Sirtuin 1 and Vascular Function in Healthy Women and Men: A Randomized Clinical Trial Comparing the Effects of Energy Restriction and Resveratrol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Biochemical Analysis
2.3. Sirtuin 1 Assessment
2.4. Resveratrol Purity and Formulation Analysis
2.5. Vascular Reactivity Assessment
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Prim. 2019, 5, 56. [Google Scholar] [CrossRef]
- Gutiérrez, E.; Flammer, A.J.; Lerman, L.O.; Elízaga, J.; Lerman, A.; Francisco, F.A. Endothelial dysfunction over the course of coronary artery disease. Eur. Heart J. 2013, 34, 3175–3181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widlansky, M.E.; Gokce, N.; Keaney, J.F.; Vita, J.A. The clinical implications of endothelial dysfunction. J. Am. Coll. Cardiol. 2003, 42, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higashi, Y. Assessment of endothelial function: History, methodological aspects, and clinical perspectives. Int. Heart J. 2015, 56, 125–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gokce, N.; Keaney, J.F.; Hunter, L.M.; Watkins, M.T.; Nedeljkovic, Z.S.; Menzoian, J.O.; Vita, J.A. Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J. Am. Coll. Cardiol. 2003, 41, 1769–1775. [Google Scholar] [CrossRef] [Green Version]
- Lind, L.; Fors, N.; Hall, J.; Marttala, K.; Stenborg, A. A comparison of three different methods to evaluate endothelium-dependent vasodilation in the elderly: The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2368–2375. [Google Scholar] [CrossRef] [Green Version]
- Chan, N.N.; Colhoun, H.M.; Vallance, P. Cardiovascular risk factors as determinants of endothelium-dependent and endothelium-independent vascular reactivity in the general population. J. Am. Coll. Cardiol. 2001, 38, 1814–1820. [Google Scholar] [CrossRef] [Green Version]
- Elbendary, M.A.W.; Saleh, M.A.; Sabet, S.S.; Bastawy, I. Correlation between endothelial dysfunction and occurrence of no-reflow in patients undergoing post-thrombolysis early invasive percutaneous intervention for ST-elevation myocardial infarction. Egypt. Heart J. 2022, 74, 70. [Google Scholar] [CrossRef]
- Hijmering, M.L.; Stroes, E.S.G.; Olijhoek, J.; Hutten, B.A.; Blankestijn, P.J.; Rabelink, T.J. Sympathetic activation markedly reduces endothelium-dependent, flow-mediated vasodilation. J. Am. Coll. Cardiol. 2002, 39, 683–688. [Google Scholar] [CrossRef] [Green Version]
- Santulli, G.; Iaccarino, G. Adrenergic signaling in heart failure and cardiovascular aging. Maturitas 2016, 93, 65–72. [Google Scholar] [CrossRef] [Green Version]
- de Lucia, C.; Piedepalumbo, M.; Paolisso, G.; Koch, W.J. Sympathetic nervous system in age-related cardiovascular dysfunction: Pathophysiology and therapeutic perspective. Int. J. Biochem. Cell Biol. 2019, 108, 29–33. [Google Scholar] [CrossRef]
- Ziegler, M.G.; Lake, C.R.; Kopin, I.J. Plasma noradrenaline increases with age. Nature 1976, 261, 333–335. [Google Scholar] [CrossRef]
- Emdin, M.; Gastaldelli, A.; Muscelli, E.; Macerata, A.; Natali, A.; Camastra, S.; Ferrannini, E. Hyperinsulinemia and autonomic nervous system dysfunction in obesity: Effects of weight loss. Circulation 2001, 103, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Cohn, J.N.; Levine, T.B.; Olivari, M.T.; Garberg, V.; Lura, D.; Francis, G.S.; Simon, A.B.; Rector, T. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 1984, 311, 819–823. [Google Scholar] [CrossRef] [Green Version]
- Zbroch, E.; Musialowska, D.; Koc-Zorawska, E.; Malyszko, J. Age influence on renalase and catecholamines concentration in hypertensive patients, including maintained dialysis. Clin. Interv. Aging 2016, 11, 1545–1550. [Google Scholar] [CrossRef] [Green Version]
- Park, C.S.; Lee, H.Y. Clinical utility of sympathetic blockade in cardiovascular disease management. Expert Rev. Cardiovasc. Ther. 2017, 15, 277–288. [Google Scholar] [CrossRef]
