Exploring the Impact of Sociodemographic Characteristics and Health Literacy on Adherence to Dietary Recommendations and Food Literacy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Questionnaire
2.3. Measures
2.3.1. Adherence to Dietary Recommendations
2.3.2. Food Literacy Concepts
2.3.3. Health Literacy
2.3.4. Self-Perceived General Health and Morbidity
2.4. Statistical Analysis
3. Results
3.1. Participant Profile
3.2. Factors Associated with Non-Adherence to Dietary Recommendations
3.3. Factors Associated with Poor Food Literacy-Related Abilities
3.4. The Association between Non-Adherence to Dietary Recommendations, Self-Reported Health Features, Health Literacy, and Food Literacy Concepts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popkin, B.M. Global nutrition dynamics: The world is shifting rapidly toward a diet linked with noncommunicable diseases. Am. J. Clin. Nutr. 2006, 84, 289–298. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Nutrition Policy Review 2016–2017: Country Progress in Creating Enabling Policy Environments for Promoting Healthy Diets and Nutrition; World Health Organization: Geneva, Switzerland, 2018; p. 156. [Google Scholar]
- World Health Organization Regional Office for Europe. Better Food and Nutrition in Europe: A Progress Report Monitoring Policy Implementation in the WHO European Region; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2018. [Google Scholar]
- Gibbs, H.D.; Ellerbeck, E.F.; Gajewski, B.; Zhang, C.; Sullivan, D.K. The Nutrition Literacy Assessment Instrument is a Valid and Reliable Measure of Nutrition Literacy in Adults with Chronic Disease. J. Nutr. Educ. Behav. 2018, 50, 247–257.e241. [Google Scholar] [CrossRef] [PubMed]
- Malloy-Weir, L.; Cooper, M. Health literacy, literacy, numeracy and nutrition label understanding and use: A scoping review of the literature. J. Hum. Nutr. Diet 2017, 30, 309–325. [Google Scholar] [CrossRef]
- Rosas, R.; Pimenta, F.; Leal, I.; Schwarzer, R. FOODLIT-PRO: Conceptual and empirical development of the food literacy wheel. Int. J. Food Sci. Nutr. 2021, 72, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.K.; Sullivan, D.K.; Ellerbeck, E.F.; Gajewski, B.J.; Gibbs, H.D. Nutrition literacy predicts adherence to healthy/unhealthy diet patterns in adults with a nutrition-related chronic condition. Public Health Nutr. 2019, 22, 2157–2169. [Google Scholar] [CrossRef]
- Vettori, V.; Lorini, C.; Milani, C.; Bonaccorsi, G. Towards the Implementation of a Conceptual Framework of Food and Nutrition Literacy: Providing Healthy Eating for the Population. Int. J. Environ. Res. Public Health 2019, 16, 5041. [Google Scholar] [CrossRef] [Green Version]
- Reedy, J.; Krebs-Smith, S.M.; Miller, P.E.; Liese, A.D.; Kahle, L.L.; Park, Y.; Subar, A.F. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J. Nutr. 2014, 144, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Silk, K.J.; Sherry, J.; Winn, B.; Keesecker, N.; Horodynski, M.A.; Sayir, A. Increasing nutrition literacy: Testing the effectiveness of print, web site, and game modalities. J. Nutr. Educ. Behav. 2008, 40, 3–10. [Google Scholar] [CrossRef]
- Yuen, E.Y.N.; Thomson, M.; Gardiner, H. Measuring Nutrition and Food Literacy in Adults: A Systematic Review and Appraisal of Existing Measurement Tools. Health Lit. Res. Pract. 2018, 2, e134–e160. [Google Scholar] [CrossRef] [Green Version]
- Perez-Cueto, F.J.A. An Umbrella Review of Systematic Reviews on Food Choice and Nutrition Published between 2017 and-2019. Nutrients 2019, 11, 2398. [Google Scholar] [CrossRef] [Green Version]
- Vidgen, H.A.; Gallegos, D. Defining food literacy and its components. Appetite 2014, 76, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Cullen, T.; Hatch, J.; Martin, W.; Higgins, J.W.; Sheppard, R. Food Literacy: Definition and Framework for Action. Can. J. Diet Pract. Res. 2015, 76, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Butcher, L.M.; Platts, J.R.; Le, N.; McIntosh, M.M.; Celenza, C.A.; Foulkes-Taylor, F. Can addressing food literacy across the life cycle improve the health of vulnerable populations? A case study approach. Health Promot. J. Aust. 2021, 32 (Suppl. 1), 5–16. [Google Scholar] [CrossRef] [PubMed]
