Non-Digestible Carbohydrates: Green Extraction from Food By-Products and Assessment of Their Effect on Microbiota Modulation
Abstract
:1. Introduction
2. Materials and Methods
3. Extraction of Nondigestible Carbohydrates
3.1. Hydrothermal Treatment (HT) and Subcritical Water Extraction (SWE)
3.2. Microwave-Assisted Extraction (MAE)
3.3. Ohmic Heating-Assisted Extraction (OhAE)
3.4. Ultrasound-Assisted Extraction (UAE)
3.5. High-Pressure Processing (HPP)
3.6. Other Green Extraction Procedures
4. Nondigestible Carbohydrates and Microbiota Modulation
4.1. In Vitro Studies
4.2. Evaluation of Modulation Effect on the Microbiota Using In Vivo Animal Models
4.2.1. Inulin
4.2.2. Pectin
4.2.3. Alginate
4.3. In Vivo Human Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geisendorf, S.; Pietrulla, F. The Circular Economy and Circular Economic Concepts—A Literature Analysis and Redefinition. Thunderbird Int. Bus. Rev. 2018, 60, 771–782. [Google Scholar] [CrossRef]
- Campos, D.A.; Gómez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of Fruit Industrial By-Products—A Case Study on Circular Economy Approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef] [PubMed]
- Camana, D.; Manzardo, A.; Toniolo, S.; Gallo, F.; Scipioni, A. Assessing Environmental Sustainability of Local Waste Management Policies in Italy from a Circular Economy Perspective. An Overview of Existing Tools. Sustain. Prod. Consum. 2021, 27, 613–629. [Google Scholar] [CrossRef]
- Borrello, M.; Caracciolo, F.; Lombardi, A.; Pascucci, S.; Cembalo, L. Consumers’ Perspective on Circular Economy Strategy for Reducing Food Waste. Sustainability 2017, 9, 141. [Google Scholar] [CrossRef]
- Moreno, M.; De los Rios, C.; Rowe, Z.; Charnley, F. A Conceptual Framework for Circular Design. Sustainability 2016, 8, 937. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Coderoni, S.; Perito, M.A. Sustainable Consumption in the Circular Economy. An Analysis of Consumers’ Purchase Intentions for Waste-to-Value Food. J. Clean. Prod. 2020, 252, 119870. [Google Scholar] [CrossRef]
- Mirabella, N.; Castellani, V.; Sala, S. Current Options for the Valorization of Food Manufacturing Waste: A Review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef]
- Shah, B.R.; Li, B.; Al Sabbah, H.; Xu, W.; Mráz, J. Effects of Prebiotic Dietary Fibers and Probiotics on Human Health: With Special Focus on Recent Advancement in Their Encapsulated Formulations. Trends Food Sci. Technol. 2020, 102, 178–192. [Google Scholar] [CrossRef]
- Holscher, H.D. Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Arena, M.P.; Caggianiello, G.; Fiocco, D.; Russo, P.; Torelli, M.; Spano, G.; Capozzi, V. Barley β-Glucans-Containing Food Enhances Probiotic Performances of Beneficial Bacteria. Int. J. Mol. Sci. 2014, 15, 3025–3039. [Google Scholar] [CrossRef] [PubMed]
- Hutkins, R.W.; Krumbeck, J.A.; Bindels, L.B.; Cani, P.D.; Fahey, G.; Goh, Y.J.; Hamaker, B.; Martens, E.C.; Mills, D.A.; Rastal, R.A.; et al. Prebiotics: Why Definitions Matter. Curr. Opin. Biotechnol. 2016, 37, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chen, W.; Yan, T.; Wang, D.; Hou, F.; Miao, S.; Liu, D. Comparison of Citrus Pectin and Apple Pectin in Conjugation with Soy Protein Isolate (SPI) under Controlled Dry-Heating Conditions. Food Chem. 2020, 309, 125501. [Google Scholar] [CrossRef]