- Nogueiras, R.; Habegger, K.M.; Chaudhary, N.; Finan, B.; Banks, A.S.; Dietrich, M.O.; Horvath, T.L.; Sinclair, D.A.; Pfluger, P.T.; Tschöp, M.H. Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism. Physiol. Rev. 2012, 92, 1479–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potente, M.; Dimmeler, S. NO targets SIRT1: A novel signaling network in endothelial senescence. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1577–1579. [Google Scholar] [CrossRef] [Green Version]
- Kane, A.E.; Sinclair, D.A. Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases. Circ. Res. 2018, 123, 868–885. [Google Scholar] [CrossRef] [PubMed]
- Libert, S.; Pointer, K.; Bell, E.L.; Das, A.; Cohen, D.E.; Asara, J.M.; Kapur, K.; Bergmann, S.; Preisig, M.; Otowa, T.; et al. SIRT1 Activates MAO-A in the Brain to Mediate Anxiety and Exploratory Drive. Cell 2011, 147, 1459–1472. [Google Scholar] [CrossRef] [Green Version]
- Leal, D.P.; Gonçalinho, G.H.F.; Tavoni, T.M.; Kuwabara, K.L.; Paccanaro, A.P.; Freitas, F.R.; Strunz, C.M.C.; César, L.A.M.; Maranhão, R.C.; Mansur, A.D.P. The Interplay of Sirtuin-1, LDL-Cholesterol, and HDL Function: A Randomized Controlled Trial Comparing the Effects of Energy Restriction and Atorvastatin on Women with Premature Coronary Artery Disease. Antioxidants 2022, 11, 2363. [Google Scholar] [CrossRef]
- Cantó, C.; Auwerx, J. Caloric restriction, SIRT1 and longevity. Trends Endocrinol. Metab. 2009, 20, 325–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalinho, G.H.F.; Nascimento, J.R.d.O.; Mioto, B.M.; Amato, R.V.; Moretti, M.A.; Strunz, C.M.C.; César, L.A.M.; Mansur, A.d.P. Effects of Coffee on Sirtuin-1, Homocysteine, and Cholesterol of Healthy Adults: Does the Coffee Powder Matter? J. Clin. Med. 2022, 11, 2985. [Google Scholar] [CrossRef]
- Chaudhary, N.; Pfluger, P.T. Metabolic benefits from Sirt1 and Sirt1 activators. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 431–437. [Google Scholar] [CrossRef]
- Pastor, R.F.; Restani, P.; Di Lorenzo, C.; Orgiu, F.; Teissedre, P.L.; Stockley, C.; Ruf, J.C.; Quini, C.I.; Garcìa Tejedor, N.; Gargantini, R.; et al. Resveratrol, human health and winemaking perspectives. Crit. Rev. Food Sci. Nutr. 2019, 59, 1237–1255. [Google Scholar] [CrossRef]
- Bonnefont-Rousselot, D. Resveratrol and cardiovascular diseases. Nutrients 2016, 8, 250. [Google Scholar] [CrossRef]
- Mansur, A.P.; Roggerio, A.; Goes, M.F.S.; Avakian, S.D.; Leal, D.P.; Maranhão, R.C.; Strunz, C.M.C. Serum concentrations and gene expression of sirtuin 1 in healthy and slightly overweight subjects after caloric restriction or resveratrol supplementation: A randomized trial. Int. J. Cardiol. 2017, 227, 788–794. [Google Scholar] [CrossRef]
- Gonçalinho, G.H.F.; Roggerio, A.; Goes, M.F.d.S.; Avakian, S.D.; Leal, D.P.; Strunz, C.M.C.; Mansur, A.d.P. Comparison of Resveratrol Supplementation and Energy Restriction Effects on Sympathetic Nervous System Activity and Vascular Reactivity: A Randomized Clinical Trial. Molecules 2021, 26, 3168. [Google Scholar] [CrossRef]
- Davies, C.L.; Molyneux, S.G. Routine determination of plasma catecholamines using reversed-phase, ion-pair high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B Biomed. Sci. Appl. 1982, 231, 41–51. [Google Scholar] [CrossRef]
