRef]
- Paganini, D.; A Uyoga, M.; Kortman, G.A.M.; Cercamondi, C.I.; Moretti, D.; Barth-Jaeggi, T.; Schwab, C.; Boekhorst, J.; Timmerman, H.M.; Lacroix, C.; et al. Prebiotic galacto-oligosaccharides mitigate the adverse effects of iron fortification on the gut microbiome: A randomised controlled study in Kenyan infants. Gut 2017, 66, 1956–1967. [Google Scholar] [CrossRef] [Green Version]
- Soofi, S.; Cousens, S.; Iqbal, S.P.; Akhund, T.; Khan, J.; Ahmed, I.; Zaidi, A.K.; Bhutta, Z.A. Effect of provision of daily zinc and iron with several micronutrients on growth and morbidity among young children in Pakistan: A cluster-randomised trial. Lancet 2013, 382, 29–40. [Google Scholar] [CrossRef]
- Popovic, A.; Bourdon, C.; Wang, P.W.; Guttman, D.S.; Soofi, S.; Bhutta, Z.A.; Bandsma, R.H.J.; Parkinson, J.; Pell, L.G. Micronutrient supplements can promote disruptive protozoan and fungal communities in the developing infant gut. Nat. Commun. 2021, 12, 6729. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.S.; Wilson, D.; Hube, B. Candida albicans iron acquisition within the host. FEMS Yeast Res. 2009, 9, 1000–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gera, T.; Pena-Rosas, J.P.; Boy-Mena, E.; Sachdev, H.S. Lipid based nutrient supplements (LONS) for treatment of children (6 months to 59 months) with moderate acute malnutrition (MAM): A systematic review. PLoS ONE 2017, 12, e0182096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, Y.B.; Xu, Y.; Mangani, C.; Fan, Y.-M.; Dewey, K.G.; Salminen, S.J.; Maleta, K.; Ashorn, P.; Maleta, K. Gut microbiota in Malawian infants in a nutritional supplementation trial. Trop. Med. Int. Health 2015, 21, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Kamng’Ona, A.W.; Young, R.; Arnold, C.D.; Patson, N.; Jorgensen, J.M.; Kortekangas, E.; Chaima, D.; Malamba, C.; Ashorn, U.; Cheung, Y.B.; et al. Provision of Lipid-Based Nutrient Supplements to Mothers During Pregnancy and 6 Months Postpartum and to Their Infants from 6 to 18 Months Promotes Infant Gut Microbiota Diversity at 18 Months of Age but Not Microbiota Maturation in a Rural Malawian Setting: Secondary Outcomes of a Randomized Trial. J. Nutr. 2020, 150, 918–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, J.J.; Bruggraber, S.F.; Faria, N.; Poots, L.K.; Hondow, N.; Pennycook, T.; Latunde-Dada, G.O.; Simpson, R.; Brown, A.; Pereira, D. A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1529–1538. [Google Scholar] [CrossRef] [Green Version]
- Pereira, D.I.A.; Bruggraber, S.F.A.; Faria, N.; Poots, L.K.; Tagmount, M.A.; Aslam, M.F.; Frazer, D.M.; Vulpe, C.D.; Anderson, G.J.; Powell, J.J. Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1877–1886. [Google Scholar] [CrossRef] [Green Version]
- Pereira, D.I.; Mohammed, N.I.; Ofordile, O.; Camara, F.; Baldeh, B.; Mendy, T.; Sanyang, C.; Jallow, A.T.; Hossain, I.; Wason, J.; et al. A novel nano-iron supplement to safely combat iron deficiency and anaemia in young children: The IHAT-GUT double-blind, randomised, placebo-controlled trial protocol. Gates Open Res. 2018, 2, 48. [Google Scholar] [CrossRef]
- De Goffau, M.C.; Jallow, A.T.; Sanyang, C.; Prentice, A.M.; Meagher, N.; Price, D.J.; Revill, P.A.; Parkhill, J.; Pereira, D.I.A.; Wagner, J. Gut microbiomes from Gambian infants reveal the development of a non-industrialized Prevotella-based trophic network. Nat. Microbiol. 2021, 132–144. [Google Scholar] [CrossRef]
- Tang, M.; Frank, D.N.; Sherlock, L.; Ir, D.; Robertson, C.E.; Krebs, N.F. Effect of Vitamin E With Therapeutic Iron Supplementation on Iron Repletion and Gut Microbiome in US Iron Deficient Infants and Toddlers. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 379–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, C.J.; Zheng, L.; Campbell, E.L.; Saeedi, B.; Scholz, C.C.; Bayless, A.J.; Wilson, K.E.; Glover, L.E.; Kominsky, D.J.; Magnuson, A.; et al. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host Microbe 2015, 17, 662–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; et al. Activation of Gpr109a, Receptor for Niacin and the Commensal Metabolite Butyrate, Suppresses Colonic Inflammation and Carcinogenesis. Immunity 2014, 40, 128–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, S.; Kortman, G.A.M.; Boekhorst, J.; Lee, P.; Khan, M.R.; Ahmed, F. Effect of low-iron micronutrient powder (MNP) on the composition of gut microbiota of Bangladeshi children in a high-iron groundwater setting: A randomized controlled trial. Eur. J. Nutr. 2021, 60, 3423–3436. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Chassard, C.; Rohner, F.; N’Goran, E.K.; Nindjin, C.; Dostal, A.; Utzinger, J.; Ghattas, H.; Lacroix, C.; Hurrell, R.F. The effects of iron fortification on the gut microbiota in African children: A randomized controlled trial in Côte d’Ivoire. Am. J. Clin. Nutr. 2010, 92, 1406–1415. [Google Scholar] [CrossRef]