- Martau, G.A.; Mihai, M.; Vodnar, D.C. The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector—Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers 2019, 11, 1837. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.M.; Zhou, H.Z.; Yang, J.Y.; Li, R.; Song, H.; Wu, H.X. In Vitro and in Vivo Antioxidant Activities of Inulin. PLoS ONE 2018, 13, e0192273. [Google Scholar] [CrossRef]
- Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Sharif, H.R.; Shakeel, A.; Ansari, A.; Niazi, S. Inulin: Properties, Health Benefits and Food Applications. Carbohydr. Polym. 2016, 147, 444–454. [Google Scholar] [CrossRef]
- Gomez, C.G.; Rinaudo, M.; Villar, M.A. Oxidation of Sodium Alginate and Characterization of the Oxidized Derivatives. Carbohydr. Polym. 2007, 67, 296–304. [Google Scholar] [CrossRef]
- Andriamanantoanina, H.; Rinaudo, M. Characterization of the Alginates from Five Madagascan Brown Algae. Carbohydr. Polym. 2010, 82, 555–560. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Knaze, V.; Zamora-Ros, R. Polyphenols: Dietary Assessment and Role in the Prevention of Cancers. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 512–521. [Google Scholar] [CrossRef]
- Gavahian, M.; Lee, Y.T.; Chu, Y.H. Ohmic-Assisted Hydrodistillation of Citronella Oil from Taiwanese Citronella Grass: Impacts on the Essential Oil and Extraction Medium. Innov. Food Sci. Emerg. Technol. 2018, 48, 33–41. [Google Scholar] [CrossRef]
- Das, I.; Arora, A. One Stage Hydrothermal Treatment: A Green Strategy for Simultaneous Extraction of Food Hydrocolloid and Co-Products from Sweet Lime (Citrus Limetta) Peels. Food Hydrocoll. 2023, 134, 107947. [Google Scholar] [CrossRef]
- Sengar, A.S.; Rawson, A.; Muthiah, M.; Kalakandan, S.K. Comparison of Different Ultrasound Assisted Extraction Techniques for Pectin from Tomato Processing Waste. Ultrason. Sonochem. 2020, 61, 104812. [Google Scholar] [CrossRef]
- You, Q.; Wan, M.; Fang, X.; Yin, X.; Luo, C.; Zhang, X. Optimization of Intermittent Microwave Extraction Method for the Determination of Pectin from Pomelo Peels. Mater. Res. Express 2019, 6, 065405. [Google Scholar] [CrossRef]
- Boukroufa, M.; Boutekedjiret, C.; Petigny, L.; Rakotomanomana, N.; Chemat, F. Bio-Refinery of Orange Peels Waste: A New Concept Based on Integrated Green and Solvent Free Extraction Processes Using Ultrasound and Microwave Techniques to Obtain Essential Oil, Polyphenols and Pectin. Ultrason. Sonochem. 2015, 24, 72–79. [Google Scholar] [CrossRef]
- Sabanci, S.; Çevik, M.; Göksu, A. Investigation of Time Effect on Pectin Production from Citrus Wastes with Ohmic Heating Assisted Extraction Process. J. Food Process Eng. 2021, 44, e13689. [Google Scholar] [CrossRef]
- Polanco-Lugo, E.; Martínez-Castillo, J.I.; Cuevas-Bernardino, J.C.; González-Flores, T.; Valdez-Ojeda, R.; Pacheco, N.; Ayora-Talavera, T. Citrus Pectin Obtained by Ultrasound-Assisted Extraction: Physicochemical, Structural, Rheological and Functional Properties. CyTA J. Food 2019, 17, 463–471. [Google Scholar] [CrossRef]
- Talekar, S.; Patti, A.F.; Vijayraghavan, R.; Arora, A. Complete Utilization of Waste Pomegranate Peels to Produce a Hydrocolloid, Punicalagin Rich Phenolics, and a Hard Carbon Electrode. ACS Sustain. Chem. Eng. 2018, 6, 16363–16374. [Google Scholar] [CrossRef]
