Circulating Neuronatin Levels Are Positively Associated with BMI and Body Fat Mass but Not with Psychological Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.1.1. Sample 1: Patients with a Wide BMI Spectrum
2.1.2. Sample 2: Female Patients with Anorexia Nervosa
2.1.3. Sample 3: Female Patients with Obesity
2.2. Laboratory Analysis
2.3. Anthropometric Measurements
2.4. Assessment of Physical Activity and Energy Expenditure
2.5. Assessment of Body Composition
2.6. Patient-Reported Outcomes
2.7. Statistical Analysis
3. Results
3.1. General Characteristics of the Study Samples
3.1.1. Sample 1
3.1.2. Sample 2
3.1.3. Sample 3
3.2. Circulating Nnat Is Positively Correlated with BMI and Body Fat Mass in Patients over a Wide BMI Spectrum
3.3. Circulating Nnat Is Positively Correlated with Fat-Free Mass, Extracellular Mass, and Total Body Water but Not with Other Measures of Body Composition, Activity, or Energy Expenditure in AN Patients
3.4. Circulating Nnat Is Not Associated with Patient-Reported Psychological Outcomes in Obese Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ishida, M.; Moore, G.E. The role of imprinted genes in humans. Mol. Asp. Med. 2013, 34, 826–840. [Google Scholar] [CrossRef]
- Tucci, V.; Isles, A.R.; Kelsey, G.; Ferguson-Smith, A.C. Genomic Imprinting and Physiological Processes in Mammals. Cell 2019, 176, 952–965. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, L.S.; Xie, T.; Qasem, A.; Wang, J.; Chen, M. The role of GNAS and other imprinted genes in the development of obesity. Int. J. Obes. 2010, 34, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Kopsida, E.; Mikaelsson, M.A.; Davies, W. The role of imprinted genes in mediating susceptibility to neuropsychiatric disorders. Horm. Behav. 2011, 59, 375–382. [Google Scholar] [CrossRef]
- Dou, D.; Joseph, R. Cloning of human neuronatin gene and its localization to chromosome-20q 11.2-12: The deduced protein is a novel “proteolipid’. Brain Res. 1996, 723, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Kagitani, F.; Kuroiwa, Y.; Wakana, S.; Shiroishi, T.; Miyoshi, N.; Kobayashi, S.; Nishida, M.; Kohda, T.; Kaneko-Ishino, T.; Ishino, F. Peg5/Neuronatin is an imprinted gene located on sub-distal chromosome 2 in the mouse. Nucleic Acids Res. 1997, 25, 3428–3432. [Google Scholar] [CrossRef] [PubMed]
- Dou, D.; Joseph, R. Structure and organization of the human neuronatin gene. Genomics 1996, 33, 292–297. [Google Scholar] [CrossRef]
- Vrang, N.; Meyre, D.; Froguel, P.; Jelsing, J.; Tang-Christensen, M.; Vatin, V.; Mikkelsen, J.D.; Thirstrup, K.; Larsen, L.K.; Cullberg, K.B.; et al. The imprinted gene neuronatin is regulated by metabolic status and associated with obesity. Obesity 2010, 18, 1289–1296. [Google Scholar] [CrossRef]
- Lombardi, L.; Blanchet, C.; Poirier, K.; Lebrun, N.; Ramoz, N.; Rose Moro, M.; Gorwood, P.; Bienvenu, T. Anorexia nervosa is associated with Neuronatin variants. Psychiatr. Genet. 2019, 29, 103–110. [Google Scholar] [CrossRef]