- Begley, A. Developing Food Literacy through the Health Sector in Food Literacy: Key Concepts for Health and Education; Vidgen, H., Ed.; Taylor and Francis Ltd.: London, UK, 2016; p. 262. [Google Scholar]
- Rosas, R.; Pimenta, F.; Leal, I.; Schwarzer, R. FOODLIT-PRO: Food Literacy Domains, Influential Factors and Determinants—A Qualitative Study. Nutrients 2019, 12, 88. [Google Scholar] [CrossRef] [Green Version]
- Truman, E.; Lane, D.; Elliott, C. Defining food literacy: A scoping review. Appetite 2017, 116, 365–371. [Google Scholar] [CrossRef]
- Aljefree, N.; Ahmed, F. Association between dietary pattern and risk of cardiovascular disease among adults in the Middle East and North Africa region: A systematic review. Food Nutr. Res. 2015, 59, 27486. [Google Scholar] [CrossRef] [Green Version]
- Bonaccio, M.; Di Castelnuovo, A.; Bonanni, A.; Costanzo, S.; De Lucia, F.; Pounis, G.; Zito, F.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; et al. Adherence to a Mediterranean diet is associated with a better health-related quality of life: A possible role of high dietary antioxidant content. BMJ Open 2013, 3, e003003. [Google Scholar] [CrossRef] [Green Version]
- El Ansari, W.; Suominen, S.; Berg-Beckhoff, G. Is Healthier Nutrition Behaviour Associated with Better Self-Reported Health and Less Health Complaints? Evidence from Turku, Finland. Nutrients 2015, 7, 8478–8490. [Google Scholar] [CrossRef] [Green Version]
- Govindaraju, T.; Sahle, B.W.; McCaffrey, T.A.; McNeil, J.J.; Owen, A.J. Dietary Patterns and Quality of Life in Older Adults: A Systematic Review. Nutrients 2018, 10, 971. [Google Scholar] [CrossRef] [Green Version]
- Burger, J.P.W.; de Brouwer, B.; IntHout, J.; Wahab, P.J.; Tummers, M.; Drenth, J.P.H. Systematic review with meta-analysis: Dietary adherence influences normalization of health-related quality of life in coeliac disease. Clin. Nutr. 2017, 36, 399–406. [Google Scholar] [CrossRef]
- Kim, S.; Love, F.; Quistberg, D.A.; Shea, J.A. Association of health literacy with self-management behavior in patients with diabetes. Diabetes Care 2004, 27, 2980–2982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrara, A.; Schulz, P.J. The role of health literacy in predicting adherence to nutritional recommendations: A systematic review. Patient Educ. Couns. 2018, 101, 16–24. [Google Scholar] [CrossRef] [PubMed]
- de Abreu, D.; Guessous, I.; Vaucher, J.; Preisig, M.; Waeber, G.; Vollenweider, P.; Marques-Vidal, P. Low compliance with dietary recommendations for food intake among adults. Clin. Nutr. 2013, 32, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Petrovici, D.A.; Ritson, C. Food consumption patterns in Romania. Br. Food J. 2000, 102, 290–308. [Google Scholar] [CrossRef]
- Nastasescu, V.; Mititelu, M.; Stanciu, T.I.; Draganescu, D.; Grigore, N.D.; Udeanu, D.I.; Stanciu, G.; Neacsu, S.M.; Dinu-Pirvu, C.E.; Oprea, E.; et al. Food Habits and Lifestyle of Romanians in the Context of the COVID-19 Pandemic. Nutrients 2022, 14, 504. [Google Scholar] [CrossRef]
- Voinea, L.; Vrânceanu, D.M.; Filip, A.; Popescu, D.V.; Negrea, T.M.; Dina, R. Research on Food Behavior in Romania from the Perspective of Supporting Healthy Eating Habits. Sustainability 2019, 11, 5255. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization Regional Office for Europe. WHO European Regional Obesity Report 2022; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2022. [Google Scholar]
- European Commission Eurostat. Causes of Death Statistics—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Causes_of_death_statistics#Main_causes_of_death_by_country_in_2019 (accessed on 15 March 2023).