- Hou, Z.; Chen, S.; Ye, X. High Pressure Processing Accelarated the Release of RG-I Pectic Polysaccharides from Citrus Peel. Carbohydr. Polym. 2021, 263, 118005. [Google Scholar] [CrossRef]
- Panwar, D.; Panesar, P.S.; Chopra, H.K. Green Extraction of Pectin from Citrus limetta Peels Using Organic Acid and Its Characterization. Biomass Convers. Biorefinery 2022, 12, 1–13. [Google Scholar] [CrossRef]
- He, C.; Sampers, I.; Raes, K. Isolation of Pectin from Clementine Peel: A New Approach Based on Green Extracting Agents of Citric Acid/Sodium Citrate Solutions. ACS Sustain. Chem. Eng. 2021, 9, 833–843. [Google Scholar] [CrossRef]
- Gullón, P.; Eibes, G.; Lorenzo, J.M.; Pérez-Rodríguez, N.; Lú-Chau, T.A.; Gullón, B. Green Sustainable Process to Revalorize Purple Corn Cobs within a Biorefinery Frame: Co-Production of Bioactive Extracts. Sci. Total Environ. 2020, 709, 136236. [Google Scholar] [CrossRef] [PubMed]
- Pinkowska, H.; Krzywonos, M.; Wolak, P.; Złocinska, A. Pectin and Neutral Monosaccharides Production during the Simultaneous Hydrothermal Extraction of Waste Biomass from Refining of Sugar—Optimization with the Use of Doehlert Design. Molecules 2019, 24, 472. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Lei, R.; Ryan, J.; Arrutia Rodriguez, F.; Rastall, B.; Chatzifragkou, A.; Winkworth-Smith, C.; Harding, S.E.; Ibbett, R.; Binner, E. Understanding the Influence of Processing Conditions on the Extraction of Rhamnogalacturonan-I “Hairy” Pectin from Sugar Beet Pulp. Food Chem. X 2019, 2, 100026. [Google Scholar] [CrossRef] [PubMed]
- Dranca, F.; Oroian, M. Extraction, Purification and Characterization of Pectin from Alternative Sources with Potential Technological Applications. Food Res. Int. 2018, 113, 327–350. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Castello, E.M.; Mayor, L.; Calvo-Ramirez, A.; Ruiz-Melero, R.; Rodriguez-Lopez, A.D. Response Surface Optimization of Inulin and Polyphenol Extraction from Artichoke (Cynara scolymus (L.)) Solid Wastes. Appl. Sci. 2022, 12, 7957. [Google Scholar] [CrossRef]
- Wandee, Y.; Uttapap, D.; Mischnick, P. Yield and Structural Composition of Pomelo Peel Pectins Extracted under Acidic and Alkaline Conditions. Food Hydrocoll. 2019, 87, 237–244. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Huang, H.-W.; Wu, S.-J.; Lu, J.-K.; Shyu, Y.-T.; Wang, C.-Y. Current Status and Future Trends of High-Pressure Processing in Food Industry. Food Control 2016, 72, 1–8. [Google Scholar] [CrossRef]
- Broxterman, S.E.; Schols, H.A. Interactions between Pectin and Cellulose in Primary Plant Cell Walls. Carbohydr. Polym. 2018, 192, 263–272. [Google Scholar] [CrossRef]
- Kliemann, E.; De Simas, K.N.; Amante, E.R.; Prudêncio, E.S.; Teófilo, R.F.; Ferreira, M.M.C.; Amboni, R.D.M.C. Optimisation of Pectin Acid Extraction from Passion Fruit Peel (Passiflora edulis Flavicarpa) Using Response Surface Methodology. Int. J. Food Sci. Technol. 2009, 44, 476–483. [Google Scholar] [CrossRef]
- Canteri-Schemin, M.H.; Fertonani, H.C.R.; Waszczynskyj, N.; Wosiacki, G. Extraction of Pectin from Apple Pomace. Braz. Arch. Biol. Technol. 2005, 48, 259–266. [Google Scholar] [CrossRef]