- Corretti, M.C.; Anderson, T.J.; Benjamin, E.J.; Celermajer, D.; Charbonneau, F.; Creager, M.A.; Deanfield, J.; Drexler, H.; Gerhard-Herman, M.; Herrington, D.; et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: A report of the international brachial artery reactivity task force. J. Am. Coll. Cardiol. 2002, 39, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Weindruch, R.; Walford, R.L. Dietary restriction in mice beginning at 1 year of age: Effects on life-span and spontaneous cancer incidence. Science 1982, 215, 1415–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraus, W.E.; Bhapkar, M.; Huffman, K.M.; Pieper, C.F.; Krupa Das, S.; Redman, L.M.; Villareal, D.T.; Rochon, J.; Roberts, S.B.; Ravussin, E.; et al. 2 years of calorie restriction and cardiometabolic risk (CALERIE): Exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol. 2019, 7, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Ravussin, E.; Redman, L.M.; Rochon, J.; Das, S.K.; Fontana, L.; Kraus, W.E.; Romashkan, S.; Williamson, D.A.; Meydani, S.N.; Villareal, D.T.; et al. A 2-year randomized controlled trial of human caloric restriction: Feasibility and effects on predictors of health span and longevity. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2015, 70, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.J.; Zhang, T.N.; Chen, H.H.; Yu, X.F.; Lv, J.L.; Liu, Y.Y.; Liu, Y.S.; Zheng, G.; Zhao, J.Q.; Wei, Y.F.; et al. The sirtuin family in health and disease. Signal Transduct. Target. Ther. 2022, 7, 402. [Google Scholar] [CrossRef] [PubMed]
- Asghari, S.; Asghari-Jafarabadi, M.; Somi, M.H.; Ghavami, S.M.; Rafraf, M. Comparison of Calorie-Restricted Diet and Resveratrol Supplementation on Anthropometric Indices, Metabolic Parameters, and Serum Sirtuin-1 Levels in Patients with Nonalcoholic Fatty Liver Disease: A Randomized Controlled Clinical Trial. J. Am. Coll. Nutr. 2018, 37, 223–233. [Google Scholar] [CrossRef]
- Heebøll, S.; Kreuzfeldt, M.; Hamilton-Dutoit, S.; Kjær Poulsen, M.; Stødkilde-Jørgensen, H.; Møller, H.J.; Jessen, N.; Thorsen, K.; Kristina Hellberg, Y.; Bønløkke Pedersen, S.; et al. Placebo-controlled, randomised clinical trial: High-dose resveratrol treatment for non-alcoholic fatty liver disease. Scand. J. Gastroenterol. 2016, 51, 456–463. [Google Scholar] [CrossRef]
- Chachay, V.S.; Macdonald, G.A.; Martin, J.H.; Whitehead, J.P.; O’Moore-Sullivan, T.M.; Lee, P.; Franklin, M.; Klein, K.; Taylor, P.J.; Ferguson, M.; et al. Resveratrol Does Not Benefit Patients with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2014, 12, 2092–2103. [Google Scholar] [CrossRef] [Green Version]
- Ruderman, N.B.; Xu, X.J.; Nelson, L.; Cacicedo, J.M.; Saha, A.K.; Lan, F.; Ido, Y. AMPK and SIRT1: A long-standing partnership? Am. J. Physiol.—Endocrinol. Metab. 2010, 298, E751–E760. [Google Scholar] [CrossRef]
- Bo, S.; Togliatto, G.; Gambino, R.; Ponzo, V.; Lombardo, G.; Rosato, R.; Cassader, M.; Brizzi, M.F. Impact of sirtuin-1 expression on H3K56 acetylation and oxidative stress: A double-blind randomized controlled trial with resveratrol supplementation. Acta Diabetol. 2018, 55, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Grootaert, M.O.J.; Bennett, M.R. Sirtuins in atherosclerosis: Guardians of healthspan and therapeutic targets. Nat. Rev. Cardiol. 2022, 19, 668–683. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Wang, Y.; Chao, Y.; Zhang, J.; Jia, Y.; Tie, J.; Hu, D. Regulation of SIRT1 and Its Roles in Inflammation. Front. Immunol. 2022, 13, 831168. [Google Scholar] [CrossRef]
- Marchio, P.; Guerra-Ojeda, S.; Vila, J.M.; Aldasoro, M.; Victor, V.M.; Mauricio, M.D. Targeting early atherosclerosis: A focus on oxidative stress and inflammation. Oxid. Med. Cell Longev. 2019, 2019, 8563845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlachopoulos, C.; Xaplanteris, P.; Aboyans, V.; Brodmann, M.; Cífková, R.; Cosentino, F.; De Carlo, M.; Gallino, A.; Landmesser, U.; Laurent, S.; et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation. Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY. Atherosclerosis 2015, 241, 507–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruhashi, T.; Kajikawa, M.; Kishimoto, S.; Hashimoto, H.; Takaeko, Y.; Yamaji, T.; Harada, T.; Han, Y.; Aibara, Y.; Mohamad Yusoff, F.; et al. Diagnostic Criteria of Flow-Mediated Vasodilation for Normal Endothelial Function and Nitroglycerin-Induced Vasodilation for Normal Vascular Smooth Muscle Function of the Brachial Artery. J. Am. Heart Assoc. 