Associations between Meat and Vegetable Intake, Cooking Methods, and Asthenozoospermia: A Hospital-Based Case–Control Study in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment of Dietary Data
2.3. Assessment and Definition of Asthenozoospermia
2.4. The Assessment and Definition of Other Variables
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Meat Consumption, Cooking Method, and Asthenozoospermia Risk
3.3. Vegetable Consumption, Cooking Method, and the Risk of Asthenozoospermia
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ortega, C.; Verheyen, G.; Raick, D.; Camus, M.; Devroey, P.; Tournaye, H. Absolute asthenozoospermia and ICSI: What are the options? Hum. Reprod. Update 2011, 17, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, P.J.; Galle, P.C.; Blasco, L. Human sperm velocity and postinsemination cervical mucus test in the evaluation of the infertile couple. Arch. Androl. 1984, 13, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, D.; Pandya, I.J.; Sawers, R.S. Relationship between human sperm motility characteristics and sperm penetration into human cervical mucus in vitro. J. Reprod. Fertil. 1986, 78, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Jungwirth, A.; Giwercman, A.; Tournaye, H.; Diemer, T.; Kopa, Z.; Dohle, G.; Krausz, C.; European Association of Urology Working Group on Male Infertility. European Association of Urology guidelines on Male Infertility: The 2012 update. Eur. Urol. 2012, 62, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Luconi, M.; Forti, G.; Baldi, E. Pathophysiology of sperm motility. Front. Biosci. 2006, 11, 1433–1447. [Google Scholar] [CrossRef]
- Swan, S.H.; Elkin, E.P.; Fenster, L. The question of declining sperm density revisited: An analysis of 101 studies published 1934-1996. Environ. Health Perspect. 2000, 108, 961–966. [Google Scholar] [CrossRef]
- Levine, H.; Jorgensen, N.; Martino-Andrade, A.; Mendiola, J.; Weksler-Derri, D.; Mindlis, I.; Pinotti, R.; Swan, S.H. Temporal trends in sperm count: A systematic review and meta-regression analysis. Hum. Reprod. Update 2017, 23, 646–659. [Google Scholar] [CrossRef]
- Zuccarello, D.; Ferlin, A.; Garolla, A.; Pati, M.A.; Moretti, A.; Cazzadore, C.; Francavilla, S.; Foresta, C. A possible association of a human tektin-t gene mutation (A229V) with isolated non-syndromic asthenozoospermia: Case report. Hum. Reprod. 2008, 23, 996–1001. [Google Scholar] [CrossRef]
- Nimavat, N.; Singh, S.; Fichadiya, N.; Sharma, P.; Patel, N.; Kumar, M.; Chauhan, G.; Pandit, N. Online Medical Education in India—Different Challenges and Probable Solutions in the Age of COVID-19. Adv. Med. Educ. Pract. 2021, 12, 237–243. [Google Scholar] [CrossRef]
- Napolitano, L.; Barone, B.; Crocetto, F.; Capece, M.; La Rocca, R. The COVID-19 Pandemic: Is It a Wolf Consuming Fertility? Int. J. Fertil. Steril. 2020, 14, 159–160. [Google Scholar] [CrossRef]