- Yapo, B.M. Biochemical Characteristics and Gelling Capacity of Pectin from Yellow Passion Fruit Rind as Affected by Acid Extractant Nature. J. Agric. Food Chem. 2009, 57, 1572–1578. [Google Scholar] [CrossRef] [PubMed]
- Charoensiddhi, S.; Conlon, M.A.; Vuaran, M.S.; Franco, C.M.M.; Zhang, W. Polysaccharide and Phlorotannin-Enriched Extracts of the Brown Seaweed Ecklonia Radiata Influence Human Gut Microbiota and Fermentation In Vitro. J. Appl. Phycol. 2017, 29, 2407–2416. [Google Scholar] [CrossRef]
- Roupar, D.; Coelho, M.C.; Gonçalves, D.A.; Silva, S.P.; Coelho, E.; Silva, S.; Coimbra, M.A.; Pintado, M.; Teixeira, J.A.; Nobre, C. Evaluation of Microbial-Fructo-Oligosaccharides Metabolism by Human Gut Microbiota Fermentation as Compared to Commercial Inulin-Derived Oligosaccharides. Foods 2022, 11, 954. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gibson, G.R.; Walton, G.E. An In Vitro Approach to Study Effects of Prebiotics and Probiotics on the Faecal Microbiota and Selected Immune Parameters Relevant to the Elderly. PLoS ONE 2016, 11, e0162604. [Google Scholar] [CrossRef]
- Calvete-Torre, I.; Sabater, C.; Antón, M.J.; Moreno, F.J.; Riestra, S.; Margolles, A.; Ruiz, L. Prebiotic Potential of Apple Pomace and Pectins from Different Apple Varieties: Modulatory Effects on Key Target Commensal Microbial Populations. Food Hydrocoll. 2022, 133, 107958. [Google Scholar] [CrossRef]
- Zhu, M.; Song, Y.; Martínez-Cuesta, M.C.; Peláez, C.; Li, E.; Requena, T.; Wang, H.; Sun, Y. Immunological Activity and Gut Microbiota Modulation of Pectin from Kiwano (Cucumis metuliferus) Peels. Foods 2022, 11, 1632. [Google Scholar] [CrossRef]
- Cantu-Jungles, T.M.; Bulut, N.; Chambry, E.; Ruthes, A.; Iacomini, M.; Keshavarzian, A.; Johnson, T.A.; Hamaker, B.R. Dietary Fiber Hierarchical Specificity: The Missing Link for Predictable and Strong Shifts in Gut Bacterial Communities. mBio 2021, 12, e0102821. [Google Scholar] [CrossRef]
- Wu, D.T.; Nie, X.R.; Gan, R.Y.; Guo, H.; Fu, Y.; Yuan, Q.; Zhang, Q.; Qin, W. In Vitro Digestion and Fecal Fermentation Behaviors of a Pectic Polysaccharide from Okra (Abelmoschus esculentus) and Its Impacts on Human Gut Microbiota. Food Hydrocoll. 2021, 114, 106577. [Google Scholar] [CrossRef]
- Bai, S.; Chen, H.; Zhu, L.; Liu, W.; Yu, H.D.; Wang, X.; Yin, Y. Comparative Study on the in Vitro Effects of Pseudomonas aeruginosa and Seaweed Alginates on Human Gut Microbiota. PLoS ONE 2017, 12, e0171576. [Google Scholar] [CrossRef]
- Tang, R.; Yu, H.; Ruan, Z.; Zhang, L.; Xue, Y.; Yuan, X.; Qi, M.; Yao, Y. Effects of Food Matrix Elements (Dietary Fibres) on Grapefruit Peel Flavanone Profile and on Faecal Microbiota during in Vitro Fermentation. Food Chem. 2022, 371, 131065. [Google Scholar] [CrossRef]
- Havlik, J.; Marinello, V.; Gardyne, A.; Hou, M.; Mullen, W.; Morrison, D.J.; Preston, T.; Combet, E.; Edwards, C.A. Dietary Fibres Differentially Impact on the Production of Phenolic Acids from Rutin in an In Vitro Fermentation Model of the Human Gut Microbiota. Nutrients 2020, 12, 1577. [Google Scholar] [CrossRef]
- Mansoorian, B.; Combet, E.; Alkhaldy, A.; Garcia, A.L.; Ann Edwards, C. Impact of Fermentable Fibres on the Colonic Microbiota Metabolism of Dietary Polyphenols Rutin and Quercetin. Int. J. Environ. Res. Public Health 2019, 16, 292. [Google Scholar] [CrossRef] [PubMed]
