Treatment of Vitamin D Deficiency with Calcifediol: Efficacy and Safety Profile and Predictability of Efficacy
Abstract
:1. Introduction
1.1. Methods
1.2. Short- and Long-Term Efficacy and Safety of Calcifediol
2. Short-Term Efficacy
3. Long-Term Efficacy
4. Safety of Calcifediol
5. Predictability of Calcifediol
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suda, T.; Masuyama, R.; Bouillon, R.; Carmeliet, G. Physiological functions of vitamin D: What we have learned from global and conditional VDR knockout mouse studies. Curr. Opin. Pharmacol. 2015, 22, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.G.; Ochalek, J.T.; Kaufmann, M.; Jones, G.; Deluca, H.F. CYP2R1 is a major but not exclusive contributor to 25-hydroxyvitamin D production in vivo. Proc. Natl. Acad. Sci. USA 2013, 110, 15650–15655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deluca, H.F. History of the discovery of vitamin D and its active metabolites. Bonekey Rep. 2014, 3, 479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quarles, L.D. Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nat. Rev. Endocrinol. 2012, 8, 276–286. [Google Scholar] [CrossRef]
- Bouillon, R. Comparative analysis of nutritional guidelines for vitamin D. Nat. Rev. Endocrinol. 2017, 13, 466–479. [Google Scholar] [CrossRef]
- Perez-Castrillón, J.L. Mitos en nutrición: Usos y abusos de la vitamina D. Nutr. Clin. Med. 2020, 14, 51–63. [Google Scholar]
- Pilz, S.; März, W.; Cashman, K.D.; Kiely, M.E.; Whiting, S.J.; Holick, M.F.; Grant, W.B.; Pludowski, P.; Hiligsman, M.; Trummer, C.; et al. Rationale and Plan for Vitamin D Food Fortification: A Review and Guidance Paper. Front. Endocrinol. 2018, 9, 373. [Google Scholar] [CrossRef]
- Minisola, S.; Cianferotti, L.; Biondi, P.; Cipriani, C.; Fossi, C.; Franceschelli, F.; Giusti, F.; Leoncini, G.; Pepe, J.; Bischoff-Ferrari, H.A.; et al. Correction of vitamin D status by calcidiol: Pharmacokinetic profile, safety, and biochemical effects on bone and mineral metabolism of daily and weekly dosage regimens. Osteoporos. Int. 2017, 28, 3239–3249. [Google Scholar] [CrossRef]
- Bouillon, R.; Bikle, D. Vitamin D metabolism revised: Fall of dogmas. J. Bone Miner. Res. 2019, 34, 1985–1992. [Google Scholar] [CrossRef]
- Bouillon, R.; Marcocci, C.; Carmeliet, G.; Bikle, D.; White, J.H.; Dawson-Hughes, B.; Lips, P.; Munns, C.F.; Lazaretti-Castro, M.; Giustina, A.; et al. Skeletal and extraskeletal actions of vitamin D: Current evidence and outstanding questions. Endocr. Rev. 2019, 40, 1109–1151. [Google Scholar] [CrossRef] [Green Version]
- Jetter, A.; Egli, A.; Dawson-Hughes, B.; Staehelin, H.B.; Stoecklin, E.; Goessl, R.; Henschkowski, J.; Bischoff-Ferrari, H.A. Pharmacokinetics of oral vitamin D(3) and calcifediol. Bone 2014, 59, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.; Carlucci, L.; Cipriani, C.; Ragno, A.; Piemonte, S.; Del Fiacco, R.; Pepe, J.; Fassino, V.; Arima, S.; Romagnoli, E.; et al. Metabolic changes following 500 μg monthly administration of calcidiol: A study in normal females. Calcif. Tissue Int. 2011, 89, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; Seamans, K.M.; Lucey, A.J.; Stöcklin, E.; Weber, P.; Kiely, M.; Hill, T.R. Relative effectiveness of oral 25-hydroxyvitamin D3 and vitamin D3 in raising wintertime serum 25-hydroxyvitamin D in older