- Gdoura, R.; Kchaou, W.; Chaari, C.; Znazen, A.; Keskes, L.; Rebai, T.; Hammami, A. Ureaplasma urealyticum, Ureaplasma parvum, Mycoplasma hominis and Mycoplasma genitalium infections and semen quality of infertile men. BMC Infect. Dis. 2007, 7, 129. [Google Scholar] [CrossRef] [PubMed]
- Martini, A.C.; Tissera, A.; Estofan, D.; Molina, R.I.; Mangeaud, A.; de Cuneo, M.F.; Ruiz, R.D. Overweight and seminal quality: A study of 794 patients. Fertil. Steril. 2010, 94, 1739–1743. [Google Scholar] [CrossRef] [PubMed]
- Pasqualotto, F.F.; Sharma, R.K.; Pasqualotto, E.B.; Agarwal, A. Poor semen quality and ROS-TAC scores in patients with idiopathic infertility. Urol. Int. 2008, 81, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Pasqualotto, F.F.; Sundaram, A.; Sharma, R.K.; Borges, E., Jr.; Pasqualotto, E.B.; Agarwal, A. Semen quality and oxidative stress scores in fertile and infertile patients with varicocele. Fertil. Steril. 2008, 89, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.H.; Sang, M.Y.; Bai, S.; Ma, H.; Wan, Y.Y.; Jiang, X.H.; Zhang, Y.W.; Xu, B.; Chen, H.; Zheng, X.Y.; et al. Semen parameters in men recovered from COVID-19. Asian J. Androl. 2021, 23, 479–483. [Google Scholar] [CrossRef]
- Cutillas-Tolin, A.; Adoamnei, E.; Navarrete-Munoz, E.M.; Vioque, J.; Monino-Garcia, M.; Jorgensen, N.; Chavarro, J.E.; Mendiola, J.; Torres-Cantero, A.M. Adherence to diet quality indices in relation to semen quality and reproductive hormones in young men. Hum. Reprod. 2019, 34, 1866–1875. [Google Scholar] [CrossRef]
- Giahi, L.; Mohammadmoradi, S.; Javidan, A.; Sadeghi, M.R. Nutritional modifications in male infertility: A systematic review covering 2 decades. Nutr. Rev. 2016, 74, 118–130. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; James, E.R.; Aston, K.I.; Jenkins, T.G.; Carrell, D.T. Diet and sperm quality: Nutrients, foods and dietary patterns. Reprod. Biol. 2019, 19, 219–224. [Google Scholar] [CrossRef]
- Ding, N.; Zhang, X.; Zhang, X.D.; Jing, J.; Liu, S.S.; Mu, Y.P.; Peng, L.L.; Yan, Y.J.; Xiao, G.M.; Bi, X.Y.; et al. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut 2020, 69, 1608–1619. [Google Scholar] [CrossRef]
- Saez Lancellotti, T.E.; Boarelli, P.V.; Romero, A.A.; Funes, A.K.; Cid-Barria, M.; Cabrillana, M.E.; Monclus, M.A.; Simon, L.; Vicenti, A.E.; Fornes, M.W. Semen quality and sperm function loss by hypercholesterolemic diet was recovered by addition of olive oil to diet in rabbit. PLoS ONE 2013, 8, e52386. [Google Scholar] [CrossRef]
- Madej, D.; Pietruszka, B.; Kaluza, J. The effect of iron and/or zinc diet supplementation and termination of this practice on the antioxidant status of the reproductive tissues and sperm viability in rats. J. Trace Elem. Med. Biol. 2021, 64, 126689. [Google Scholar] [CrossRef] [PubMed]