- Koutsos, A.; Lima, M.; Conterno, L.; Gasperotti, M.; Bianchi, M.; Fava, F.; Vrhovsek, U.; Lovegrove, J.A.; Tuohy, K.M. Effects of Commercial Apple Varieties on Human Gut Microbiota Composition and Metabolic Output Using an In Vitro Colonic Model. Nutrients 2017, 9, 533. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.N.; Ranadheera, C.S.; Fang, Z.; Ajlouni, S. Interaction between Chocolate Polyphenols and Encapsulated Probiotics during In Vitro Digestion and Colonic Fermentation. Fermentation 2022, 8, 253. [Google Scholar] [CrossRef]
- De Rochefort, L.; Vial, L.; Fodil, R.; Maître, X.; Louis, B.; Isabey, D.; Caillibotte, G.; Thiriet, M.; Bittoun, J.; Durand, E.; et al. In Vitro Validation of Computational Fluid Dynamic Simulation in Human Proximal Airways with Hyperpolarized 3He Magnetic Resonance Phase-Contrast Velocimetry. J. Appl. Physiol. 2007, 102, 2012–2023. [Google Scholar] [CrossRef]
- Lenoir, M.; Martín, R.; Torres-Maravilla, E.; Chadi, S.; González-Dávila, P.; Sokol, H.; Langella, P.; Chain, F.; Bermúdez-Humarán, L.G. Butyrate Mediates Anti-Inflammatory Effects of Faecalibacterium Prausnitzii in Intestinal Epithelial Cells through Dact3. Gut Microbes 2020, 12, 1826748. [Google Scholar] [CrossRef]
- Lopes, M.; Abrahim, B.; Veiga, F.; Seiça, R.; Cabral, L.M.; Arnaud, P.; Andrade, J.C.; Ribeiro, A.J. Preparation Methods and Applications behind Alginate-Based Particles. Expert Opin. Drug Deliv. 2017, 14, 769–782. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Serrano, J.; Tabernero, M.; Arranz, S.; Díaz-Rubio, M.E.; García-Diz, L.; Goñi, I.; Saura-Calixto, F. Bioavailability of Phenolic Antioxidants Associated with Dietary Fiber: Plasma Antioxidant Capacity after Acute and Long-Term Intake in Humans. Plant Foods Hum. Nutr. 2009, 64, 102–107. [Google Scholar] [CrossRef]
- Sorrenti, V.; Ali, S.; Mancin, L.; Davinelli, S.; Paoli, A.; Scapagnini, G. Cocoa Polyphenols and Gut Microbiota Interplay: Bioavailability, Prebiotic Effect, and Impact on Human Health. Nutrients 2020, 12, 1908. [Google Scholar] [CrossRef]
- Todorovic, V.; Redovnikovic, I.R.; Todorovic, Z.; Jankovic, G.; Dodevska, M.; Sobajic, S. Polyphenols, Methylxanthines, and Antioxidant Capacity of Chocolates Produced in Serbia. J. Food Compos. Anal. 2015, 41, 137–143. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, J.; Henning, S.M.; Lee, R.; Hsu, M.; Grojean, E.; Pisegna, R.; Ly, A.; Heber, D.; Li, Z. Dietary Pomegranate Extract and Inulin Affect Gut Microbiome Differentially in Mice Fed an Obesogenic Diet. Anaerobe 2017, 48, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.D.; Yanckello, L.M.; Chlipala, G.; Hammond, T.C.; McCulloch, S.D.; Parikh, I.; Sun, S.; Morganti, J.M.; Green, S.J.; Lin, A.L. Dietary Inulin Alters the Gut Microbiome, Enhances Systemic Metabolism and Reduces Neuroinflammation in an APOE4 Mouse Model. PLoS ONE 2019, 14, e0221828. [Google Scholar] [CrossRef] [PubMed]