2020, 9, e013915. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, M.J.; Kruse, L.D.; Sanchez-Rivera, L.; Enge, L.; Dusart, P.; Hong, M.G.; Uhlén, M.; Renné, T.; Schwenk, J.M.; Bergstrom, G.; et al. Identification of Endothelial Proteins in Plasma Associated with Cardiovascular Risk Factors. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2990–3004. [Google Scholar] [CrossRef]
- Guo, J.M.; Shu, H.; Wang, L.; Xu, J.J.; Niu, X.C.; Zhang, L. SIRT1-dependent AMPK pathway in the protection of estrogen against ischemic brain injury. CNS Neurosci. Ther. 2017, 23, 360–369. [Google Scholar] [CrossRef] [Green Version]
- Shen, T.; Ding, L.; Ruan, Y.; Qin, W.; Lin, Y.; Xi, C.; Lu, Y.; Dou, L.; Zhu, Y.; Cao, Y.; et al. SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection in Angiotensin Ii-induced heart hypertrophy. Oxid. Med. Cell Longev. 2014, 2014, 713894. [Google Scholar] [CrossRef] [Green Version]
- Mansur, A.d.P.; Del Carlo, C.H.; Gonçalinho, G.H.F.; Avakian, S.D.; Ribeiro, L.C.; Ianni, B.M.; Fernandes, F.; César, L.A.M.; Bocchi, E.A.; Pereira-Barretto, A.C. Sex Differences in Heart Failure Mortality with Preserved, Mildly Reduced and Reduced Ejection Fraction: A Retrospective, Single-Center, Large-Cohort Study. Int. J. Environ. Res. Public Health 2022, 19, 16171. [Google Scholar] [CrossRef]
- Mansur, A.P.; Pereira-Barretto, A.C.; del Carlo, C.H.; Ianni, B.M.; Avakian, S.D.; Gonçalinho, G.H.F.; Nakagawa, N.K.; César, L.A.M.; Bocchi, E.A. Sex Differences in Prognosis of Heart Failure Due to Chronic Chagas. JACC Heart Fail. 2023, in press. [CrossRef]
- De Arellano, M.L.B.; Pozdniakova, S.; Kühl, A.A.; Baczko, I.; Ladilov, Y.; Regitz-Zagrosek, V. Sex differences in the aging human heart: Decreased sirtuins, proinflammatory shift and reduced anti-oxidative defense. Aging 2019, 11, 1918–1933. [Google Scholar] [CrossRef]
- Ryan, A.S.; Li, G. Sex differences in muscle SIRT1 and SIRT3 and exercise + weight loss effects on muscle sirtuins. Exp. Biol. Med. 2023, 248, 302–308. [Google Scholar] [CrossRef]
- Opstad, T.B.; Sundfør, T.; Tonstad, S.; Seljeflot, I. Effect of intermittent and continuous caloric restriction on Sirtuin1 concentration depends on sex and body mass index. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1871–1878. [Google Scholar] [CrossRef]
- Ras, R.T.; Streppel, M.T.; Draijer, R.; Zock, P.L. Flow-mediated dilation and cardiovascular risk prediction: A systematic review with meta-analysis. Int. J. Cardiol. 2013, 168, 344–351. [Google Scholar] [CrossRef]
- Hashimoto, M.; Akishita, M.; Eto, M.; Ishikawa, M.; Kozaki, K.; Toba, K.; Sagara, Y.; Taketani, Y.; Orimo, H.; Ouchi, Y. Modulation of Endothelium-Dependent Flow-Mediated Dilatation of the Brachial Artery by Sex and Menstrual Cycle. Circulation 1995, 92, 3431–3435. [Google Scholar] [CrossRef]
- Thijssen, D.H.J.; Bruno, R.M.; Van Mil, A.C.C.M.; Holder, S.M.; Faita, F.; Greyling, A.; Zock, P.L.; Taddei, S.; Deanfield, J.E.; Luscher, T.; et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J. 2019, 40, 2534–2547. [Google Scholar] [CrossRef]
- Schächinger, V.; Britten, M.B.; Zeiher, A.M. Prognostic impact of coronary vasodilator dysfunction on adverse long- term outcome of coronary heart disease. Circulation 2000, 101, 1899–1906. [Google Scholar] [CrossRef] [Green Version]
- Fontes-Guerra, P.C.A.; Cardoso, C.R.L.; Muxfeldt, E.S.; Salles, G.F. Nitroglycerin-mediated, but not flow-mediated vasodilation, is associated with blunted nocturnal blood pressure fall in patients with resistant hypertension. J. Hypertens. 2015, 33, 1666–1675. [Google Scholar] [CrossRef]