- Merino, O.; Sanchez, R.; Gregorio, M.B.; Sampaio, F.; Risopatron, J. Effect of high-fat and vitamin D deficient diet on rat sperm quality and fertility. Theriogenology 2019, 125, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Eslamian, G.; Amirjannati, N.; Rashidkhani, B.; Sadeghi, M.R.; Hekmatdoost, A. Intake of food groups and idiopathic asthenozoospermia: A case-control study. Hum. Reprod. 2012, 27, 3328–3336. [Google Scholar] [CrossRef]
- Ghiasvand, R.; Marvast, L.D.; Shariatpanahi, S.P.; Pourmasoumi, M.; Clark, C.C.T.; Haeri, F. The association between animal flesh foods consumption and semen parameters among infertile Iranian men: A cross-sectional study. Nutr. J. 2020, 19, 113. [Google Scholar] [CrossRef]
- Maldonado-Carceles, A.B.; Minguez-Alarcon, L.; Mendiola, J.; Vioque, J.; Jorgensen, N.; Arense-Gonzalo, J.J.; Torres-Cantero, A.M.; Chavarro, J.E. Meat intake in relation to semen quality and reproductive hormone levels among young men in Spain. Br. J. Nutr. 2019, 121, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Chiu, Y.H.; Williams, P.L.; Gaskins, A.J.; Toth, T.L.; Tanrikut, C.; Hauser, R.; Chavarro, J.E. Men’s meat intake and treatment outcomes among couples undergoing assisted reproduction. Fertil. Steril. 2015, 104, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Xian, Y.; Li, H.; Wu, Y.; Bai, W.; Zeng, X. Analysis of heterocyclic aromatic amine profiles in Chinese traditional bacon and sausage based on ultrahigh-performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS). Food Chem. 2020, 310, 125937. [Google Scholar] [CrossRef] [PubMed]
- Palermo, M.; Pellegrini, N.; Fogliano, V. The effect of cooking on the phytochemical content of vegetables. J. Sci. Food Agric. 2014, 94, 1057–1070. [Google Scholar] [CrossRef]
- Yuan, S.; Ming-Wei, L.; Qi-Qiang, H.; Larsson, S.C. Egg, cholesterol and protein intake and incident type 2 diabetes mellitus: Results of repeated measurements from a prospective cohort study. Clin. Nutr. 2021, 40, 4180–4186. [Google Scholar] [CrossRef]
- Wei, Y.F.; Sun, M.L.; Wen, Z.Y.; Liu, F.H.; Liu, Y.S.; Yan, S.; Qin, X.; Gao, S.; Li, X.Q.; Zhao, Y.H.; et al. Pre-diagnosis meat intake and cooking method and ovarian cancer survival: Results from the Ovarian Cancer Follow-Up Study (OOPS). Food Funct. 2022, 13, 4653–4663. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, G.; He, M.; Pan, C.; Wang, Z. China Food Composition (Standard Edition); Peking University Medical Press: Beijing, China, 2018. [Google Scholar]
- Wang, X.B.; Wu, Q.J.; Liu, F.H.; Zhang, S.; Wang, H.Y.; Guo, R.H.; Leng, X.; Du, Q.; Zhao, Y.H.; Pan, B.C. The Association Between Dairy Product Consumption and Asthenozoospermia Risk: A Hospital-Based Case-Control Study. Front. Nutr. 2021, 8, 714291. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.B.; Wu, Q.J.; Guo, R.H.; Leng, X.; Du, Q.; Zhao, Y.H.; Pan, B.C. Dairy Product Consumption and Oligo-Astheno-Teratozoospermia Risk: A Hospital-Based Case-Control Study in China. Front Nutr. 2021, 8, 742375. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.H.; Wang, X.B.; Wen, Z.Y.; Wang, H.Y.; Zhang, M.; Zhang, S.; Jiang, Y.T.; Zhang, J.Y.; Sun, H.; Pan, B.C.; et al. Dietary Inflammatory Index and Risk of Asthenozoospermia: A Hospital-Based Case-Controlled Study in China. Front Nutr. 2021, 8, 706869. [Google Scholar] [CrossRef]