- Romo-Araiza, A.; Gutiérrez-Salmeán, G.; Galván, E.J.; Hernández-Frausto, M.; Herrera-López, G.; Romo-Parra, H.; García-Contreras, V.; Fernández-Presas, A.M.; Jasso-Chávez, R.; Borlongan, C.V.; et al. Probiotics and Prebiotics as a Therapeutic Strategy to Improve Memory in a Model of Middle-Aged Rats. Front. Aging Neurosci. 2018, 10, 424150. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Saettone, P.; Franchini, M.C.; Villar, C.J.; Lombó, F. Antitumor Bioactivity and Gut Microbiota Modulation of Polyhydroxybutyrate (PHB) in a Rat Animal Model for Colorectal Cancer. Int. J. Biol. Macromol. 2022, 203, 638–649. [Google Scholar] [CrossRef]
- Liu, Y.; Weng, P.; Liu, Y.; Wu, Z.; Wang, L.; Liu, L. Citrus Pectin Research Advances: Derived as a Biomaterial in the Construction and Applications of Micro/Nano-Delivery Systems. Food Hydrocoll. 2022, 133, 107910. [Google Scholar] [CrossRef]
- Rodríguez-Daza, M.C.; Roquim, M.; Dudonné, S.; Pilon, G.; Levy, E.; Marette, A.; Roy, D.; Desjardins, Y. Berry Polyphenols and Fibers Modulate Distinct Microbial Metabolic Functions and Gut Microbiota Enterotype-Like Clustering in Obese Mice. Front. Microbiol. 2020, 11, 561538. [Google Scholar] [CrossRef] [PubMed]
- Kuda, T.; Hirano, S.; Yokota, Y.; Eda, M.; Takahashi, H.; Kimura, B. Effect of Depolymerized Sodium Alginate on Salmonella Typhimurium Infection in Human Enterocyte-like HT-29-Luc Cells and BALB/c Mice. J. Funct. Foods 2017, 28, 122–126. [Google Scholar] [CrossRef]
- Takei, M.N.; Kuda, T.; Taniguchi, M.; Nakamura, S.; Hajime, T.; Kimura, B. Detection and Isolation of Low Molecular Weight Alginate- and Laminaran-Susceptible Gut Indigenous Bacteria from ICR Mice. Carbohydr. Polym. 2020, 238, 116205. [Google Scholar] [CrossRef]
- An, C.; Yazaki, T.; Takahashi, H.; Kuda, T.; Kimura, B. Diet-Induced Changes in Alginate- and Laminaran-Fermenting Bacterial Levels in the Caecal Contents of Rats. J. Funct. Foods 2013, 5, 389–394. [Google Scholar] [CrossRef]
- Kilua, A.; Han, K.H.; Fukushima, M. Effect of Polyphenols Isolated from Purple Sweet Potato (Ipomoea batatas cv. Ayamurasaki) on the Microbiota and the Biomarker of Colonic Fermentation in Rats Fed with Cellulose or Inulin. Food Funct. 2020, 11, 10182–10192. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Li, X.; Hou, C.; Chen, L.; Zhang, Y.; Li, J. Effects of Pomegranate Peel Polyphenols Combined with Inulin on Gut Microbiota and Serum Metabolites of High-Fat-Induced Obesity Rats. J. Agric. Food Chem. 2023, 71, 5733–5744. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Sasaki, H.; Miyakawa, H.; Nakayama, Y.; Lyu, Y.; Shibata, S. Effect of Dose and Timing of Burdock (Arctium lappa) Root Intake on Intestinal Microbiota of Mice. Microorganisms 2020, 8, 220. [Google Scholar] [CrossRef]
- Tan, C.; Wang, M.; Kong, Y.; Wan, M.; Deng, H.; Tong, Y.; Lyu, C.; Meng, X. Anti-Inflammatory and Intestinal Microbiota Modulation Properties of High Hydrostatic Pressure Treated Cyanidin-3-Glucoside and Blueberry Pectin Complexes on Dextran Sodium Sulfate-Induced Ulcerative Colitis Mice. Food Funct. 2022, 13, 4384–4398. [Google Scholar] [CrossRef] [PubMed]
- Nagai, F.; Morotomi, M.; Sakon, H.; Tanaka, R. Parasutterella excrementihominis gen. nov., sp. nov., a Member of the Family Alcaligenaceae Isolated from Human Faeces. Int. J. Syst. Evol. Microbiol. 2009, 59, 1793–1797. [Google Scholar] [CrossRef]
- Di Filippo, M.; Chiasserini, D.; Gardoni, F.; Viviani, B.; Tozzi, A.; Giampà, C.; Costa, C.; Tantucci, M.; Zianni, E.; Boraso, M.; et al. Effects of Central and Peripheral Inflammation on Hippocampal Synaptic Plasticity. Neurobiol. Dis. 2013, 52, 229–236. [Google Scholar] [CrossRef]