- World Health Organization. WHO Guidelines on Translation and Adaptation of Instruments; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Bredin, C.; Naimimohasses, S.; Norris, S.; Wright, C.; Hancock, N.; Hart, K.; Moore, J.B. Development and relative validation of a short food frequency questionnaire for assessing dietary intakes of non-alcoholic fatty liver disease patients. Eur. J. Nutr. 2020, 59, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Cleghorn, C.L.; Harrison, R.A.; Ransley, J.K.; Wilkinson, S.; Thomas, J.; Cade, J.E. Can a dietary quality score derived from a short-form FFQ assess dietary quality in UK adult population surveys? Public Health Nutr. 2016, 19, 2915–2923. [Google Scholar] [CrossRef] [Green Version]
- Romanian Nutrition Society. Ghid Pentru Alimentaţia Sănătoasă; Performantica: Iași, Romania, 2006. [Google Scholar]
- Grea Krause, C.; Beer-Borst, S.; Sommerhalder, K.; Hayoz, S.; Abel, T. A short food literacy questionnaire (SFLQ) for adults: Findings from a Swiss validation study. Appetite 2018, 120, 275–280. [Google Scholar] [CrossRef]
- Coman, M.A.; Forray, A.I.; Van den Broucke, S.; Chereches, R.M. Measuring Health Literacy in Romania: Validation of the HLS-EU-Q16 Survey Questionnaire. Int. J. Public Health 2022, 67, 1604272. [Google Scholar] [CrossRef]
- European Union. European Health Interview Survey (EHIS Wave 2) Methodological Manual; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Hintzpeter, B.; Finger, J.D.; Allen, J.; Kuhnert, R.; Seeling, S.; Thelen, J.; Lange, C. European Health Interview Survey (EHIS) 2—Background and study methodology. J. Health Monit. 2019, 4, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Cullati, S.; Bochatay, N.; Rossier, C.; Guessous, I.; Burton-Jeangros, C.; Courvoisier, D.S. Does the single-item self-rated health measure the same thing across different wordings? Construct validity study. Qual. Life Res. 2020, 29, 2593–2604. [Google Scholar] [CrossRef] [PubMed]
- Mutz, J.; Lewis, C.M. Cross-classification between self-rated health and health status: Longitudinal analyses of all-cause mortality and leading causes of death in the UK. Sci. Rep. 2022, 12, 459. [Google Scholar] [CrossRef] [PubMed]
- Van der Heyden, J.; De Bacquer, D.; Tafforeau, J.; Van Herck, K. Reliability and validity of a global question on self-reported chronic morbidity. J. Public Health 2014, 22, 371–380. [Google Scholar] [CrossRef] [Green Version]
- The National Institute of Statistics—Romania. Social Statistics—TEMPO-Online. Available online: http://statistici.insse.ro:8077/tempo-online/#/pages/tables/insse-table (accessed on 16 April 2023).
- European Commission Eurostat. How Much Fruit and Vegetables Do You Eat Daily?—Products Eurostat News. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220104-1 (accessed on 16 April 2023).
- European Commission Eurostat. Statistics. Available online: https://ec.europa.eu/eurostat/databrowser/view/hlth_ehis_fv3b/default/table?lang=en (accessed on 16 April 2023).