- Bjorndahl, L.; Barratt, C.L.; Mortimer, D.; Jouannet, P. ‘How to count sperm properly’: Checklist for acceptability of studies based on human semen analysis. Hum. Reprod. 2016, 31, 227–232. [Google Scholar] [CrossRef]
- WHO. WHO Laboratory Manual for the Examination and Processing of Human Semen; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Du, H.; Bennett, D.; Li, L.; Whitlock, G.; Guo, Y.; Collins, R.; Chen, J.; Bian, Z.; Hong, L.S.; Feng, S.; et al. Physical activity and sedentary leisure time and their associations with BMI, waist circumference, and percentage body fat in 0.5 million adults: The China Kadoorie Biobank study. Am. J. Clin. Nutr. 2013, 97, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Gupta, S.; Du Plessis, S.; Sharma, R.; Esteves, S.C.; Cirenza, C.; Eliwa, J.; Al-Najjar, W.; Kumaresan, D.; Haroun, N.; et al. Abstinence Time and Its Impact on Basic and Advanced Semen Parameters. Urology 2016, 94, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Hanson, B.M.; Aston, K.I.; Jenkins, T.G.; Carrell, D.T.; Hotaling, J.M. The impact of ejaculatory abstinence on semen analysis parameters: A systematic review. J. Assist. Reprod. Genet. 2018, 35, 213–220. [Google Scholar] [CrossRef]
- Povey, A.C.; Clyma, J.A.; McNamee, R.; Moore, H.D.; Baillie, H.; Pacey, A.A.; Cade, J.E.; Cherry, N.M.; Participating Centres of Chaps, U.K. Phytoestrogen intake and other dietary risk factors for low motile sperm count and poor sperm morphology. Andrology 2020, 8, 1805–1814. [Google Scholar] [CrossRef]
- Gaskins, A.J.; Colaci, D.S.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Dietary patterns and semen quality in young men. Hum. Reprod. 2012, 27, 2899–2907. [Google Scholar] [CrossRef]
- Afeiche, M.C.; Gaskins, A.J.; Williams, P.L.; Toth, T.L.; Wright, D.L.; Tanrikut, C.; Hauser, R.; Chavarro, J.E. Processed meat intake is unfavorably and fish intake favorably associated with semen quality indicators among men attending a fertility clinic. J. Nutr. 2014, 144, 1091–1098. [Google Scholar] [CrossRef]
- Mendiola, J.; Torres-Cantero, A.M.; Moreno-Grau, J.M.; Ten, J.; Roca, M.; Moreno-Grau, S.; Bernabeu, R. Food intake and its relationship with semen quality: A case-control study. Fertil. Steril. 2009, 91, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Vujkovic, M.; de Vries, J.H.; Dohle, G.R.; Bonsel, G.J.; Lindemans, J.; Macklon, N.S.; van der Spek, P.J.; Steegers, E.A.; Steegers-Theunissen, R.P. Associations between dietary patterns and semen quality in men undergoing IVF/ICSI treatment. Hum. Reprod. 2009, 24, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Afeiche, M.C.; Williams, P.L.; Gaskins, A.J.; Mendiola, J.; Jorgensen, N.; Swan, S.H.; Chavarro, J.E. Meat intake and reproductive parameters among young men. Epidemiology 2014, 25, 323–330. [Google Scholar] [CrossRef] [PubMed]