- Joseph, R.M. Neuronatin gene: Imprinted and misfolded: Studies in Lafora disease, diabetes and cancer may implicate NNAT-aggregates as a common downstream participant in neuronal loss. Genomics 2014, 103, 183–188. [Google Scholar] [CrossRef]
- Oyang, E.L.; Davidson, B.C.; Lee, W.; Poon, M.M. Functional characterization of the dendritically localized mRNA neuronatin in hippocampal neurons. PLoS ONE 2011, 6, e24879. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.H.; Bell, E.; Uwanogho, D.; Perfect, L.W.; Noristani, H.; Bates, T.J.; Snetkov, V.; Price, J.; Sun, Y.M. Neuronatin promotes neural lineage in ESCs via Ca2+ signaling. Stem Cells 2010, 28, 1950–1960. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Thomason, P.A.; Withers, D.J.; Scott, J. Bio-informatics analysis of a gene co-expression module in adipose tissue containing the diet-responsive gene Nnat. BMC Syst. Biol. 2010, 4, 175. [Google Scholar] [CrossRef] [PubMed]
- Scott, W.R.; Gelegen, C.; Chandarana, K.; Karra, E.; Yousseif, A.; Amouyal, C.; Choudhury, A.I.; Andreelli, F.; Withers, D.J.; Batterham, R.L. Differential pre-mRNA splicing regulates Nnat isoforms in the hypothalamus after gastric bypass surgery in mice. PLoS ONE 2013, 8, e59407. [Google Scholar] [CrossRef]
- John, R.M.; Aparicio, S.A.; Ainscough, J.F.; Arney, K.L.; Khosla, S.; Hawker, K.; Hilton, K.J.; Barton, S.C.; Surani, M.A. Imprinted expression of neuronatin from modified BAC transgenes reveals regulation by distinct and distant enhancers. Dev. Biol. 2001, 236, 387–399. [Google Scholar] [CrossRef]
- Niwa, H.; Harrison, L.C.; DeAizpurua, H.J.; Cram, D.S. Identification of pancreatic beta cell-related genes by representational difference analysis. Endocrinology 1997, 138, 1419–1426. [Google Scholar] [CrossRef]
- Suh, Y.H.; Kim, W.H.; Moon, C.; Hong, Y.H.; Eun, S.Y.; Lim, J.H.; Choi, J.S.; Song, J.; Jung, M.H. Ectopic expression of Neuronatin potentiates adipogenesis through enhanced phosphorylation of cAMP-response element-binding protein in 3T3-L1 cells. Biochem. Biophys. Res. Commun. 2005, 337, 481–489. [Google Scholar] [CrossRef]
- Joe, M.K.; Lee, H.J.; Suh, Y.H.; Han, K.L.; Lim, J.H.; Song, J.; Seong, J.K.; Jung, M.H. Crucial roles of neuronatin in insulin secretion and high glucose-induced apoptosis in pancreatic β-cells. Cell. Signal. 2008, 20, 907–915. [Google Scholar] [CrossRef]
- Suh, Y.H.; Kim, Y.; Bang, J.H.; Choi, K.S.; Lee, J.W.; Kim, W.H.; Oh, T.J.; An, S.; Jung, M.H. Analysis of gene expression profiles in insulin-sensitive tissues from pre-diabetic and diabetic Zucker diabetic fatty rats. J. Mol. Endocrinol. 2005, 34, 299–315. [Google Scholar] [CrossRef]
- Ka, H.I.; Han, S.; Jeong, A.L.; Lee, S.; Yong, H.J.; Boldbaatar, A.; Joo, H.J.; Soh, S.J.; Park, J.Y.; Lim, J.S.; et al. Neuronatin Is Associated with an Anti-Inflammatory Role in the White Adipose Tissue. J. Microbiol. Biotechnol. 2017, 27, 1180–1188. [Google Scholar] [CrossRef]
- Gburcik, V.; Cleasby, M.E.; Timmons, J.A. Loss of neuronatin promotes “browning” of primary mouse adipocytes while reducing Glut1-mediated glucose disposal. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E885–E894. [Google Scholar] [CrossRef] [PubMed]