- Stea, T.H.; Nordheim, O.; Bere, E.; Stornes, P.; Eikemo, T.A. Fruit and vegetable consumption in Europe according to gender, educational attainment and regional affiliation-A cross-sectional study in 21 European countries. PLoS ONE 2020, 15, e0232521. [Google Scholar] [CrossRef]
- Azzolina, D.; Vedovelli, L.; Gallipoli, S.; French, M.; Ghidina, M.; Lamprecht, M.; Tsiountsioura, M.; Lorenzoni, G.; Gregori, D. Nutrients and Caloric Intake Associated with Fruits, Vegetables, and Legumes in the Elderly European Population. Nutrients 2020, 12, 2746. [Google Scholar] [CrossRef]
- Azagba, S.; Sharaf, M.F. Disparities in the frequency of fruit and vegetable consumption by socio-demographic and lifestyle characteristics in Canada. Nutr. J. 2011, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Irala-Estevez, J.D.; Groth, M.; Johansson, L.; Oltersdorf, U.; Prattala, R.; Martinez-Gonzalez, M.A. A systematic review of socio-economic differences in food habits in Europe: Consumption of fruit and vegetables. Eur. J. Clin. Nutr. 2000, 54, 706–714. [Google Scholar] [CrossRef] [Green Version]
- Hoy, M.K.; Goldman, J.D.; Moshfegh, A.J. Differences in fruit and vegetable intake of U.S. adults by sociodemographic characteristics evaluated by two methods. J. Food Compos. Anal. 2017, 64, 97–103. [Google Scholar] [CrossRef]
- Roos, G.; Johansson, L.; Kasmel, A.; Klumbiene, J.; Prattala, R. Disparities in vegetable and fruit consumption: European cases from the north to the south. Public Health Nutr. 2001, 4, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Prattala, R.; Hakala, S.; Roskam, A.J.; Roos, E.; Helmert, U.; Klumbiene, J.; Van Oyen, H.; Regidor, E.; Kunst, A.E. Association between educational level and vegetable use in nine European countries. Public Health Nutr. 2009, 12, 2174–2182. [Google Scholar] [CrossRef] [Green Version]
- European Commission, Directorate-General for Maritime Affairs and Fisheries. The EU Consumer Habits—Annex 1: Mapping and Analysis of Existing Studies on Consumer Habits; European Union: Brussels, Belgium, 2016. [Google Scholar]
- Pieniak, Z.; Verbeke, W.; Scholderer, J.; Brunsø, K.; Olsen, S.O. European consumers’ use of and trust in information sources about fish. Food Qual. Prefer. 2007, 18, 1050–1063. [Google Scholar] [CrossRef]
- Samoggia, A.; Castellini, A. Health-Orientation and Socio-Demographic Characteristics as Determinants of Fish Consumption. J. Int. Food Agribus. Mark. 2017, 30, 211–226. [Google Scholar] [CrossRef]
- Verbeke, W.; Vackier, I. Individual determinants of fish consumption: Application of the theory of planned behaviour. Appetite 2005, 44, 67–82. [Google Scholar] [CrossRef]
- Verbeke, W.; Vermeir, I.; Brunsø, K. Consumer evaluation of fish quality as basis for fish market segmentation. Food Qual. Prefer. 2007, 18, 651–661. [Google Scholar] [CrossRef]
- Cardoso, C.; Lourenco, H.; Costa, S.; Goncalves, S.; Nunes, M.L. Survey into the seafood consumption preferences and patterns in the portuguese population. Gender and regional variability. Appetite 2013, 64, 20–31. [Google Scholar] [CrossRef]
- Elmadfa, I.; Meyer, A.L. Patterns of drinking and eating across the European Union: Implications for hydration status. Nutr. Rev. 2015, 73 (Suppl. 2), 141–147. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Intake of Drinking Water and Total Non-Alcoholic Beverage Intake|Knowledge for Policy. Available online: https://knowledge4policy.ec.europa.eu/health-promotion-knowledge-gateway/defining-water-overview-4_en (accessed on 16 April 2023).