- McKillop, D.J.; Pentieva, K.; Daly, D.; McPartlin, J.M.; Hughes, J.; Strain, J.J.; Scott, J.M.; McNulty, H. The effect of different cooking methods on folate retention in various foods that are amongst the major contributors to folate intake in the UK diet. Br. J. Nutr. 2002, 88, 681–688. [Google Scholar] [CrossRef]
- Danielewicz, A.; Morze, J.; Przybylowicz, M.; Przybylowicz, K.E. Association of the Dietary Approaches to Stop Hypertension, Physical Activity, and Their Combination with Semen Quality: A Cross-Sectional Study. Nutrients 2019, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.H.; Afeiche, M.C.; Gaskins, A.J.; Williams, P.L.; Petrozza, J.C.; Tanrikut, C.; Hauser, R.; Chavarro, J.E. Fruit and vegetable intake and their pesticide residues in relation to semen quality among men from a fertility clinic. Hum. Reprod. 2015, 30, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp. Gerontol. 2008, 43, 370–377. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; Rosique-Esteban, N.; Becerra-Tomas, N.; Vizmanos, B.; Bullo, M.; Salas-Salvado, J. The Effect of Nutrients and Dietary Supplements on Sperm Quality Parameters: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Adv. Nutr. 2018, 9, 833–848. [Google Scholar] [CrossRef]
- Nassan, F.L.; Chavarro, J.E.; Tanrikut, C. Diet and men’s fertility: Does diet affect sperm quality? Fertil. Steril. 2018, 110, 570–577. [Google Scholar] [CrossRef]
- Skoracka, K.; Eder, P.; Lykowska-Szuber, L.; Dobrowolska, A.; Krela-Kazmierczak, I. Diet and Nutritional Factors in Male (In)fertility-Underestimated Factors. J. Clin. Med. 2020, 9, 1400. [Google Scholar] [CrossRef]
- Willingham, E.J. Environmental Review: Trenbolone and Other Cattle Growth Promoters: Need for a New Risk-Assessment Framework. Environ. Pract. 2006, 8, 58–65. [Google Scholar] [CrossRef]
- Andersson, A.M.; Skakkebaek, N.E. Exposure to exogenous estrogens in food: Possible impact on human development and health. Eur. J. Endocrinol. 1999, 140, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Chakraborty, A.; Kural, M.R.; Roy, P. Alteration of testicular steroidogenesis and histopathology of reproductive system in male rats treated with triclosan. Reprod. Toxicol. 2009, 27, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Gerber, N.; Scheeder, M.R.; Wenk, C. The influence of cooking and fat trimming on the actual nutrient intake from meat. Meat Sci. 2009, 81, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Badiani, A.; Stipa, S.; Bitossi, F.; Gatta, P.P.; Vignola, G.; Chizzolini, R. Lipid composition, retention and oxidation in fresh and completely trimmed beef muscles as affected by common culinary practices. Meat Sci. 2002, 60, 169–186. [Google Scholar] [CrossRef]
- Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: A review. Diabetologia 2001, 44, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.M.; Miranda, A.M.; Santos, F.A.; Loureiro, A.P.; Fisberg, R.M.; Marchioni, D.M. High intake of heterocyclic amines from meat is associated with oxidative stress. Br. J. Nutr. 2015, 113, 1301–1307. [Google Scholar] [CrossRef]
- Totsuka, Y.; Kawamori, T.; Hisada, S.; Mitsumori, K.; Ishihara, J.; Sugimura, T.; Wakabayashi, K. Testicular toxicity in F344 rats by aminophenylnorharman, formed from norharman and aniline. Toxicol. Appl. Pharm. 2001, 175, 169–175. [Google Scholar] [CrossRef]
- Goldberg, T.; Cai, W.; Peppa, M.; Dardaine, V.; Baliga, B.S.; Uribarri, J.; Vlassara, H. Advanced glycoxidation end products in commonly consumed foods. J. Am. Diet. Assoc. 2004, 104, 1287–1291. [Google Scholar] [CrossRef]
- Chen, J.; Ying, G.G.; Deng, W.J. Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. J. Agric. Food Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef]
Characteristics | Normal | Asthenozoospermia | p-Value |
---|---|---|---|
No. of participants | 585 | 552 | |
Age (years) | 32.12 ± 4.50 | 33.29 ± 5.26 | <0.05 |
Body mass index (kg/m2) | 26.25 ± 4.55 | 26.41 ± 4.41 | 0.529 |
Physical activity (MET/hours/week) | 166.50 ± 103.04 | 166.77 ± 103.08 | 0.965 |
Abstinence time (days) | 4.28 ± 1.39 | 4.48 ± 1.48 | <0.05 |
Semen parameters | |||
| 3.45 ± 1.26 | 3.62 ± 1.48 | <0.05 |
| 71.09 ± 39.76 | 58.84 ± 36.09 | <0.05 |
| 232.83 ± 133.59 | 199.68 ± 126.12 | <0.05 |
| 44.62 ± 9.33 | 22.05 ± 8.72 | <0.05 |
| 55.00 ± 11.35 | 27.97 ± 10.92 | <0.05 |
| 6.66 ± 2.72 | 5.71 ± 2.54 | <0.05 |
Smoking status (%) | |||
| 275 (47.01) | 287 (51.99) | 0.093 |
| 310 (52.99) | 265 (48.01) | |
Drinking status (%) | |||
| 333 (56.92) | 352 (63.77) | <0.05 |
| 252 (43.08) | 200 (36.23) | |
Educational level (%) | |||
| 143 (24.44) | 121 (21.92) | 0.603 |
| 843 (14.19) | 79 (14.31) | |
| 359 (61.37) | 352 (63.77) | |
Annual family income (RMB thousand yuan) (%) | |||
| 94 (16.07) | 99 (17.93) | 0.698 |
| 229 (39.15) | 210 (38.04) | |
| 262 (44.79) | 243 (44.02) | |
Diet | |||
| 1781.26 ± 596.48 | 1844.26 ± 633.14 | 0.084 |
| 106.79 ± 48.77 | 100.50 ± 46.23 | <0.05 |
| 100.33 ± 47.48 | 93.24 ± 44.58 | <0.05 |
| 6.46 ± 7.36 | 7.26 ± 8.75 | 0.093 |
| 196.58 ± 135.34 | 210.86 ± 151.94 | 0.094 |
Cooking methods | |||
| 3.29 ± 4.27 | 2.71 ± 3.67 | <0.05 |
| 10.27 ± 7.88 | 9.66 ± 7.45 | 0.227 |
| 3.25 ± 3.02 | 3.24 ± 3.82 | 0.782 |
| 22.01 ± 12.17 | 20.72 ± 11.98 | <0.05 |
| 1.69 ± 3.05 | 1.84 ± 3.31 | 0.403 |
| 1.34 ± 4.17 | 1.26 ± 3.64 | 0.740 |
| 11.94 ± 11.47 | 12.53 ± 11.26 | 0.302 |
| 2.11 ± 3.94 | 1.74 ± 3.21 | 0.113 |
| 22.97 ± 14.55 | 24.86 ± 15.64 | 0.062 |
| 6.08 ± 7.58 | 7.75 ± 9.92 | <0.05 |
Consumption of Meat and Vegetables | p-Trend * | |||
---|---|---|---|---|
Level 1 | Level 2 | Level 3 | ||
Total Meat (g/d) | ≤89.43 | 89.43–116.44 | >116.44 | |