- Kullo, I.J.; Malik, A.R.; Bielak, L.F.; Sheedy, P.F.; Turner, S.T.; Peyser, P.A. Brachial artery diameter and vasodilator response to nitroglycerine, but not flow-mediated dilatation, are associated with the presence and quantity of coronary artery calcium in asymptomatic adults. Clin. Sci. 2007, 112, 175–182. [Google Scholar] [CrossRef]
- Malik, A.R.; Sultan, S.; Turner, S.T.; Kullo, I.J. Urinary albumin excretion is associated with impaired flow- and nitroglycerin-mediated brachial artery dilatation in hypertensive adults. J. Hum. Hypertens. 2007, 21, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Akamatsu, D.; Sato, A.; Goto, H.; Watanabe, T.; Hashimoto, M.; Shimizu, T.; Sugawara, H.; Sato, H.; Nakano, Y.; Miura, T.; et al. Nitroglycerin-mediated vasodilatation of the brachial artery may predict long-term cardiovascular events irrespective of the presence of atherosclerotic disease. J. Atheroscler. Thromb. 2010, 17, 1266–1274. [Google Scholar] [CrossRef] [Green Version]
- Maruhashi, T.; Soga, J.; Fujimura, N.; Idei, N.; Mikami, S.; Iwamoto, Y.; Kajikawa, M.; Matsumoto, T.; Hidaka, T.; Kihara, Y.; et al. Nitroglycerine-induced vasodilation for assessment of vascular function: A comparison with flow-mediated vasodilation. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1401–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyazaki, R.; Ichiki, T.; Hashimoto, T.; Inanaga, K.; Imayama, I.; Sadoshima, J.; Sunagawa, K. SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1263–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorenne, I.; Kumar, S.; Gray, K.; Figg, N.; Yu, H.; Mercer, J.; Bennett, M. Vascular smooth muscle cell sirtuin 1 protects against dna damage and inhibits atherosclerosis. Circulation 2013, 127, 386–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takemura, A.; Iijima, K.; Ota, H.; Son, B.K.; Ito, Y.; Ogawa, S.; Eto, M.; Akishita, M.; Ouchi, Y. Sirtuin 1 retards hyperphosphatemia-induced calcification of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2054–2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.Z.; Wang, F.; Gao, P.; Pei, J.F.; Liu, Y.; Xu, T.T.; Tang, X.; Fu, W.Y.; Lu, J.; Yan, Y.F.; et al. Age-Associated Sirtuin 1 Reduction in Vascular Smooth Muscle Links Vascular Senescence and Inflammation to Abdominal Aortic Aneurysm. Circ. Res. 2016, 119, 1076–1088. [Google Scholar] [CrossRef]
- Chao, Y.M.; Wu, K.L.H.; Tsai, P.C.; Tain, Y.L.; Leu, S.; Lee, W.C.; Chan, J.Y.H. Anomalous AMPK-regulated angiotensin AT1R expression and SIRT1-mediated mitochondrial biogenesis at RVLM in hypertension programming of offspring to maternal high fructose exposure. J. Biomed. Sci. 2020, 27, 68. [Google Scholar] [CrossRef]
- Sahebkar, A.; Serban, C.; Ursoniu, S.; Wong, N.D.; Muntner, P.; Graham, I.M.; Mikhailidis, D.P.; Rizzo, M.; Rysz, J.; Sperling, L.S.; et al. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors—Results from a systematic review and meta-analysis of randomized controlled trials. Int. J. Cardiol. 2015, 189, 47–55. [Google Scholar] [CrossRef]
- Esler, M.D.; Hasking, G.J.; Willett, I.R.; Leonard, P.W.; Jennings, G.L. Noradrenaline Release and Sympathetic Nervous System Activity. J. Hypertens. 1985, 3, 117–129. [Google Scholar] [CrossRef]
- Das, A.; Huang, G.X.; Bonkowski, M.S.; Longchamp, A.; Li, C.; Schultz, M.B.; Kim, L.J.; Osborne, B.; Joshi, S.; Lu, Y.; et al. Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging. Cell 2018, 173, 74–89.e20. [Google Scholar] [CrossRef] [Green Version]
Variables | Resveratrol | Energy Restriction | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | Post-Treatment | p * | Baseline | Post-Treatment | p * | Baseline p ** | |||||
n = 24 | n = 24 | n = 24 | n = 24 | ||||||||
Median | (IQR) | Median | (IQR) | Median | (IQR) | Median | (IQR) | ||||