- Malisova, O.; Athanasatou, A.; Pepa, A.; Husemann, M.; Domnik, K.; Braun, H.; Mora-Rodriguez, R.; Ortega, J.F.; Fernandez-Elias, V.E.; Kapsokefalou, M. Water Intake and Hydration Indices in Healthy European Adults: The European Hydration Research Study (EHRS). Nutrients 2016, 8, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picetti, D.; Foster, S.; Pangle, A.K.; Schrader, A.; George, M.; Wei, J.Y.; Azhar, G. Hydration health literacy in the elderly. Nutr. Healthy Aging 2017, 4, 227–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saboga-Nunes, L.; Medeiros, M.; Bittlingmayer, U. Health literacy impact on nutrition status and water intake in children. Eur. J. Public Health 2020, 30, ckaa165.1244. [Google Scholar] [CrossRef]
- Goodman, A.B.; Blanck, H.M.; Sherry, B.; Park, S.; Nebeling, L.; Yaroch, A.L. Behaviors and attitudes associated with low drinking water intake among US adults, Food Attitudes and Behaviors Survey, 2007. Prev. Chronic Dis. 2013, 10, 120248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazan, R.; Sondey, J.; Maillot, M.; Guelinckx, I.; Lluch, A. Drinking Water Intake Is Associated with Higher Diet Quality among French Adults. Nutrients 2016, 8, 689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Yang, Y.J. Plain water intake of Korean adults according to life style, anthropometric and dietary characteristic: The Korea National Health and Nutrition Examination Surveys 2008–2010. Nutr. Res. Pract. 2014, 8, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Mellett, A.; Leddy, S.; Mullee, A. The barriers and facilitators contributing to water intake in adults. Proc. Nutr. Soc. 2022, 81, E102. [Google Scholar] [CrossRef]
- Yang, M.; Chun, O.K. Consumptions of plain water, moisture in foods and beverages, and total water in relation to dietary micronutrient intakes and serum nutrient profiles among US adults. Public Health Nutr. 2015, 18, 1180–1186. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.-L.; Lin, Y.-C.; Lo, T.C.; Chen, M.-C.; Kuo, H.-W. Understanding the Lifestyle Correlates with Chronic Constipation and Self-Rated Health. Food Nutr. Sci. 2015, 06, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Begley, A.; Butcher, L.M.; Bobongie, V.; Dhaliwal, S.S. Identifying Participants Who Would Benefit the Most from an Adult Food-literacy Program. Int. J. Environ. Res. Public Health 2019, 16, 1272. [Google Scholar] [CrossRef] [Green Version]
- Pettigrew, S.; Biagioni, N.; Moore, S.; Pratt, I.S. Whetting disadvantaged adults’ appetite for nutrition education. Public Health Nutr. 2017, 20, 2629–2635. [Google Scholar] [CrossRef] [Green Version]
- Stormacq, C.; Wosinski, J.; Boillat, E.; Van den Broucke, S. Effects of health literacy interventions on health-related outcomes in socioeconomically disadvantaged adults living in the community: A systematic review. JBI Evid. Synth. 2020, 18, 1389–1469. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, T.; Jung, H. The Relationships between Food Literacy, Health Promotion Literacy and Healthy Eating Habits among Young Adults in South Korea. Foods 2022, 11, 2467. [Google Scholar] [CrossRef]
- Sponselee, H.C.S.; Kroeze, W.; Poelman, M.P.; Renders, C.M.; Ball, K.; Steenhuis, I.H.M. Food and health promotion literacy among employees with a low and medium level of education in the Netherlands. BMC Public Health 2021, 21, 1273. [Google Scholar] [CrossRef] [PubMed]