adults. Am. J. Clin. Nutr. 2012, 95, 1350–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischoff-Ferrari, H.A.; Dawson-Hughes, B.; Stöcklin, E.; Sidelnikov, E.; Willet, W.C.; Edel, J.O.; Stähelin, H.B.; Wolfram, S.; Jetter, A.; Schwager, J.; et al. Oral supplementation with 25(OH)D3 versus vitamin D3: Effects on 25(OH)D levels, lower extremity function, blood pressure, and markers of innate immunity. J. Bone Miner. Res. 2012, 27, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Shieh, A.; Ma, C.; Chun, R.F.; Witzel, S.; Rafison, B.; Contreras, H.T.M.; Wittwer-Schegg, J.; Swinkels, L.; Huijs, T. Effects of cholecalciferol vs calcifediol on total and free 25-hydroxyvitamin D and parathyroid hormone. J. Clin. Endocrinol. Metab. 2017, 102, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castrillón, J.L.; Dueñas-Laita, A.; Brandi, M.L.; Jódar, E.; Del Pino-Montes, J.; Quesada-Gómez, J.M.; Cereto Castro, F.; Gómez-Alonso, C.; Gallego López, L.; Olmos Martínez, J.M.; et al. Calcifediol is superior to cholecalciferol in improving vitamin D status in postmenopausal women: A randomized trial. J. Bone Miner. Res. 2021, 36, 1967–1978. [Google Scholar] [CrossRef]
- Okoye, C.; Calsolaro, V.; Niccolai, F.; Calabrese, A.M.; Franchi, R.; Rogani, S.; Coppini, G.; Morelli, V.; Caraccio, N.; Monzani, F. A Randomized, Open-Label Study to Assess Efficacy of Weekly Assumption of Cholecalciferol versus Calcifediol in Older Patients with Hypovitaminosis D. Geriatrics 2022, 7, 13. [Google Scholar] [CrossRef]
- Larrosa, M.; Gratacos, J.; Fernandez, M.E.; Berlanga, E.; Casado, E.; Gómez, A.; Real, J. Administración de calcidiol y valores séricos de 25-OH-D3. ¿Qué pauta clínica utilizar? Rev. Esp. Reumatol. 2003, 30, 548–553. [Google Scholar]
- Larrosa, M.; Casado, E.; Gomez, A.; Moreno, M.; Berlanga, E.; Galisteo, C.; Gratacós, J. Colecalciferol o calcidiol ¿Qué metabolito utilizar en el déficit de vitamina D? Rev. Española Enferm. Metabólicas Óseas 2007, 16, 48–52. [Google Scholar] [CrossRef]
- Rossini, M.; Viapiana, O.; Gatti, D.; James, G. The long-term correction of vitamin D deficiency: Comparison between different treatments with vitamin D in clinical practice. Minerva Med. 2005, 96, 1–7. [Google Scholar]
- Navarro-Valverde, C.; Sosa-Henríquez, M.; Alhambra-Expósito, M.R.; Quesada-Gómez, J.M. Vitamin D3 and calcidiol are not equipotent. J. Steroid Biochem. Mol. Biol. 2016, 164, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, C.; Baroni, M.; Bini, V.; Brozzetti, A.; Parretti, L.; Zengarini, E.; Lapenna, M.; Antinolfi, P.; Falorni, A.; Mecocci, P.; et al. Effects of weekly supplementation of cholecalciferol and calcifediol among the oldest-old people: Findings from a randomized pragmatic clinical trial. Nutrients 2019, 11, 2778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaes, A.M.M.; Tieland, M.; de Regt, M.F.; Wittwer, J.; Can Loon, L.J.C.; De Groot, L.C.P.G.M. Dose-response effects of supplementation with calcifediol on serum 25-hydroxyvitamin D status and its metabolites: A randomized controlled trial in older adults. Clin. Nutr. 2018, 37, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Olmos, J.M.; Arnaiz, F.; Hernández, J.L.; Olmos-Martínez, J.M.; González Macías, J. Calcifediol mensual frente a calcifediol quincenal en el tratamiento de pacientes osteoporóticos. Estudio en la vida real. Rev. Osteoporos. Metab. Miner. 2018, 10, 89–95. [Google Scholar]