- Millership, S.J.; Tunster, S.J.; Van de Pette, M.; Choudhury, A.I.; Irvine, E.E.; Christian, M.; Fisher, A.G.; John, R.M.; Scott, J.; Withers, D.J. Neuronatin deletion causes postnatal growth restriction and adult obesity in 129S2/Sv mice. Mol. Metab. 2018, 18, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Millership, S.J.; Da Silva Xavier, G.; Choudhury, A.I.; Bertazzo, S.; Chabosseau, P.; Pedroni, S.M.; Irvine, E.E.; Montoya, A.; Faull, P.; Taylor, W.R.; et al. Neuronatin regulates pancreatic β cell insulin content and secretion. J. Clin. Investig. 2018, 128, 3369–3381. [Google Scholar] [CrossRef] [PubMed]
- Cimino, I.; Rimmington, D.; Tung, Y.C.L.; Lawler, K.; Larraufie, P.; Kay, R.G.; Virtue, S.; Lam, B.Y.H.; Fagnocchi, L.; Ma, M.K.L.; et al. Murine neuronatin deficiency is associated with a hypervariable food intake and bimodal obesity. Sci. Rep. 2021, 11, 17571. [Google Scholar] [CrossRef]
- Dalgaard, K.; Landgraf, K.; Heyne, S.; Lempradl, A.; Longinotto, J.; Gossens, K.; Ruf, M.; Orthofer, M.; Strogantsev, R.; Selvaraj, M.; et al. Trim28 Haploinsufficiency Triggers Bi-stable Epigenetic Obesity. Cell 2016, 164, 353–364. [Google Scholar] [CrossRef]
- Ceccarini, M.R.; Precone, V.; Manara, E.; Paolacci, S.; Maltese, P.E.; Benfatti, V.; Dhuli, K.; Donato, K.; Guerri, G.; Marceddu, G.; et al. A next generation sequencing gene panel for use in the diagnosis of anorexia nervosa. Eat. Weight Disord. 2022, 27, 1869–1880. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef]
- Müller, M.J.; Bosy-Westphal, A.; Klaus, S.; Kreymann, G.; Lührmann, P.M.; Neuhäuser-Berthold, M.; Noack, R.; Pirke, K.M.; Platte, P.; Selberg, O.; et al. World Health Organization equations have shortcomings for predicting resting energy expenditure in persons from a modern, affluent population: Generation of a new reference standard from a retrospective analysis of a German database of resting energy expenditure. Am. J. Clin. Nutr. 2004, 80, 1379–1390. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Negeri, Z.F.; Levis, B.; Sun, Y.; He, C.; Krishnan, A.; Wu, Y.; Bhandari, P.M.; Neupane, D.; Brehaut, E.; Benedetti, A.; et al. Accuracy of the Patient Health Questionnaire-9 for screening to detect major depression: Updated systematic review and individual participant data meta-analysis. Br. Med. J. 2021, 375, n2183. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Löwe, B.; Decker, O.; Müller, S.; Brähler, E.; Schellberg, D.; Herzog, W.; Herzberg, P.Y. Validation and standardization of the Generalized Anxiety Disorder Screener (GAD-7) in the general population. Med. Care 2008, 46, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Fliege, H.; Rose, M.; Arck, P.; Walter, O.B.; Kocalevent, R.D.; Weber, C.; Klapp, B.F. The Perceived Stress Questionnaire (PSQ) reconsidered: Validation and reference values from different clinical and healthy adult samples. Psychosom. Med. 2005, 67, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Levenstein, S.; Prantera, C.; Varvo, V.; Scribano, M.L.; Berto, E.; Luzi, C.; Andreoli, A. Development of the Perceived Stress Questionnaire: A new tool for psychosomatic research. J. Psychosom. Res. 1993, 37, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Thiel, A.; Jacobi, C.; Horstmann, S.; Paul, T.; Nutzinger, D.O.; Schüssler, G. A German version of the Eating Disorder Inventory EDI-2. Psychother. Psychosom. Med. Psychol. 1997, 47, 365–376. [Google Scholar]