- McGowan, L.; Pot, G.K.; Stephen, A.M.; Lavelle, F.; Spence, M.; Raats, M.; Hollywood, L.; McDowell, D.; McCloat, A.; Mooney, E.; et al. The influence of socio-demographic, psychological and knowledge-related variables alongside perceived cooking and food skills abilities in the prediction of diet quality in adults: A nationally representative cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, K.; Shinozaki, N.; Livingstone, M.B.E.; Yuan, X.; Tajima, R.; Matsumoto, M.; Masayasu, S.; Sasaki, S. Associations of food choice values and food literacy with overall diet quality: A nationwide cross-sectional study in Japanese adults. Br. J. Nutr. 2023, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Precupetu, I.; Aartsen, M.; Vasile, M. Social Exclusion and Mental Wellbeing in Older Romanians. Soc. Incl. 2019, 7, 4–16. [Google Scholar] [CrossRef]
- Pleșa, R. Aspects Related To The Socio-Economic Situation Of The Retired Persons In Romania. Ann. Univ. Petroşani Econ. 2010, 10, 257–266. [Google Scholar]
- Niedzwiedzka, B.; Mazzocchi, M.; Aschemann-Witzel, J.; Gennaro, L.; Verbeke, W.; Traill, W.B. Determinants of information behaviour and information literacy related to healthy eating among Internet users in five European countries. Inf. Res. Int. Electron. J. 2014, 19, 15. [Google Scholar]
- Wang, Y.; Wang, J.; Shen, Q. A Consumer Segmentation Study of Nutrition Information Seeking and Its Relation to Food Consumption in Beijing, China. Foods 2022, 11, 453. [Google Scholar] [CrossRef]
- Rosas, R.; Pimenta, F.; Leal, I.; Schwarzer, R. FOODLIT-tool: Development and validation of the adaptable food literacy tool towards global sustainability within food systems. Appetite 2022, 168, 105658. [Google Scholar] [CrossRef] [PubMed]
Variables | n | % | |
---|---|---|---|
Gender | Female | 974 | 62.0 |
Male | 598 | 38.0 | |
Age (years) | 18–29 | 169 | 10.8 |
30–39 | 199 | 12.7 | |
40–49 | 271 | 17.2 | |
50–59 | 307 | 19.5 | |
60–69 | 356 | 22.6 | |
70 years and older | 270 | 17.2 | |
Residence | Urban | 736 | 46.8 |
Rural | 833 | 53.0 | |
Missing | 3 | 0.2 | |
Educational attainment | Without formal education | 8 | 0.5 |
Elementary school | 70 | 4.5 | |
Middle school | 257 | 16.3 | |
High school/Professional school | 699 | 44.5 | |
Post-secondary school | 155 | 9.9 | |
University | 330 | 21.0 | |
Missing/Not wanting to respond | 53 | 3.4 | |
Job status | Worker | 699 | 44.5 |
Job-seeking unemployed | 46 | 2.9 | |
Pension or on social welfare | 675 | 42.9 | |
Student | 61 | 3.9 | |
Homemaker | 87 | 5.5 | |
Missing/Not wanting to respond | 4 | 0.3 | |
Parental status | Parent | 1276 | 81.2 |
Non-parent | 296 | 18.8 | |
Marital status | Currently married | 1079 | 68.6 |
Never married | 203 | 12.9 | |
Widowed | 226 | 14.4 | |
Separated or divorced | 45 | 2.9 | |
Cohabiting | 15 | 1.0 | |
Missing/Not wanting to respond | 4 | 0.3 |
Variables | Fruit & Vegetables <5 Portions/Day | Fish & Seafood <1 Portion/Week | Water <1.5 Litters/Day | ||||
---|---|---|---|---|---|---|---|
n (%) | OR (95% CI) | n (%) | OR (95% CI) | n (%) | OR (95% CI) | ||
Gender | Female | 804 (82.5) | Ref. | 621 (63.8) | Ref. | 662 (68.0) | Ref. |
Male | 508 (84.9) | 1.19 (0.90–1.57) | 342 (57.2) | 0.75 (0.61–0.93) ** | 406 (67.9) | 0.99 (0.80, 1.24) | |
Residence | Urban | 626 (85.1) | Ref. | 413 (56.1) | Ref. | 509 (69.2) | Ref. |
Rural | 684 (82.1) | 1.24 (0.94, 1.62) | 547 (65.7) | 1.49 (1.22, 1.83) *** | 557 (66.9) | 0.90 (0.72, 1.11) | |
Educational attainment | Finished high school | 996 (84.1) | Ref. | 677 (57.2) | Ref. | 781 (66.0) | Ref. |