Clinical characteristics | |||||||||||
Age, y | 58.0 (56.0–61.0) | N/A | 59.0 (55.25–60.75) | N/A | 0.764 | ||||||
Women, n | 12 (50%) | N/A | 12 (50%) | N/A | N/A | ||||||
Weight, kg | 78.4 | (63.4–91.8) | 79.9 | (63.0–92.4) | 0.569 | 71.0 | (62.0–83.5) | 70.4 | (60.5–81.3) | 0.020 | 0.210 |
Body mass index, kg/m2 | 26.5 | (24.8–30.7) | 26.7 | (24.8–31.1) | 0.587 | 25.9 | (23.4–27.9) | 25.5 | (23.0–27.6) | 0.011 | 0.165 |
Waist circumference, cm | 93.5 | (87.5–105.0) | 94.0 | (88.5–107.3) | 0.793 | 92.5 | (88.8–100.3) | 91.5 | (84.8–97.3) | 0.010 | 0.664 |
Heart rate, bpm | 64.0 | (59.0–71.0) | 65.5 | (61.0–70.0) | 0.379 | 62.5 | (54.0–71.0) | 64.0 | (53.3–70.0) | 0.968 | 0.674 |
SBP, mmHg | 130.5 | (122.0–143.5) | 133.0 | (113.5–142.0) | 0.681 | 132.5 | (112.8–138.3) | 122.0 | (117.0–131.8) | 0.188 | 0.991 |
DBP, mmHg | 80.0 | (73.8–86.5) | 83.0 | (74.5–89.0) | 0.614 | 83.0 | (72.8–92.0) | 77.5 | (72.0–84.3) | 0.091 | 0.700 |
Biochemical characteristics | |||||||||||
Total cholesterol, mg/dL | 202.0 | (185.5–226.8) | 215.5 | (177.8–245.3) | 0.030 | 211.0 | (190.8–245.3) | 201.0 | (176.3–231.0) | 0.011 | 0.421 |
HDL–c, mg/dL | 48.0 | (38.8–57.0) | 46.5 | (37.3–57.0) | 0.329 | 50.5 | (42.5–63.8) | 52.0 | (39.8–59.5) | 0.013 | 0.293 |
LDL–c, mg/dL | 130.5 | (111.5–149.5) | 149.0 | (98.3–165.3) | 0.095 | 143.5 | (108.0–158.8) | 133.0 | (99.3–160.5) | 0.034 | 0.433 |
Triglycerides, mg/dL | 110.0 | (68.8–177.8) | 128.0 | (81.5–186.0) | 0.170 | 94.5 | (72.5–128.0) | 82.0 | (56.8–116.8) | 0.074 | 0.557 |
Apoliproprotein A–I, g/L | 1.49 | (1.29–1.62) | 1.37 | (1.25–1.62) | 0.678 | 1.45 | (1.35–1.73) | 1.38 | (1.23–1.57) | 0.019 | 0.523 |
Apolipoprotein B, g/L | 0.92 | (0.83–1.10) | 1.00 | (0.92–1.17) | 0.029 | 0.99 | (0.79–1.21) | 0.96 | (0.74–1.08) | 0.052 | 0.657 |
Lp(a), mg/dL | 10.9 | (3.2–25.1) | 9.7 | (2.8–21.6) | 0.362 | 12.0 | (5.4–37.4) | 14.6 | (6.7–35.1) | 0.498 | 0.523 |
Glucose, mg/dL | 93.0 | (84.3–108.0) | 96.0 | (87.3–107.0) | 0.201 | 92.5 | (86.0–99.0) | 90.0 | (84.8–93.8) | 0.187 | 0.749 |
Insulin, µUI/mL | 6.4 | (5.0–10.6) | 7.8 | (5.3–9.1) | 0.378 | 5.0 | (3.6–8.3) | 5.7 | (2.8–8.3) | 0.513 | 0.180 |
NEFA, mEq/dL | 0.21 | (0.15–0.34) | 0.25 | (0.16–0.30) | 0.909 | 0.20 | (0.09–0.42) | 0.19 | (0.04–0.29) | 0.330 | 0.676 |
hs–CRP, mg/L | 1.81 | (0.81–3.00) | 1.46 | (0.70–2.81) | 0.904 | 1.36 | (0.79–2.27) | 1.18 | (0.77–2.21) | 0.131 | 0.645 |
Noradrenaline, pg/dL | 256.0 | (183.8–305.5) | 228.5 | (148.3–267.5) | 0.037 | 322.5 | (220.0–434.0) | 190.0 | (117.0–414.8) | 0.008 | 0.078 |
Sirtuin 1 | |||||||||||
Circulating sirtuin 1, ng/mL | 0.78 | (0.78–0.92) | 6.90 | (3.03–7.79) | <0.001 | 0.78 | (0.78–1.88) | 6.13 | (4.21–7.63) | <0.001 | 0.349 |
Sirtuin 1 expression, AU | 10.70 | (9.80–12.40) | 11.40 | (10.68–12.22) | 0.931 | 11.13 | (10.17–12.09) | 10.76 | (8.98–12.42) | 0.289 | 0.981 |
Vascular reactivity | |||||||||||
Artery diameter, mm | 4.20 | (3.90–4.70) | 4.00 | (3.70–5.00) | 0.943 | 4.50 | (3.70–5.30) | 4.30 | (3.70–5.40) | 0.682 | 0.729 |
FMD, % | 2.38 | (0.00–4.87) | 2.49 | (0.00–6.00) | 0.758 | 3.88 | (0.00–5.31) | 1.97 | (0.00–6.10) | 0.443 | 0.538 |
NMD, % | 14.20 | (11.40–23.80) | 16.20 | (12.50–22.80) | 0.959 | 14.35 | (12.50–21.35) | 17.60 | (12.15–26.98) | 0.196 | 1.000 |
Variables | Resveratrol (n = 24) | Energy Restriction (n = 24) | Difference (∆) p | ||
---|---|---|---|---|---|
Median Difference (∆) | (IQR) | Median Difference (∆) | (IQR) | ||
Clinical characteristics | |||||
Weight, kg | 0 | (−0.7 to +1.4) | −1.4 | (−2.4 to +0.5) | 0.031 |
Body mass index, kg/m2 | 0 | (−0.2 to +0.4) | −0.4 | (−0.7 to 0.0) | 0.030 |
Waist circumference, cm | −0.5 | (−3.0 to +2.0) | −1 | (−4.0 to +0.3) | 0.223 |
Heart rate, bpm | 0 | (−3.0 to +5.0) | 0 | (−4.0 to +4.0) | 0.582 |
Systolic blood pressure, mmHg | 0 | (−11.0 to +9.5) | −0.5 | (−20.0 to +8.0) | 0.375 |