- Eberenz, K.P.; Gleaves, D.H. An examination of the internal consistency and factor structure of the eating disorder inventory-2 in a clinical sample. Int. J. Eat. Disord. 1994, 16, 371–379. [Google Scholar] [CrossRef]
- Guggenberger, M.; Engster, K.M.; Hofmann, T.; Rose, M.; Stengel, A.; Kobelt, P. Cholecystokinin and bombesin activate neuronatin neurons in the nucleus of the solitary tract. Brain Res. 2020, 1746, 147006. [Google Scholar] [CrossRef]
- Petrescu, M.; Vlaicu, S.I.; Ciumărnean, L.; Milaciu, M.V.; Mărginean, C.; Florea, M.; Vesa, Ș.C.; Popa, M. Chronic Inflammation-A Link between Nonalcoholic Fatty Liver Disease (NAFLD) and Dysfunctional Adipose Tissue. Medicina 2022, 58, 641. [Google Scholar] [CrossRef]
- Mzhavia, N.; Yu, S.; Ikeda, S.; Chu, T.T.; Goldberg, I.; Dansky, H.M. Neuronatin: A new inflammation gene expressed on the aortic endothelium of diabetic mice. Diabetes 2008, 57, 2774–2783. [Google Scholar] [CrossRef]
- Sanada, F.; Taniyama, Y.; Muratsu, J.; Otsu, R.; Shimizu, H.; Rakugi, H.; Morishita, R. Source of Chronic Inflammation in Aging. Front. Cardiovasc. Med. 2018, 5, 12. [Google Scholar] [CrossRef]
- Gärtner, K. A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab. Anim. 1990, 24, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, H.; Magnusdottir, E.; Eggertsson, H.P.; Stefansson, O.A.; Arnadottir, G.A.; Eiriksson, O.; Zink, F.; Helgason, E.A.; Jonsdottir, I.; Gylfason, A.; et al. Differences between germline genomes of monozygotic twins. Nat. Genet. 2021, 53, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Tchasovnikarova, I.A.; Timms, R.T.; Matheson, N.J.; Wals, K.; Antrobus, R.; Göttgens, B.; Dougan, G.; Dawson, M.A.; Lehner, P.J. GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells. Science 2015, 348, 1481–1485. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Fagnocchi, L.; Apostle, S.; Wegert, V.; Casaní-Galdón, S.; Landgraf, K.; Panzeri, I.; Dror, E.; Heyne, S.; Wörpel, T.; et al. Independent phenotypic plasticity axes define distinct obesity sub-types. Nat. Metab. 2022, 4, 1150–1165. [Google Scholar] [CrossRef]
- Adams, T.D.; Hunt, S.C.; Mason, L.A.; Ramirez, M.E.; Fisher, A.G.; Williams, R.R. Familial aggregation of morbid obesity. Obes. Res. 1993, 1, 261–270. [Google Scholar] [CrossRef]
- Azmi, M.B.; Naeem, U.; Saleem, A.; Jawed, A.; Usman, H.; Qureshi, S.A.; Azim, M.K. In silico identification of the rare-coding pathogenic mutations and structural modeling of human NNAT gene associated with anorexia nervosa. Eat. Weight Disord. 2022, 27, 2725–2744. [Google Scholar] [CrossRef]
- Petry, N.M.; Barry, D.; Pietrzak, R.H.; Wagner, J.A. Overweight and obesity are associated with psychiatric disorders: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Psychosom. Med. 2008, 70, 288–297. [Google Scholar] [CrossRef]