- Graeff-Armas, L.A.; Bendik, I.; Kunz, I.; Schoop, R.; Hull, S.; Beck, M. Supplemental 25-hydroxycholecalciferol is more effective than cholecalciferol in raising serum 25-hydroxyvitamin D concentrations in older adults. J. Nutr. 2020, 150, 73–81. [Google Scholar] [CrossRef]
- Jódar, E.; Perez-Castrillon, J.L.; Dueñas, A.; Hernandez, G.; Fernandez, N.; Chinchilla Gallo, S.P. Efficacy and safety of long-term treatment with monthly calcifediol soft capsules in vitamin D deficient patients. Endocr. Abstr. 2021, 73, AEP83. [Google Scholar] [CrossRef]
- Corrado, A.; Rotondo, C.; Cici, D.; Berardi, S.; Cantatore, F.P. Effects of Different Vitamin D Supplementation Schemes in Post-Menopausal Women: A Monocentric Open-Label Randomized Study. Nutrients 2021, 13, 380. [Google Scholar] [CrossRef]
- Gonnelli, S.; Tomai Pitinca, M.D.; Camarri, S.; Lucani, B.; Franci, B.; Nuti, R.; Caffarelli, C. Pharmacokinetic profile and effect on bone markers and muscle strength of two daily dosage regimens of calcifediol in osteopenic/osteoporotic postmenopausal women. Aging Clin. Exp. Res. 2021, 33, 2539–2547. [Google Scholar] [CrossRef]
- Pludowski, P.; Holick, M.F.; Grant, W.B.; Konstantynowicz, J.; Mascarenhas, M.R.; Haq, A.; Povoroznyuk, V.; Balatska, N.; Barbosa, A.P.; Karonova, T.; et al. Vitamin D supplementation guidelines. J. Steroid Biochem. Mol. Biol. 2018, 175, 125–135. [Google Scholar] [CrossRef] [Green Version]
- DeLuca, H.F. Overview of general physiology features and functions of vitamin D. Am. J. Clin. Med. 2004, 80, 1689S–1696S. [Google Scholar] [CrossRef]
- Robbins, R.N.; Serra, M.; Ranjil, N.; Hoelscher, D.M.; Sweitzer, S.J.; Briley, M.E. Efficacy of various prescribed vitamin D supplementation regimens on 25-hydroxyvitamin D serum levels in long-term care. Public Health Nutr. 2022, 25, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, M.E.; Tran, H.T.; Evans, M.V. A physiologically based pharmacokinetic model of vitamin D. J. Appl. Toxicol. 2017, 37, 1448–1454. [Google Scholar] [CrossRef] [PubMed]
- Samuel, L.; Borrell, L.N. The effect of body mass index on optimal vitamin D status in U.S. adults: The National Health and Nutrition Examination Survey 2001–2006. Ann. Epidemiol. 2013, 23, 409–414. [Google Scholar] [CrossRef] [PubMed]
- De Luis, D.A.; Pacheco, D.; Izaola, O.; Terroba, M.C.; Cuellar, L.; Cabezas, G. Micronutrient status in morbidly obese women before bariatric surgery. Surg. Obes. Relat. Dis. 2013, 9, 323–327. [Google Scholar] [CrossRef]
- Roizen, J.D.; Long, C.; Casella, A.; O’Lear, L.; Caplan, I.; Lai, M.; Sasson, I.; Singh, R.; Makowski, A.J.; Simmons, R.; et al. Obesity Decreases Hepatic 25-Hydroxylase Activity Causing Low Serum 25-Hydroxyvitamin D. J. Bone Miner. Res. 2019, 34, 1068–1073. [Google Scholar] [CrossRef]
- Elkhwanky, M.-S.; Kummu, O.; Piltonen, T.T.; Laru, J.; Morin-Papunen, L.; Mutikainen, M.; Tavi, P.; Hakkola, J. Obesity Represses CYP2R1, the Vitamin D 25-Hyroxylase, in the Liver and Extrahepatic Tissues. JBMR Plus 2020, 4, e10397. [Google Scholar] [CrossRef]
- Quesada-Gomez, J.M.; Bouillon, R. Is calcifediol better than cholecalciferol for vitamin D supplementation? Osteoporos. Int. 2018, 29, 1697–1711. [Google Scholar] [CrossRef]