- Dostal, A.; Baumgartner, J.; Riesen, N.; Chassard, C.; Smuts, C.; Zimmermann, M.B.; Lacroix, C. Effects of iron supplementation on dominant bacterial groups in the gut, faecal SCFA and gut inflammation: A randomised, placebo-controlled intervention trial in South African children. Br. J. Nutr. 2014, 112, 547–556. [Google Scholar] [CrossRef]
- Sánchez-Alcoholado, L.; Ramos-Molina, B.; Otero, A.; Laborda-Illanes, A.; Ordóñez, R.; Medina, J.A.; Gómez-Millán, J.; Queipo-Ortuño, M.I. The Role of the Gut Microbiome in Colorectal Cancer Development and Therapy Response. Cancers 2020, 12, 1406. [Google Scholar] [CrossRef]
- Weersma, R.K.; Zhernakova, A.; Fu, J. Interaction between drugs and the gut microbiome. Gut 2020, 69, 1510–1519. [Google Scholar] [CrossRef]
- Phipps, O.; Al-Hassi, H.O.; Quraishi, M.N.; Kumar, A.; Brookes, M.J. Influence of Iron on the Gut Microbiota in Colorectal Cancer. Nutrients 2020, 12, 2512. [Google Scholar] [CrossRef]
- Keeler, B.D.; Simpson, J.A.; Ng, O.; Padmanabhan, H.; Brookes, M.J.; Acheson, A.G.; Banerjea, A.; Walter, C.; Maxwell-Armstrong, C.; Williams, J.; et al. Randomized clinical trial of preoperative oral versus intravenous iron in anaemic patients with colorectal cancer. BJS 2017, 104, 214–221. [Google Scholar] [CrossRef]
- Phipps, O.; Al-Hassi, H.; Quraishi, M.; Dickson, E.; Segal, J.; Steed, H.; Kumar, A.; Acheson, A.; Beggs, A.; Brookes, M. Oral and Intravenous Iron Therapy Differentially Alter the On- and Off-Tumor Microbiota in Anemic Colorectal Cancer Patients. Cancers 2021, 13, 1341. [Google Scholar] [CrossRef] [PubMed]
- Camaschella, C. Iron deficiency: New insights into diagnosis and treatment. Hematology 2015, 2015, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Actor, J.K.; Hwang, S.-A.; Kruzel, M.L. Lactoferrin as a Natural Immune Modulator. Curr. Pharm. Des. 2009, 15, 1956–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokkhim, H.; Bansal, N.; Grøndahl, L.; Bhandari, B. In-vitro digestion of different forms of bovine lactoferrin encapsulated in alginate micro-gel particles. Food Hydrocoll. 2016, 52, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Dix, C.; Wright, O. Bioavailability of a Novel Form of Microencapsulated Bovine Lactoferrin and Its Effect on Inflammatory Markers and the Gut Microbiome: A Pilot Study. Nutrients 2018, 10, 1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knights, D.; Lassen, K.G.; Xavier, R.J. Advances in inflammatory bowel disease pathogenesis: Linking host genetics and the microbiome. Gut 2013, 62, 1505–1510. [Google Scholar] [CrossRef]
- Lee, T.W.; Kolber, M.R.; Fedorak, R.; Van Zanten, S.V. Iron replacement therapy in inflammatory bowel disease patients with iron deficiency anemia: A systematic review and meta-analysis. J. Crohn’s Colitis 2012, 6, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, S.; E Schoen, R. Supplementation With Oral vs. Intravenous Iron for Anemia With IBD or Gastrointestinal Bleeding: Is Oral Iron Getting a Bad Rap? Am. J. Gastroenterol. 2011, 106, 1872–1879. [Google Scholar] [CrossRef]
- Lee, T.; Clavel, T.; Smirnov, K.; Schmidt, A.; Lagkouvardos, I.; Walker, A.; Lucio, M.; Michalke, B.; Schmitt-Kopplin, P.; Fedorak, R.; et al. Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut 2016, 66, 863–871. [Google Scholar] [CrossRef]
Study Subjects | Intervention | Effects on Gut Microbiota | Author and Year |
---|---|---|---|
Children (n = 53) from Bangladesh aged 2 to 5 years. | (1) MNPs sachets (with 12.5 mg of ferrous fumarate, 300 μg of vitamin A, 5 mg of Zn, 30 mg of vitamin C and 0.15 mg of folic acid) or (2) a low iron MNPs sachets (with the same composition except for 5 mg of ferrous fumarate) for 2 months. | -No differences in microbiota composition at the endpoint between groups. -Higher relative abundance of certain beneficial bacteria, Bifidobacterium and Lactobacillus, and other pathogenic, Enterobacteriaceae, in infants receiving standard MNPs, compared with the low iron group. | Rahman et al., 2021 [89]. |