- McLean, C.P.; Asnaani, A.; Litz, B.T.; Hofmann, S.G. Gender differences in anxiety disorders: Prevalence, course of illness, comorbidity and burden of illness. J. Psychiatr. Res. 2011, 45, 1027–1035. [Google Scholar] [CrossRef]
- Piccoli, A.; Codognotto, M.; Di Pascoli, L.; Boffo, G.; Caregaro, L. Body mass index and agreement between bioimpedance and anthropometry estimates of body compartments in anorexia nervosa. JPEN J. Parenter. Enteral Nutr. 2005, 29, 148–156. [Google Scholar] [CrossRef]
- Elbelt, U.; Haas, V.; Hofmann, T.; Stengel, A.; Berger, H.; Jeran, S.; Klapp, B.F. Evaluation of a Portable Armband Device to Assess Resting Energy Expenditure in Patients with Anorexia Nervosa. Nutr. Clin. Pract. 2016, 31, 362–367. [Google Scholar] [CrossRef]
Parameter | Group | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Whole Sample | n | Normal Weight | n | Anorexia Nervosa | n | Obesity 30–40 | n | Obesity 40–50 | n | Obesity > 50 | n | |
General Characteristics | ||||||||||||
Sex (F/M) | 42/37 | 79 | 9/9 | 18 | 15/0 | 15 | 7/9 | 16 | 6/ 9 | 15 | 5/10 | 15 |
Age(years) | 39.5 ± 4.7 | 79 | 41.4 ± 15.2 §§ | 18 | 26. 3± 9.6 ###,+++,** | 15 | 43.9 ± 11.5 | 16 | 47 ± 12.4 | 15 | 40.7 ± 12.4 | 15 |
BMI (kg/m2) | 36.8 ± 18.8 | 79 | 22.1 ± 1.5 §,#,+++,*** | 18 | 12.7 ± 1.8 ###,+++,*** | 15 | 37.4 ± 2.7 *** | 16 | 45.7± 3 | 15 | 65.6 ± 8.7 | 15 |
Plasma Neuronatin (pg/mL) | 28.8 ± 22.5 | 79 | 18.5 ± 17.1 #,++ | 18 | 17.5 ± 11.3 ++ | 15 | 37.9 ± 25.8 | 16 | 43.4 ± 25.4 | 15 | 28.1 ± 19.5 | 15 |
Bioelectrical impedance analysis | ||||||||||||
Fat mass (kg) | 46.5 ± 38.4 | 79 | 16 ± 4.5 #,+++,*** | 18 | −1.21 ±2.9 ###,+++,*** | 15 | 46.3 ± 7.8 *** | 16 | 63.6 ± 12.7 | 15 | 104 ± 22.1 | 15 |
Fat mass (%) | 32.9 ± 20.7 | 79 | 24.22 ± 6 ##,+++,*** | 18 | −4.53 ± 2.9 ###,+++,*** | 15 | 40.6 ± 7.2 * | 16 | 46 ± 7.4 | 15 | 52.4 ± 7.5 | 15 |
Total body water (l) | 48 ± 17.4 | 79 | 37 ± 7.1 §,#,+++,*** | 18 | 25.5 ± 2.4 ###,+++,*** | 15 | 50.9 ± 10 * | 16 | 55.1 ± 10 | 15 | 69.9 ± 14 | 15 |
Fat-free mass (kg) | 65.6 ± 23.8 | 79 | 50.6 ± 9.7 §,#,+++,*** | 18 | 34.9 ± 3.3 ###,+++,*** | 15 | 69.6 ± 13.7 * | 16 | 75.3 ± 13.7 | 15 | 95.6 ± 19.1 | 15 |
Extracellular mass (kg) | 33.4 ± 12.9 | 79 | 24.5 ± 4 ##,+++,*** | 18 | 20 ± 4.8 ###,+++,*** | 15 | 33.4 ± 6.1 ** | 16 | 38.1 ± 7.4 | 15 | 50.5 ± 12.9 | 15 |
Body cell mass (kg) | 32.7 ± 13.1 | 79 | 26.1 ± 6.3 §,#,+++,*** | 18 | 13.9 ± 3 ###,+++,*** | 15 | 36.8 ± 8.5 | 16 | 37.2 ± 7.3 | 15 | 47.8 ± 10 | 15 |
Comorbidities | ||||||||||||
Binge-Eating Disorder | 8 (10%) | 79 | 0 (0%) | 18 | 0 (0%) | 15 | 3 (15%) | 16 | 4 (20%) | 15 | 5 (25%) | 15 |
Sleep-associated breathing disorder | 38 (38%) | 79 | 0 (0%) | 18 | 0 (0%) | 15 | 10 (50%) | 16 | 13 (65%) | 15 | 15 (75%) | 15 |
Type 2 diabetes mellitus | 16 (20%) | 79 | 0 (0%) *** | 18 | 0 (0%) *** | 15 | 3 (29%) | 16 | 4 (27%) | 15 | 8 (53%) | 15 |
Arterial hypertension | 38 (47%) | 79 | 3 (16%) #,+++,** | 18 | 1 (7%) ###,+++,*** | 15 | 10 (63%) | 16 | 12 (80%) | 15 | 12 (80%) | 15 |
Hypercholesterinemia | 49 (61%) | 79 | 11 (61%) | 18 | 6 (40%) | 15 | 11(69%) | 16 | 9 (60%) | 15 | 12 (80%) | 15 |