- Cesareo, R.; Falchetti, A.; Attanasio, R.; Tabacco, G.; Naciu, A.M.; Palermo, A. Hypovitaminosis D: Is it time to consider the use of calcifediol? Nutrients 2019, 11, 1016. [Google Scholar] [CrossRef] [Green Version]
- Dhaliwal, R.; Mikhail, M.; Feuerman, M.; Aloia, J.F. The vitamin d dose response in obesity. Endocr. Pract. 2014, 20, 1258–1264. [Google Scholar] [CrossRef]
- Charoenngam, N.; Kalajian, T.A.; Shirvani, A.; Yoon, G.H.; Desai, S.; McCarthy, A.; Apovian, C.M.; Holick, M.F. A pilot-randomized, double-blind crossover trial to evaluate the pharmacokinetics of orally administered 25-hydroxyvitamin D3 and vitamin D3 in healthy adults with differing BMI and in adults with intestinal malabsorption. Am. J. Clin. Nutr. 2021, 114, 1189–1199. [Google Scholar] [CrossRef]
- Bikle, D.D.; Gee, E.; Halloran, B.; Kowalski, M.A.; Ryzen, E.; Haddad, J.G. Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. J. Clin. Endocrinol. Metab. 1986, 63, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Barry, E.L.; Rees, J.R.; Peacock, J.L.; Mott, L.A.; Amos, C.I.; Bostick, R.M.; Figueiredo, J.C.; Ahnen, D.J.; Bresalier, R.S.; Burke, C.A.; et al. Genetic variants in CYP2R1, CYP24A1, and VDR modify the efficacy of vitamin D3 supplementation for increasing serum 25-hydroxyvitamin D levels in a randomized controlled trial. J. Clin. Endocrinol. Metab. 2014, 99, E2133–E2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, L.; Xue, Z.; Ji, H.; Zhang, D.; Wang, Y. Effects of CYP2R1 gene variants on vitamin D levels and status: A systematic review and meta-analysis. Gene 2018, 678, 361–369. [Google Scholar] [CrossRef] [PubMed]
Authors | Type of Study | Population | Design | Baseline Vitamin D ng/L/nmol/L | Methods Vitamin D | Superiority of Calcifediol | Other Data |
---|---|---|---|---|---|---|---|
Russo et al. [12] | Open | 18 pre- and postmenopausal females | One arm with 500 μg of 25D3. 16 weeks | 18.1 ± 12.5 ng/mL 45.1 ± 31.1 nmol/L | RIA | NA | 88% > 30 ng/mL (74.8 nmol/L) |
Minisola et al. [8] | RCT | 87 postmenopausal females | Three arms of 25D3 20μg/day,40μg/day,125μg/week. 16 weeks | 16.5 ± 7.5 ng/mL 41.1 ± 18.7 nmol/L | Chemiluminiscence | NA | 100% > 30 ng/mL (74.8 nmol/L) |
Cashman et al. [13] | RCT | 56 adults (25m, 31f) > 50 years | Three arms of 20μg/day D3, 7μg/day and 20μg/day 25D3. 10 weeks | 17.4 ± 4.9 ng/mL 43.6 ± 122.3 nmol/L | ELISA | YES | >Dose 20μg/day 25D3 |
Bischoff-Ferrari et al. [14] | RCT | 20 postmenopausal females | Two arms, 20μg/day D3 vs20μg/day 25D3. 16 weeks | 13 ± 3.8 ng/mL 32.4 ± 9.4 nmol/L | HPLC-MS/MS | YES | - |
Jetter et al. [11] | RCT | 35 females aged 50–70 years | 7 arms:20μg/day and 140μg/week of D3 vs 20μg/day and 140 μg/week of 25D3 and combination of both arms. 15 weeks | 13 ± 5 ng/mL 32.4 ± 12.4 nmol/L | HPLC-MS/MS | YES | Long-term kinetics similar between the two supplements |
Shieh et al. [15] | RCT | 35 subjects aged >18 years | Two arms 60μg/day of D3 vs 20μg/day of 25D3. 16 weeks | <20ng/ml | HPLC-MS/MS | YES | Determination of free vitamin D with superiority of calcifediol |
Perez-Castrillón et al. [16] | RCT | 303 postmenopausal females | Two arms 625μg/month D3 vs 266μg/month 25D3. 16 weeks | 13 ± 3.9 ng/mL 32.4 ± 9.7 nmol/L | Chemiluminiscence | YES | Greater efficacy at one month and four months for both total vitamin D and free vitamin D |