Not finished high school | 269 (80.3) | 1.30 (0.95, 1.77) | 246 (73.4) | 2.07 (1.58, 2.70) *** | 241 (71.9) | 1.32 (1.01, 1.72) * | |
Marital status | Married/Cohabiting | 917 (83.8) | Ref. | 643 (58.8) | Ref. | 738 (67.5) | Ref. |
Never married | 147 (85.0) | 1.09 (0.69, 1.70) | 112 (64.7) | 1.28 (0.92, 1.79) | 117 (67.6) | 1.00 (0.71, 1.42) | |
Formerly married | 248 (81.3) | 0.84 (0.60, 1.16) | 208 (68.2) | 1.50 (1.14, 1.96) *** | 213 (69.8) | 1.11 (0.84, 1.47) | |
Parental status | Non-parent | 252 (83.1) | Ref. | 185 (62.5) | Ref. | 196 (66.2) | Ref. |
Parent | 1060 (85.1) | 0.85 (0.60, 1.21) | 778 (61.0) | 1.06 (0.82, 1.38) | 872 (68.3) | 0.90 (0.69, 1.18) | |
Labour Market status | Worker | 612 (87.6) | Ref. | 397 (56.8) | Ref. | 461 (66.0) | Ref. |
Job-seeking unemployed | 34 (73.9) | 0.40 (0.20, 0.80) ** | 30 (65.2) | 1.42 (0.76, 2.66) | 35 (76.1) | 1.64 (0.82, 3.29) | |
Retired/Social welfare | 534 (79.1) | 0.53 (0.40, 0.72) *** | 431 (63.9) | 1.34 (1.08, 1.66) ** | 475 (70.4) | 1.22 (0.97, 1.53) | |
Student | 56 (91.8) | 1.59 (0.62, 4.08) | 45 (73.8) | 2.13 (1.18, 3.85) * | 43 (70.5) | 1.23 (0.69, 2.18) | |
Homemaker | 74 (85.1) | 0.80 (0.43, 1.52) | 57 (65.5) | 1.44 (0.90, 2.30) | 50 (57.5) | 0.69 (0.44, 1.09) | |
Age | Years (continuous) | −3.25 (−1.02, −5.49) | 0.98 (0.98, 0.99) ** | 0.69 (−1.01, 2.40) | 1.00 (0.99, 1.00) | 1.96 (0.18, 3.75) | 1.00 (1.00, 1.01) * |
Health Literacy | Score (continuous) | −0.14 (−0.73, 1.01) | 0.99 (0.97–1.01) | −0.72 (−1.38, −0.05) | 0.98 (0.96, 0.99) * | −0.80 (−1.49, −0.10) | 0.98 (0.96, 0.99) * |
Self-rated health | Moderate/Good | 1125 (83.9) | Ref. | 812 (60.6) | Ref. | 889 (66.3) | Ref. |
Poor | 187 (81.0) | 0.81 (0.57–1.16) | 151 (65.4) | 1.23 (0.91–1.64) | 179 (77.5) | 1.75 (1.26, 2.43) *** | |
Longstanding illnesses | No | 716 (85.7) | Ref. | 514 (61.6) | Ref. | 570 (68.3) | Ref. |
Yes | 591 (80.7) | 0.69 (0.53–0.91) ** | 447 (61.1) | 1.02 (0.83–1.25) | 493 (67.3) | 0.95 (0.77, 1.18) |
Variables | Low Understanding of the Connection between Nutrition & Health | Low Ability to Distinguish between Healthy & Less Healthy Options | Low Ability to Acquire Information about Nutrition | ||||
---|---|---|---|---|---|---|---|
n (%) | OR (95% CI) | n (%) | OR (95% CI) | n (%) | OR (95% CI) | ||
Gender | Female | 86 (8.9) | Ref. | 118 (12.2) | Ref. | 225 (23.1) | Ref. |
Male | 69 (11.6) | 1.35 (0.96, 1.89) | 117 (19.6) | 1.76 (1.33, 2.32) *** | 144 (24.2) | 1.05 (0.83, 1.34) | |
Residence | Urban | 56 (7.6) | Ref. | 123 (16.8) | Ref. | 150 (20.4) | Ref. |
Rural | 97 (11.7) | 1.60 (1.13, 2.26) ** | 110 (13.2) | 0.75 (0.57, 1.00) | 217 (26.1) | 1.37 (1.08, 1.74) ** | |
Educational attainment | Finished high school | 91 (7.7) | Ref. | 166 (14.1) | Ref. | 221 (18.7) | Ref. |
Incomplete high school | 60 (18.1) | 2.64 (1.85, 3.75) *** | 58 (17.4) | 1.28 (0.92, 1.78) | 128 (38.2) | 2.68 (2.06, 3.49) *** | |
Marital status | Married/Cohabiting | 102 (9.4) | Ref. | 159 (14.6) | Ref. | 232 (21.3) | Ref. |
Never married | 8 (4.6) | 0.46 (0.22, 0.98) * | 25 (14.5) | 0.98 (0.62, 1.56) | 24 (13.9) | 0.59 (0.37–0.84) * | |
Formerly married | 45 (14.8) | 1.68 (1.15, 2.44) ** | 51 (16.7) | 1.17 (0.83, 1.65) | 113 (37.0) | 2.17 (1.65–2.86) *** | |
Parental status | Non-parent | 18 (6.1) | Ref. | 35 (11.8) | Ref. | 52 (17.6) | Ref. |
Parent | 137 (10.8) | 1.86 (1.12, 3.10) * | 200 (15.7) | 1.39 (0.94, 2.04) | 317 (24.9) | 1.55 (1.12, 2.15) ** | |