- Kim, H.J.; White, P.J. In Vitro Fermentation of Oat Flours from Typical and High β-Glucan Oat Lines. J. Agric. Food Chem. 2009, 57, 7529–7536. [Google Scholar] [CrossRef]
- Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.H.; Forslund, K.; Hildebrand, F.; Prifti, E.; Falony, G.; et al. Human Gut Microbes Impact Host Serum Metabolome and Insulin Sensitivity. Nature 2016, 535, 376–381. [Google Scholar] [CrossRef]
- Fan, P.; Liu, P.; Song, P.; Chen, X.; Ma, X. Moderate Dietary Protein Restriction Alters the Composition of Gut Microbiota and Improves Ileal Barrier Function in Adult Pig Model. Sci. Rep. 2017, 7, 43412. [Google Scholar] [CrossRef]
- Gómez-Gallego, C.; Pohl, S.; Salminen, S.; De Vos, W.M.; Kneifel, W. Akkermansia Muciniphila: A Novel Functional Microbe with Probiotic Properties. Benef. Microbes 2016, 7, 571–584. [Google Scholar] [CrossRef]
- Sabater, C.; Molina-Tijeras, J.A.; Vezza, T.; Corzo, N.; Montilla, A.; Utrilla, P. Intestinal Anti-Inflammatory Effects of Artichoke Pectin and Modified Pectin Fractions in the Dextran Sulfate Sodium Model of Mice Colitis. Artificial Neural Network Modelling of Inflammatory Markers. Food Funct. 2019, 10, 7793–7805. [Google Scholar] [CrossRef] [PubMed]
- Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of Gut Microbiota in Type 2 Diabetes Pathophysiology. eBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef] [PubMed]
- Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M.; et al. Cross-Talk between Akkermansia Muciniphila and Intestinal Epithelium Controls Diet-Induced Obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [Google Scholar] [CrossRef]
- Den Besten, G.; Bleeker, A.; Gerding, A.; Van Eunen, K.; Havinga, R.; Van Dijk, T.H.; Oosterveer, M.H.; Jonker, J.W.; Groen, A.K.; Reijngoud, D.J.; et al. Short-Chain Fatty Acids Protect Against High-Fat Diet–Induced Obesity via a PPARγ-Dependent Switch From Lipogenesis to Fat Oxidation. Diabetes 2015, 64, 2398–2408. [Google Scholar] [CrossRef] [PubMed]
- Kuda, T.; Kosaka, M.; Hirano, S.; Kawahara, M.; Sato, M.; Kaneshima, T.; Nishizawa, M.; Takahashi, H.; Kimura, B. Effect of Sodium-Alginate and Laminaran on Salmonella Typhimurium Infection in Human Enterocyte-like HT-29-Luc Cells and BALB/c Mice. Carbohydr. Polym. 2015, 125, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Serena, C.; Ceperuelo-Mallafré, V.; Keiran, N.; Queipo-Ortuño, M.I.; Bernal, R.; Gomez-Huelgas, R.; Urpi-Sarda, M.; Sabater, M.; Pérez-Brocal, V.; Andrés-Lacueva, C.; et al. Elevated Circulating Levels of Succinate in Human Obesity Are Linked to Specific Gut Microbiota. ISME J. 2018, 12, 1642–1657. [Google Scholar] [CrossRef] [PubMed]
- De Vadder, F.; Kovatcheva-Datchary, P.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metab. 2016, 24, 151–157. [Google Scholar] [CrossRef]
- Lai, S.; Molfino, A.; Testorio, M.; Perrotta, A.M.; Currado, A.; Pintus, G.; Pietrucci, D.; Unida, V.; La Rocca, D.; Biocca, S.; et al. Effect of Low-Protein Diet and Inulin on Microbiota and Clinical Parameters in Patients with Chronic Kidney Disease. Nutrients 2019, 11, 3006. [Google Scholar] [CrossRef]