Authors | Type of Study | Population | Design | Baseline Vitamin D ng/mL/nmol/L | Methodology Vitamin D | Superiority of Calcifediol | Other Data |
---|---|---|---|---|---|---|---|
Larrosa et al. [18] | Open | 70 subjects (11 males and 59 females | After loading dose (1064 μg 25-D3 in 1 month) Three arms: 266 μg /month,266 μg /3 weeks,266μg /2 weeks. 28 ± 14 months | 17.6 ± 6ng/mL 43.9 ± 14.9 nmol/L | RIA | NA | 78%, 89%, 93% > 30 ng/mL (74.8 nmol/L) 4%, 11%, 19% > 95 ng/mL (237.1 nmol/L) |
Larrosa et al. [19] | Open | 129 subjects (109 females, 20 males) | After loading dose (1064 μg 25-D3 in 1 month) Two arms: 20 μg/day D3 vs 266 μg/3 weeks. 12 months | 16 ± 5 ng/mL 39.9 ± 12.4 nmol/L | RIA | YES | |
Rossini et al. [20] | RCT | 271 females | Two arms 21 μg/day D3 vs 100 μg/week. 12 months | 22 ± 6 ng/mL 54.9 ± 14.9 nmol/L | RIA | NO | |
Navarro-Valverde et al. [21] | RCT | 40 postmenopausal females | 4 arms:20 μg/day D3 vs20 μg/day, 266 μg/week,266 μg/2 weeks 25-D3. 12 months | 15.5 ± 1.7 ng/mL 38.7 ± 4.2 nmol/L | HPLC | YES | Dose dependent effect |
Ruggero et al. [22] | RCT | 67 subjects (42 females and 25 males) | Two arms: 20 μg/day D3 vs 20 μg/day 25-D3. 7 months | 10 (4-16) ng/mL 24.9 (9.9-39.9) nmol/L | RIA | NO | Initial differences but no differences at 210 days |
Graeff-Armas et al. [25] | RCT | 91 subjects (53 females and 38 males) | Four arms: 20 μg/day D3 vs 10 μg /day,15 μg/day,20 μg/day 25-D3. 6 months | 19.2 ± 6.8 ng/mL 48 ± 17 nmol/L | HPLC-MS/MS | YES | Dose dependent effect. Suppression of the supplement reduced vitamin D levels to baseline |
Corrado et al. [27] | RCT | 160 postmenopausal females | Four arms: 7500 μg single dose, 2500 μg/2 months, 175 μg/week D3 vs 116μg/week 25-D3. 6 months | 13.4 ± 4.3 ng/mL 33.4 ± 10.7 nmol/L | Chemiluminescence | YES | Dose dependent effect |
Jodar E et al. [26] | RCT | 303 postmenopausal females | Two arms 625 μg/month D3 vs 266 μg/month 25D3. 12 months | 13 ± 3.9 ng/mL 32.4 ± 9.7 nmol/L | Chemiluminescence | YES | |
Gonnelli et al. [28] | RCT | 50 osteopenic or osteoporotic females | Two arms, 20 μg/day, 30 μg/day No control with cholecalciferol 6 months | 15.6 ± 4.8 ng/mL 39.4 ± 11.9 nmol/L | Chemiluminescence | NA | 90 days: 59.3 ng/mL (148 nmol/L) dose 20 μg/day 60 days: 72.3 ng/mL (180.4 nmol/L) dose 30 μg/day |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Castrillon, J.-L.; Usategui-Martín, R.; Pludowski, P. Treatment of Vitamin D Deficiency with Calcifediol: Efficacy and Safety Profile and Predictability of Efficacy. Nutrients 2022, 14, 1943. https://doi.org/10.3390/nu14091943
Pérez-Castrillon J-L, Usategui-Martín R, Pludowski P. Treatment of Vitamin D Deficiency with Calcifediol: Efficacy and Safety Profile and Predictability of Efficacy. Nutrients. 2022; 14(9):1943. https://doi.org/10.3390/nu14091943
Chicago/Turabian StylePérez-Castrillon, Jose-Luis, Ricardo Usategui-Martín, and Pawel Pludowski. 2022. "Treatment of Vitamin D Deficiency with Calcifediol: Efficacy and Safety Profile and Predictability of Efficacy" Nutrients 14, no. 9: 1943. https://doi.org/10.3390/nu14091943
APA StylePérez-Castrillon, J.-L., Usategui-Martín, R., & Pludowski, P. (2022). Treatment of Vitamin D Deficiency with Calcifediol: Efficacy and Safety Profile and Predictability of Efficacy. Nutrients, 14(9), 1943. https://doi.org/10.3390/nu14091943