Labor Market status | Worker | 56 (8.0) | Ref. | 95 (13.6) | Ref. | 118 (17.0) | Ref. |
Job-seeking unemployed | 7 (15.2) | 2.05 (0.87, 4.78) | 8 (17.4) | 1.33 (0.60, 2.94) | 10 (21.7) | 1.36 (0.65, 2.81) | |
Retired/social welfare | 82 (12.2) | 1.59 (1.11, 2.27) * | 116 (17.2) | 1.32 (0.98, 1.77) | 214 (31.7) | 2.27 (1.76, 2.93) *** | |
Student | 1 (1.6) | 0.19 (0.02, 1.40) | 7 (11.5) | 0.82 (0.36, 1.85) | 5 (8.2) | 0.43 (0.17, 1.11) | |
Homemaker | 8 (9.2) | 1.15 (0.53, 2.51) | 9 (10.3) | 0.73 (0.35, 1.50) | 22 (25.3) | 1.65 (0.98, 2.79) | |
Age | Years (continuous) | 6.09 (3.31, 8.87) | 1.02 (1.01, 1.03) *** | 2.45 (0.12, 4.79) | 1.00 (1.00, 1.01) * | 8.11 (6.19, 10.04) | 1.03 (1.02, 1.03) *** |
Health Literacy | Score (continuous) | −6.48 (−7.52, −5.44) | 0.84 (0.82, 0.87) *** | −4.52 (−5.41, −3.64) | 0.89 (0.87, 0.91) *** | −5.74 (−6.45, −5.02) | 0.85 (0.83, 0.87) *** |
Self-rated health | Moderate/Good | 123 (9.2) | Ref. | 186 (13.9) | Ref. | 270 (20.2) | Ref. |
Poor | 32 (13.9) | 1.59 (1.05, 2.41) * | 49 (21.3) | 1.67 (1.18, 2.38) ** | 99 (42.9) | 2.96 (2.21, 3.97) *** | |
Longstanding illnesses | No | 75 (9.0) | Ref. | 116 (13.9) | Ref. | 160 (19.2) | Ref. |
Yes | 80 (11.0) | 0.79 (0.57, 1.11) | 119 (16.3) | 0.83 (0.62, 1.09) | 209 (28.7) | 1.69 (1.34, 2.14) ** |
Variables | n (%) | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|---|
(1) Low understanding of the connection between nutrition and health | 155 (9.9) | 1 | |||||||
(2) Low ability to distinguish between healthy and less healthy options | 235 (14.9) | −0.257 ** | 1 | ||||||
(3) Low ability to acquire information about nutrition | 369 (23.5) | 0.199 ** | 0.312 ** | 1 | |||||
(4) Intake of fruit and vegetables < 5 portions/day | 1312 (83.5) | 0.010 | 0.005 | 0.021 | 1 | ||||
(5) Intake of fish and seafood products < 1 portion/week | 963 (61.3) | 0.031 | 0.008 | 0.093 ** | 0.008 | 1 | |||
(6) Intake of water < 1.5 litters/day | 1068 (67.9) | 0.008 | 0.044 | 0.043 | 0.109 ** | 0.089 ** | 1 | ||
(7) Health literacy score | 49.68 (6.58) | −0.271 ** | −0.234 ** | −0.361 ** | −0.007 | 0.053 * | −0.067 * | 1 | |
(8) Poor self-rated health | 231 (14.7) | 0.056 * | 0.073 ** | 0.189 ** | −0.028 | 0.035 | 0.085 ** | −0.174 ** | 1 |
(9) Living with a longstanding illness | 732 (46.6) | 0.034 | 0.033 | 0.112 ** | −0.067 ** | −0.005 | −0.010 | −0.141 ** | 0.345 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forray, A.I.; Coman, M.A.; Cherecheș, R.M.; Borzan, C.M. Exploring the Impact of Sociodemographic Characteristics and Health Literacy on Adherence to Dietary Recommendations and Food Literacy. Nutrients 2023, 15, 2853. https://doi.org/10.3390/nu15132853
Forray AI, Coman MA, Cherecheș RM, Borzan CM. Exploring the Impact of Sociodemographic Characteristics and Health Literacy on Adherence to Dietary Recommendations and Food Literacy. Nutrients. 2023; 15(13):2853. https://doi.org/10.3390/nu15132853
Chicago/Turabian StyleForray, Alina Ioana, Mădălina Adina Coman, Răzvan Mircea Cherecheș, and Cristina Maria Borzan. 2023. "Exploring the Impact of Sociodemographic Characteristics and Health Literacy on Adherence to Dietary Recommendations and Food Literacy" Nutrients 15, no. 13: 2853. https://doi.org/10.3390/nu15132853
APA StyleForray, A. I., Coman, M. A., Cherecheș, R. M., & Borzan, C. M. (2023). Exploring the Impact of Sociodemographic Characteristics and Health Literacy on Adherence to Dietary Recommendations and Food Literacy. Nutrients, 15(13), 2853. https://doi.org/10.3390/nu15132853