Dyastolic blood pressure, mmHg | +1.0 | (−4.5 to +5.5) | −2.0 | (−6.3 to +1.3) | 0.141 |
Biochemical characteristics | |||||
Total cholesterol, mg/dL | +11.5 | (−8.8 to +27.5) | −13.0 | (−24.5 to +3.0) | 0.001 |
HDL-c, mg/dL | −1.0 | (−4.0 to 2.8) | −3.5 | (−8.0 to 0.0) | 0.082 |
LDL-c, mg/dL | +10.5 | (−10.3 to +24.0) | −8.0 | (−21.8 to +6.8) | 0.012 |
Triglycerides, mg/dL | +11.5 | (−19.8 to +49.5) | −14.5 | (−27.5 to +5.5) | 0.048 |
Apoliproprotein A–I, g/L | −0.03 | (−0.12 to +0.10) | −0.07 | (−0.25 to +0.02) | 0.108 |
Apolipoprotein B, g/L | +0.09 | (−0.05 to +0.14) | −0.08 | (−0.17 to +0.4) | 0.004 |
Lp(a), mg/dL | −0.1 | (−2.3 to +0.6) | 0.0 | (−1.5 to +0.7) | 0.813 |
Glucose, mg/dL | +4.0 | (−4.3 to +8.5) | −1.5 | (−12.0 to +4.8) | 0.032 |
Insulin, µUI/mL | −0.3 | (−1.0 to +1.9) | −0.3 | (−2.3 to +2.1) | 0.366 |
NEFA, mEq/dL | −0.03 | (−0.09 to 1.00) | −0.01 | (−0.16 to 0.06) | 0.509 |
hs-CRP, mg/L | −0.02 | (−0.88 to +0.41) | −0.23 | (−0.92 to +0.15) | 0.394 |
Noradrenaline, pg/dL | −27.0 | (−96.3 to +9.5) | −74.5 | (−198.3 to −12.5) | 0.138 |
Sirtuin-1 | |||||
Circulating Sirtuin-1, ng/mL | +5.9 | (+2.0 to +7.0) | +4.1 | (+1.9 to +6.4) | 0.452 |
Sirtuin-1 expression, AU | +0.63 | (−1.91 to +1.18) | −0.71 | (−1.46 to +0.88) | 0.95 |
Vascular reactivity | |||||
Baseline artery diameter, mm | 0.00 | (−0.20 to +0.20) | +0.05 | (−0.15 to +0.20) | 0.663 |
FMD, % | 0.00 | (−4.25 to +5.33) | −0.97 | (−5.35 to +3.14) | 0.499 |
NMD, % | 0.00 | (−7.10 to +2.10) | +1.15 | (−2.40 to +7.60) | 0.313 |
Variables | Baseline | Post-Treatment | Post- Minus Pre-Treatment Change (Δ) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AD | FMD | NMD | NA | AD | FMD | NMD | NA | AD | FMD | NMD | NA | |
Baseline | ||||||||||||
Circulating sirtuin 1 | −0.146 | 0.107 | 0.322 | 0.198 | 0.029 | −0.023 | 0.234 | −0.310 * | 0.208 | −0.096 | −0.061 | −0.508 ** |
Sirtuin 1 expression | −0.038 | −0.247 | −0.314 | 0.001 | −0.158 | −0.280 | −0.035 | 0.022 | −0.253 | 0.368 * | 0.239 | 0.021 |
Noradrenaline | −0.203 | −0.202 | 0.174 | 1.000 | −0.201 | −0.320 | 0.041 | 0.506 ** | −0.018 | −0.037 | −0.115 | −0.526 ** |
Post-treatment | ||||||||||||
Circulating sirtuin 1 | −0.187 | 0.177 | 0.259 | 0.187 | −0.094 | −0.081 | 0.433 ** | −0.228 | 0.159 | −0.185 | 0.187 | −0.117 |
Sirtuin 1 expression | −0.259 | −0.001 | −0.115 | −0.017 | −0.365 * | 0.164 | 0.129 | 0.014 | −0.230 | 0.097 | 0.234 | 0.032 |
Noradrenaline | −0.235 | −0.167 | −0.277 | 0.506 ** | −0.336 * | −0.069 | 0.045 | 1.000 | −0.218 | 0.087 | 0.290 | 0.467 ** |
Change (Δ) | ||||||||||||
Circulating sirtuin 1 | −0.088 | 0.101 | 0.063 | −0.299 * | −0.066 | −0.059 | 0.260 | 0.041 | 0.033 | −0.114 | 0.195 | 0.347 * |
Sirtuin 1 expression | −0.342 | 0.245 | 0.201 | −0.013 | −0.292 | −0.049 | 0.151 | −0.033 | 0.036 | −0.222 | −0.038 | −0.021 |
Noradrenaline | −0.020 | 0.042 | −0.434 ** | −0.526 ** | −0.118 | 0.250 | 0.004 | 0.467 ** | −0.188 | 0.119 | 0.390 * | 1.000 |
Predictor Variables | Final Model | ||||
---|---|---|---|---|---|
R2 | β | 95% CI for β | p | ||
Lower | Upper | ||||
Resveratrol group | 0.472 | ||||
Constant | 1.145 | −10.787 | 13.077 | 0.837 | |
Triglycerides | n/a | n/a | n/a | n/a | |
BMI | 3.850 | −3.881 | 11.580 | 0.296 | |
Total cholesterol | n/a | n/a | n/a | n/a | |
Noradrenaline | n/a | n/a | n/a | n/a | |
Circulating sirtuin 1 | −0.448 | −2.539 | 1.642 | 0.646 | |
Sirtuin 1 expression | −2.374 | −6.031 | 1.282 | 0.181 | |
Energy restriction group | 0.383 | ||||
Constant | −1.880 | −5.207 | 1.447 | 0.246 | |
Triglycerides | 0.098 | 0.009 | 0.188 | 0.033 | |
BMI | −3.923 | −7.534 | −0.311 | 0.035 | |
Total cholesterol | n/a | n/a | n/a | n/a | |
Noradrenaline | n/a | n/a | n/a | n/a | |
Circulating sirtuin 1 | n/a | n/a | n/a | n/a | |