Children and adolescents from Côte d´Ivoire aged 6 to 14 years (n = 139). | (1) Iron-fortified biscuits with 20 mg of electrolytic iron 4 times per week or (2) non-fortified biscuits for 6-months. | -Increase in enterobacteria concentration (Salmonella spp., Shigella spp and/or E. coli) and decrease in Lactobacillus population, compared with the control group. | Zimmermann et al., 2010 [90]. |
Iron-deficient children (n = 73) aged 6 to 11 years old from South Africa. | (1) One tablet of 50 mg of FeSO4/day for 4 weeks or (2) placebo. | -Iron supplementation did not significantly modify the concentrations of the dominant gut bacteria, compared with the placebo group. | Dostal et al., 2014 [91]. |
Study Subjects | Intervention | Effects on Gut Microbiota | Author and Year |
---|---|---|---|
Anemic patients (n = 40) with non-metastatic colorectal cancer. | (1) Oral ferrous sulfate twice a day (200 mg), (2) or intravenous iron as ferric carboxymaltose (dosed by body weight and hemoglobin concentration according to the product characteristics) for 26.5 days and 23.5 days, respectively. | -Off-tumor microbiota enriched with Bacteroidaceae family and Bacteroides genus while the on-tumor microbiota showed a greater abundance of Nocardiaceae, Intrasporangiaceae, and Brevibacteriaceae families and Prevotella, Nocardioides, Kocuria, Brevibacterium, Veillonella and Catenibacterium genus in patients receiving oral iron. -Enrichment of off-tumor microbiota with the Firmicutes phylum and the Clostridia spp. along with higher abundances of the Clostridiales and Sphingomonadales orders, the Sphingomonadaceae family and the Paraprevotella genus in patients receiving intravenous iron. -Moreover, the on-tumor microbiota with higher abundance of Epsilonbacteraeota phylum, Campylobacteria class, Campylobacteriales order, Campylobacteraceae, Propionibacteriaceae and Porphyromonadaceae families and Campylobacter, Porphyromonas and Cutibacterium. | Phipps et al., 2021 [96]. |
Healthy males (n = 12). | (1) 200, or (2) 600 mg of lactoferrin as convention formulation, or (3) 200, or (4) 600 mg of lactoferrin as InferrinTM for 4 weeks. | -Decreased levels of Euryarchaeota, Acidobacterial, Chloroflexi, NC10, and Nitrospirae and increased levels of Firmicutes and Bacteroidetes, especially in patients supplemented with 600 mg of lactoferrin, regardless of encapsulation. | Dix et al., 2018 [100]. |
Iron-deficient patients from Canada (n = 72) with Crohn´s disease, ulcerative colitis or controls | (1) Oral (300 mg, twice a day), or (2) intravenous (three or four separate iron sucrose 300 mg infusions if ID only or with anemia, respectively) for 12 weeks. | -Lower abundances of Collinsella aerofaciens, Faecalibacterium prausnitzii, Ruminococcus bromii and Dorea sp. and higher abundances of the genus Bifidobacterium after oral iron therapy. -Major shifts in bacterial diversity after iron administration in approximately half of the participants, with the bacterial communities of patients with Crohn’s disease being the most susceptible. | Lee et al., 2017 [104]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puga, A.M.; Samaniego-Vaesken, M.d.L.; Montero-Bravo, A.; Ruperto, M.; Partearroyo, T.; Varela-Moreiras, G. Iron Supplementation at the Crossroads of Nutrition and Gut Microbiota: The State of the Art. Nutrients 2022, 14, 1926. https://doi.org/10.3390/nu14091926
Puga AM, Samaniego-Vaesken MdL, Montero-Bravo A, Ruperto M, Partearroyo T, Varela-Moreiras G. Iron Supplementation at the Crossroads of Nutrition and Gut Microbiota: The State of the Art. Nutrients. 2022; 14(9):1926. https://doi.org/10.3390/nu14091926
Chicago/Turabian StylePuga, Ana M., María de Lourdes Samaniego-Vaesken, Ana Montero-Bravo, Mar Ruperto, Teresa Partearroyo, and Gregorio Varela-Moreiras. 2022. "Iron Supplementation at the Crossroads of Nutrition and Gut Microbiota: The State of the Art" Nutrients 14, no. 9: 1926. https://doi.org/10.3390/nu14091926
APA StylePuga, A. M., Samaniego-Vaesken, M. d. L., Montero-Bravo, A., Ruperto, M., Partearroyo, T., & Varela-Moreiras, G. (2022). Iron Supplementation at the Crossroads of Nutrition and Gut Microbiota: The State of the Art. Nutrients, 14(9), 1926. https://doi.org/10.3390/nu14091926