Case/control | 222/193 | 160/189 | 170/203 | |
Model 1 a | 1.00 (reference) | 0.72 (0.54, 0.97) † | 0.75 (0.56, 0.99) | 0.010 |
Model 2 b | 1.00 (reference) | 0.69 (0.51, 0.92) | 0.63 (0.46, 0.86) | 0.002 |
Model 3 c | 1.00 (reference) | 0.63 (0.43, 0.91) | 0.56 (0.37, 0.87) | 0.008 |
Unprocessed meat (g/d) | ≤85.68 | 85.68–108.56 | >108.56 | |
Case/control | 190/173 | 117/116 | 245/296 | |
Model 1 a | 1.00 (reference) | 0.91 (0.65, 1.27) | 0.75 (0.57, 0.98) | 0.039 |
Model 2 b | 1.00 (reference) | 0.89 (0.63, 1.24) | 0.66 (0.49, 0.88) | 0.006 |
Model 3 c | 1.00 (reference) | 0.83 (0.55, 1.24) | 0.61 (0.40, 0.93) | 0.021 |
Processed meat (g/d) | ≤2.87 | 2.87–5.74 | ≥5.74 | |
Case/control | 96/116 | 196/207 | 260/262 | |
Model 1 a | 1.00 (reference) | 1.31 (0.93, 1.85) | 1.45 (1.04, 2.04) | 0.048 |
Model 2 b | 1.00 (reference) | 1.35 (0.96, 1.92) | 1.41 (0.99, 2.01) | 0.111 |
Model 3 c | 1.00 (reference) | 1.41 (0.99, 2.01) | 1.44 (1.01, 2.06) | 0.112 |
Total vegetable (g/d) | ≤121.25 | 121.25–207.07 | >207.07 | |
Case/control | 174/194 | 179/195 | 199/196 | |
Model 1 a | 1.00 (reference) | 1.03 (0.77, 1.37) | 1.13 (0.85, 1.50) | 0.399 |
Model 2 b | 1.00 (reference) | 0.95 (0.70, 1.28) | 0.91 (0.64, 1.27) | 0.576 |
Model 3 c | 1.00 (reference) | 0.94 (0.69, 1.27) | 0.83 (0.58, 1.18) | 0.299 |
Frequency of Different Cooking Methods for Meat | p-Trend * | |||
---|---|---|---|---|
2–3 Times/Month | 2~3 Times/Week | 4 Times/Week | ||
Deep-frying | ||||
Case/control | 428/437 | 113/133 | 11/15 | |
Model 1 a | 1.00 (reference) | 1.17 (0.52, 2.71) † | 1.29 (0.59, 2.94) | 0.409 |
Model 2 b | 1.00 (reference) | 1.21 (0.53, 2.86) | 1.41 (0.62, 3.28) | 0.286 |
Model 3 c | 1.00 (reference) | 0.98 (0.42, 2.34) | 1.10 (0.48, 2.61) | 0.655 |
Stewing | ||||
Case/control | 132/126 | 328/349 | 92/110 | |
Model 1 a | 1.00 (reference) | 1.14 (0.83, 1.56) | 1.26 (0.87, 1.83) | 0.268 |
Model 2 b | 1.00 (reference) | 1.12 (0.88, 1.70) | 1.38 (0.93, 2.04) | 0.125 |
Model 3 c | 1.00 (reference) | 0.96 (0.67, 1.38) | 0.94 (0.59, 1.49) | 0.802 |
Broiling | ||||
Case/control | 425/452 | 122/128 | 5/5 | |
Model 1 a | 1.00 (reference) | 1.01 (0.27, 3.72) | 0.97 (0.27, 3.52) | 0.835 |
Model 2 b | 1.00 (reference) | 1.06 (0.28, 3.94) | 0.98 (0.27, 3.62) | 0.765 |
Model 3 c | 1.00 (reference) | 0.88 (0.23, 3.35) | 0.79 (0.21, 3.00) | 0.515 |
Stir-frying | ||||
Case/control | 56/41 | 135/148 | 361/396 | |
Model 1 a | 1.00 (reference) | 1.00 (0.76, 1.32) | 1.47 (0.96, 2.28) | 0.340 |
Model 2 b | 1.00 (reference) | 1.07 (0.80, 1.42) | 1.58 (1.02, 2.46) | 0.161 |
Model 3 c | 1.00 (reference) | 0.84 (0.61, 1.16) | 1.09 (0.67, 1.81) | 0.522 |
Steaming | ||||
Case/control | 471/503 | 76/78 | 5/4 | |
Model 1 a | 1.00 (reference) | 0.89 (0.21, 3.53) | 0.84 (0.21, 3.23) | 0.700 |
Model 2 b | 1.00 (reference) | 0.84 (0.20, 3.37) | 0.85 (0.21, 3.31) | 0.859 |
Model 3 c | 1.00 (reference) | 0.78 (0.18, 3.23) | 0.73 (0.17, 3.00) | 0.609 |