Hypertriglyceridemia | 19 (24%) | 79 | 0 (0%) ##,* | 18 | 0 (0%) ##,* | 15 | 8 (50%) | 16 | 4 (27%) | 15 | 6 (40%) | 15 |
Fatty liver disease | 32 (40%) | 79 | 0 (0%) ###,+++,*** | 18 | 1 (7%) ###,+++,*** | 15 | 11 (71%) | 16 | 10 (69%) | 14 | 10 (71%) | 14 |
Medication | ||||||||||||
Insulin | 5 (6%) | 79 | 0 (0%) | 18 | 0 (0%) | 15 | 0 (5%) | 16 | 3 (20%) | 15 | 2 (13%) | 15 |
DDP-4 antagonists/GLP-1 analogs | 1 (1%) | 79 | 0 (0%) | 18 | 0 (0%) | 15 | 0 (0%) | 16 | 0 (0%) | 15 | 1 (7%) | 15 |
Antidiabetics | 8 (10%) | 79 | 0 (0%) | 18 | 0 (0%) | 15 | 3 (19%) | 16 | 2 (13%) | 15 | 3 (20%) | 15 |
Steroids | 7 (9%) | 79 | 1 (6%) # | 18 | 0 (0%) # | 15 | 7 (31%) | 16 | 0 (0%) # | 15 | 0 (0%) # | 15 |
Opioids | 4 (5%) | 79 | 0 (0%) | 18 | 0 (0%) | 15 | 1 (6%) | 16 | 1 (7%) | 15 | 2 (13%) | 15 |
Psychopharmacological treatment | 19 (24%) | 79 | 5 (28%) | 18 | 3 (20%) | 15 | 4 (25%) | 16 | 3 (20%) | 15 | 4 (27%) | 15 |
Antipsychotics | 5 (6%) | 79 | 0 (0%) | 18 | 2 (13%) | 15 | 1 (6%) | 16 | 0 (0%) | 15 | 2 (13%) | 15 |
SSRI/SNRI | 6 (8%) | 79 | 0 (0%) | 18 | 1 (7%) | 15 | 2 (13%) | 16 | 1 (7%) | 15 | 2 (13%) | 15 |
Tricyclic antidepressants | 3 (4%) | 79 | 1 (6%) | 18 | 0 (0%) | 15 | 1 (6%) | 16 | 0 (0%) | 15 | 1 (7%) | 15 |
Other antidepressants | 5 (6%) | 79 | 2 (11%) | 18 | 2 (13%) | 15 | 0 (0%) | 16 | 0 (0%) | 15 | 1 (7%) | 15 |
Tranquilizers, sedatives, hypnotics | 2 (3%) | 79 | 1 (6%) | 18 | 0 (0%) | 15 | 0 (0%) | 16 | 1 (7%) | 15 | 0 (0%) | 15 |
Other psychopharmacological medication | 6 (8%) | 79 | 1 (6%) | 18 | 0 (0%) | 15 | 0 (0%) | 16 | 2 (13%) | 15 | 3 (20%) | 15 |
General Parameter | Mean ± SD | Range | n |
---|---|---|---|
Plasma Nnat (pg/mL) | 21.3 ± 20.7 | 3.3–109.7 | 49 |
Age (years) | 27.8 ± 9.4 | 18–52 | 49 |
BMI (kg/m2) | 14.5 ± 1.8 | 10.5–18 | 49 |
Activity parameter | 45 | ||
Number of steps/d | 10,748 ± 6335 | 2087–37,750 | 45 |
Metabolic equivalents/d | 1.8 ± 0.3 | 1.4–2.7 | 45 |
Total energy expenditure (kcal/kg/d) | 43.9 ± 6 | 133.5–61.1 | 45 |
Resting energy expenditure (kcal/kg/d) | 17.8 ± 1.2 | 14.8–19.6 | 45 |
Duration of exercise (min/d) | 15.8 ± 21.9 | 0–107 | 45 |
Exercise activity thermogenesis (kcal/kg/d) | 1.5 ± 2.2 | 0–9.7 | 45 |
Non exercise activity thermogenesis (kcal/kg/d) | 24.6 ± 9.2 | 13.5–45.3 | 45 |
Body composition parameter | 49 | ||
Fat mass (kg) | 2.44 ± 4.4 | −6.1–14.8 | 49 |
Total body water (L) | 27.4 ± 2.9 | 19.4–33 | 49 |
Fat-free mass (kg) | 37.4 ± 3.9 | 26.5–45.1 | 49 |
Extracellular mass (kg) | 21.5 ± 4.3 | 5.9–34 | 49 |
Body cell mass (kg) | 15.6 ± 3 | 8.4–21.4 | 49 |
Sample 2 | Sample 3 | |||
---|---|---|---|---|
n (% of Total) | Missing Data | n (% of Total) | Missing Data | |
Anorexia nervosa | 49 (100%) | - | - | - |
- restrictive type | 25 (51%) | - | - | - |
- purging type | 12 (24%) | - | - | - |
- atypical | 12 (24%) | - | - | - |
Obesity (BMI > 30 kg/m2) | - | - | 79 (100%) | - |
- Hyperphagic eating disorder | - | - | 56 (71%) | - |
- Binge eating disorder | - | - | 17 (22%) | - |
- Previous bariatric surgery | - | - | 32 (40%) | - |
Comorbidities | ||||