Sirtuin 1 expression | n/a | n/a | n/a | n/a | |
Men | 0.774 | ||||
Constant | 4.844 | −1.487 | 11.175 | 0.122 | |
Triglycerides | n/a | n/a | n/a | n/a | |
BMI | −3.844 | −7.637 | −0.052 | 0.047 | |
Total cholesterol | 0.362 | 0.176 | 0.549 | 0.001 | |
Noradrenaline | n/a | n/a | n/a | n/a | |
Circulating sirtuin 1 | −1.235 | −2.507 | 0.038 | 0.056 | |
Sirtuin 1 expression | 2.201 | 0.054 | 4.349 | 0.045 | |
Women | 0.476 | ||||
Constant | −1.026 | −7.575 | 5.523 | 0.734 | |
Triglycerides | n/a | n/a | n/a | n/a | |
BMI | n/a | n/a | n/a | n/a | |
Total cholesterol | n/a | n/a | n/a | n/a | |
Noradrenaline | n/a | n/a | n/a | n/a | |
Circulating sirtuin 1 | n/a | n/a | n/a | n/a | |
Sirtuin 1 expression | −3.123 | −7.184 | 0.938 | 0.117 |
Variables | Final Model | ||||
---|---|---|---|---|---|
R2 | β | 95% CI for β | p | ||
Lower | Upper | ||||
Resveratrol group | 0.570 | ||||
Constant | −2.118 | −6.719 | 2.483 | 0.336 | |
Triglycerides | 0.063 | −0.006 | 0.132 | 0.071 | |
BMI | n/a | n/a | n/a | n/a | |
Total cholesterol | n/a | n/a | n/a | n/a | |
Noradrenaline | n/a | n/a | n/a | n/a | |
Circulating sirtuin 1 | n/a | n/a | n/a | n/a | |
Sirtuin 1 expression | −1.231 | −3.624 | 1.163 | 0.285 | |
Energy restriction group | 0.538 | ||||
Constant | −3.874 | −10.551 | 2.802 | 0.235 | |
Triglycerides | n/a | n/a | n/a | n/a | |
BMI | n/a | n/a | n/a | n/a | |
Total cholesterol | n/a | n/a | n/a | n/a | |
Noradrenaline | n/a | n/a | n/a | n/a | |
Circulating sirtuin 1 | 1.594 | 0.221 | 2.966 | 0.026 | |
Sirtuin 1 expression | n/a | n/a | n/a | n/a | |
Men | 0.454 | ||||
Constant | 1.624 | −8.279 | 11.526 | 0.730 | |
Triglycerides | n/a | n/a | n/a | n/a | |
BMI | n/a | n/a | n/a | n/a | |
Total cholesterol | n/a | n/a | n/a | n/a | |
Noradrenaline | 0.023 | −0.012 | 0.058 | 0.183 | |
Circulating sirtuin 1 | 0.261 | −1.512 | 2.044 | 0.758 | |
Sirtuin 1 expression | −0.820 | −3.524 | 1.885 | 0.526 | |
Women | 0.363 | n/a | n/a | n/a | n/a |
Constant | −1.517 | −13.670 | 10.636 | 0.781 | |
Triglycerides | 0.046 | −0.057 | 0.149 | 0.331 | |
BMI | n/a | n/a | n/a | n/a | |
Total cholesterol | n/a | n/a | n/a | n/a | |
Noradrenaline | n/a | n/a | n/a | n/a | |
Circulating sirtuin 1 | 0.427 | −1.739 | 2.594 | 0.661 | |
Sirtuin 1 expression | 0.081 | −3.959 | 4.121 | 0.964 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalinho, G.H.F.; Kuwabara, K.L.; Faria, N.F.d.O.; Goes, M.F.d.S.; Roggerio, A.; Avakian, S.D.; Strunz, C.M.C.; Mansur, A.d.P. Sirtuin 1 and Vascular Function in Healthy Women and Men: A Randomized Clinical Trial Comparing the Effects of Energy Restriction and Resveratrol. Nutrients 2023, 15, 2949. https://doi.org/10.3390/nu15132949
Gonçalinho GHF, Kuwabara KL, Faria NFdO, Goes MFdS, Roggerio A, Avakian SD, Strunz CMC, Mansur AdP. Sirtuin 1 and Vascular Function in Healthy Women and Men: A Randomized Clinical Trial Comparing the Effects of Energy Restriction and Resveratrol. Nutrients. 2023; 15(13):2949. https://doi.org/10.3390/nu15132949
Chicago/Turabian StyleGonçalinho, Gustavo Henrique Ferreira, Karen Lika Kuwabara, Nathalia Ferreira de Oliveira Faria, Marisa Fernandes da Silva Goes, Alessandra Roggerio, Solange Desirée Avakian, Célia Maria Cassaro Strunz, and Antonio de Padua Mansur. 2023. "Sirtuin 1 and Vascular Function in Healthy Women and Men: A Randomized Clinical Trial Comparing the Effects of Energy Restriction and Resveratrol" Nutrients 15, no. 13: 2949. https://doi.org/10.3390/nu15132949
APA StyleGonçalinho, G. H. F., Kuwabara, K. L., Faria, N. F. d. O., Goes, M. F. d. S., Roggerio, A., Avakian, S. D., Strunz, C. M. C., & Mansur, A. d. P. (2023). Sirtuin 1 and Vascular Function in Healthy Women and Men: A Randomized Clinical Trial Comparing the Effects of Energy Restriction and Resveratrol. Nutrients, 15(13), 2949. https://doi.org/10.3390/nu15132949