Frequency of Different Cooking Methods for Total Vegetables | p-Trend * | |||
---|---|---|---|---|
2–3 Times/Month | 2~3 Times/Week | 4 Times/Week | ||
Deep-frying for total vegetable | ||||
Case/control | 508/531 | 34/45 | 10/9 | |
Model 1 a | 1.00 (reference) | 0.66 (0.24, 1.82) † | 0.83 (0.32, 2.08) | 0.923 |
Model 2 b | 1.00 (reference) | 0.82 (0.29, 2.30) | 1.07 (0.40, 2.79) | 0.669 |
Model 3 c | 1.00 (reference) | 0.98 (0.34, 2.84) | 1.28 (0.48, 3.44) | 0.441 |
Stewing for total vegetable | ||||
Case/control | 119/137 | 254/289 | 179/159 | |
Model 1 a | 1.00 (reference) | 0.78 (0.59, 1.03) | 0.79 (0.57, 1.09) | 0.065 |
Model 2 b | 1.00 (reference) | 0.79 (0.60, 1.05) | 0.85 (0.60, 1.19) | 0.140 |
Model 3 c | 1.00 (reference) | 0.76 (0.58, 1.01) | 0.82 (0.58, 1.15) | 0.086 |
Broiling for total vegetable | ||||
Case/control | 486/496 | 58/76 | 8/13 | |
Model 1 a | 1.00 (reference) | 1.51 (0.45, 3.09) | 1.44 (0.60, 3.67) | 0.255 |
Model 2 b | 1.00 (reference) | 1.43 (0.54, 4.10) | 1.85 (0.73, 5.13) | 0.116 |
Model 3 c | 1.00 (reference) | 1.55 (0.57, 4.59) | 1.97 (0.75, 5.67) | 0.107 |
Stir-frying for total vegetable | ||||
Case/control | 30/38 | 131/148 | 391/399 | |
Model 1 a | 1.00 (reference) | 0.92 (0.70, 1.21) | 0.84 (0.51, 1.39) | 0.416 |
Model 2 b | 1.00 (reference) | 0.98 (0.74, 1.30) | 0.93 (0.55, 1.54) | 0.790 |
Model 3 c | 1.00 (reference) | 0.97 (0.73, 1.28) | 0.91 (0.54, 1.53) | 0.724 |
Raw vegetable | ||||
Case/control | 265/315 | 198/201 | 89/69 | |
Model 1 a | 1.00 (reference) | 0.76 (0.52, 1.10) | 0.66 (0.46, 0.95) | 0.025 |
Model 2 b | 1.00 (reference) | 0.78 (0.53, 1.14) | 0.69 (0.48, 1.00) | 0.054 |
Model 3 c | 1.00 (reference) | 0.75 (0.51, 1.11) | 0.67 (0.45, 0.98) | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-S.; Zhang, Y.-X.; Wang, X.-B.; Wu, Q.-J.; Liu, F.-H.; Pan, B.-C.; Zhao, Y.-H. Associations between Meat and Vegetable Intake, Cooking Methods, and Asthenozoospermia: A Hospital-Based Case–Control Study in China. Nutrients 2022, 14, 1956. https://doi.org/10.3390/nu14091956
Liu Y-S, Zhang Y-X, Wang X-B, Wu Q-J, Liu F-H, Pan B-C, Zhao Y-H. Associations between Meat and Vegetable Intake, Cooking Methods, and Asthenozoospermia: A Hospital-Based Case–Control Study in China. Nutrients. 2022; 14(9):1956. https://doi.org/10.3390/nu14091956
Chicago/Turabian StyleLiu, Ya-Shu, Yi-Xiao Zhang, Xiao-Bin Wang, Qi-Jun Wu, Fang-Hua Liu, Bo-Chen Pan, and Yu-Hong Zhao. 2022. "Associations between Meat and Vegetable Intake, Cooking Methods, and Asthenozoospermia: A Hospital-Based Case–Control Study in China" Nutrients 14, no. 9: 1956. https://doi.org/10.3390/nu14091956
APA StyleLiu, Y.-S., Zhang, Y.-X., Wang, X.-B., Wu, Q.-J., Liu, F.-H., Pan, B.-C., & Zhao, Y.-H. (2022). Associations between Meat and Vegetable Intake, Cooking Methods, and Asthenozoospermia: A Hospital-Based Case–Control Study in China. Nutrients, 14(9), 1956. https://doi.org/10.3390/nu14091956