Anxiety disorder | 4 (8%) | 1 | 6 (6%) | - |
Somatoform disorder | 4 (8%) | 1 | 11 (14%) | 3 |
Depression | 24 (49%) | 1 | 35 (44%) | - |
Sleep-associated breathing disorder | 0 (0%) | 1 | 37 (47%) | - |
Type 2 diabetes mellitus | 0 (0%) | 1 | 23 (29%) | - |
Arterial hypertension | 1 (2%) | 1 | 48 (61%) | - |
Hypercholesterinemia | 23 (49%) | 2 | 46 (58%) | - |
Hypertriglyceridemia | 2 (4%) | 1 | 17 (22%) | - |
Fatty liver disease | 2 (4%) | 1 | 51 (65%) | 5 |
Medication | ||||
Insulin | 0 (0%) | 1 | 6 (8%) | - |
DDP-4 antagonists/ GLP-1 analogs | 0 (0%) | 1 | 4 (5%) | - |
Other Antidiabetics | 0 (0%) | 1 | 15 (19%) | - |
Steroids | 2 (4%) | 1 | 9 (11%) | - |
Opioids | 0 (0%) | 1 | 5 (6%) | - |
Antipsychotics | 6 (12%) | 1 | 12 (15%) | - |
SSRI/SNRI | 5 (10%) | 1 | 20 (25%) | - |
Tricyclic antidepressants | 1 (2%) | 1 | 9 (11%) | - |
Other antidepressants | 3 (6%) | 1 | 2 (3%) | - |
Tranquilizers, sedatives, hypnotics | 0 (0%) | 1 | 1 (1%) | - |
Other psychopharmacological medication | 1 (2%) | 1 | 4 (5%) | - |
General Parameter | Mean ± SD | Range | n |
---|---|---|---|
Plasma Nnat (pg/mL) | 37.1 ± 27.7 | 0.2–111.9 | 79 |
Age (years) | 44.8 ± 13.7 | 19–73 | 79 |
BMI (kg/m2) | 48.8 ± 7.8 | 31.8–70.8 | 79 |
Psychometric Variables | |||
PHQ-9 Total | 9.9 ± 6.1 | 0–25 | 78 |
GAD-7 Total | 9.3 ± 5.7 | 0–21 | 79 |
EDI-2 Total | 46.9 ± 12.6 | 20–79 | 75 |
- drive for thinness | 32 ± 13.6 | 11–89 | 75 |
- bulimia | 18.1 ± 10.6 | 0–71 | 75 |
- body dissatisfaction | 55.9 ± 16.8 | 33–100 | 75 |
- ineffectiveness | 32.6 ± 12.9 | 12–80 | 75 |
- perfectionism | 21.6 ± 11. | 8–60 | 75 |
- interpersonal distrust | 25.4 ± 9.9 | 9–66 | 75 |
- interoceptive awareness | 28.7 ± 9.2 | 8–55 | 75 |
- maturity fears | 28.1 ± 12.1 | 11–88 | 75 |
PSQ-20 Total | 56 ± 21.8 | 5–98 | 79 |
- worries | 55 ± 27.4 | 0–100 | 79 |
- tension | 59.4 ± 25.7 | 0–100 | 79 |
- joy | 37.6 ± 25.3 | 0–100 | 79 |
- demands | 46.6 ± 25.6 | 0–100 | 79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudolph, A.; Stengel, A.; Suhs, M.; Schaper, S.; Wölk, E.; Rose, M.; Hofmann, T. Circulating Neuronatin Levels Are Positively Associated with BMI and Body Fat Mass but Not with Psychological Parameters. Nutrients 2023, 15, 3657. https://doi.org/10.3390/nu15163657
Rudolph A, Stengel A, Suhs M, Schaper S, Wölk E, Rose M, Hofmann T. Circulating Neuronatin Levels Are Positively Associated with BMI and Body Fat Mass but Not with Psychological Parameters. Nutrients. 2023; 15(16):3657. https://doi.org/10.3390/nu15163657
Chicago/Turabian StyleRudolph, Amelie, Andreas Stengel, Maria Suhs, Selina Schaper, Ellen Wölk, Matthias Rose, and Tobias Hofmann. 2023. "Circulating Neuronatin Levels Are Positively Associated with BMI and Body Fat Mass but Not with Psychological Parameters" Nutrients 15, no. 16: 3657. https://doi.org/10.3390/nu15163657
APA StyleRudolph, A., Stengel, A., Suhs, M., Schaper, S., Wölk, E., Rose, M., & Hofmann, T. (2023). Circulating Neuronatin Levels Are Positively Associated with BMI and Body Fat Mass but Not with Psychological Parameters. Nutrients, 15(16), 3657. https://doi.org/10.3390/nu15163657