- Druart, C.; Dewulf, E.M.; Cani, P.D.; Neyrinck, A.M.; Thissen, J.P.; Delzenne, N.M. Gut Microbial Metabolites of Polyunsaturated Fatty Acids Correlate with Specific Fecal Bacteria and Serum Markers of Metabolic Syndrome in Obese Women. Lipids 2014, 49, 397–402. [Google Scholar] [CrossRef]
- Kolida, S.; Meyer, D.; Gibson, G.R. A Double-Blind Placebo-Controlled Study to Establish the Bifidogenic Dose of Inulin in Healthy Humans. Eur. J. Clin. Nutr. 2007, 61, 1189–1195. [Google Scholar] [CrossRef]
- Cuervo, A.; Valdés, L.; Salazar, N.; De Los Reyes-Gavilán, C.G.; Ruas-Madiedo, P.; Gueimonde, M.; González, S. Pilot Study of Diet and Microbiota: Interactive Associations of Fibers and Polyphenols with Human Intestinal Bacteria. J. Agric. Food Chem. 2014, 62, 5330–5336. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson-Smith, V.; Dellschaft, N.; Ansell, J.; Hoad, C.; Marciani, L.; Gowland, P.; Spiller, R. Mechanisms Underlying Effects of Kiwifruit on Intestinal Function Shown by MRI in Healthy Volunteers. Aliment. Pharmacol. Ther. 2019, 49, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Medina-Vera, I.; Sanchez-Tapia, M.; Noriega-López, L.; Granados-Portillo, O.; Guevara-Cruz, M.; Flores-López, A.; Avila-Nava, A.; Fernández, M.L.; Tovar, A.R.; Torres, N. A Dietary Intervention with Functional Foods Reduces Metabolic Endotoxaemia and Attenuates Biochemical Abnormalities by Modifying Faecal Microbiota in People with Type 2 Diabetes. Diabetes Metab. 2019, 45, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Haro, C.; Montes-Borrego, M.; Rangel-Zúñiga, O.A.; Alcalã-Diaz, J.F.; Gamez-Delgado, F.; Pérez-Martinez, P.; Delgado-Lista, J.; Quintana-Navarro, G.M.; Tinahones, F.J.; Landa, B.B.; et al. Two Healthy Diets Modulate Gut Microbial Community Improving Insulin Sensitivity in a Human Obese Population. J. Clin. Endocrinol. Metab. 2016, 101, 233–242. [Google Scholar] [CrossRef]
- Rebello, C.J.; Burton, J.; Heiman, M.; Greenway, F.L. Gastrointestinal Microbiome Modulator Improves Glucose Tolerance in Overweight and Obese Subjects: A Randomized Controlled Pilot Trial. J. Diabetes Complicat. 2015, 29, 1272–1276. [Google Scholar] [CrossRef]
- Li, H.; Li, T.; Beasley, D.A.E.; Heděnec, P.; Xiao, Z.; Zhang, S.; Li, J.; Lin, Q.; Li, X. Diet Diversity Is Associated with Beta but Not Alpha Diversity of Pika Gut Microbiota. Front. Microbiol. 2016, 7, 1169. [Google Scholar] [CrossRef]
- Murphy, K.G.; Bloom, S.R. Gut Hormones and the Regulation of Energy Homeostasis. Nature 2006, 444, 854–859. [Google Scholar] [CrossRef]
- Tang, W.H.W.; Wang, Z.; Li, X.S.; Fan, Y.; Li, D.S.; Wu, Y.; Hazen, S.L. Increased Trimethylamine N-Oxide Portends High Mortality Risk Independent of Glycemic Control in Patients with Type 2 Diabetes Mellitus. Clin. Chem. 2017, 63, 297–306. [Google Scholar] [CrossRef]
Extraction Technique | By-Products | Experimental Design | Extraction | Reference | ||
---|---|---|---|---|---|---|
Experimental Variables | Optimal Conditions | Optimal Predicted or Experimental | ||||
HT | Citrus limetta peel | BBD | Temperature | 112.2 °C | 23.80% | [21] |
Time | 17.1 min | |||||
Ratio liquid–solid | 14.3 mL/g | |||||
MAE | Tomato peel | BBD | Power | 900 W | 25.42% | [22] |
Time | 3.34 min | |||||
Temperature | 88.7 °C | |||||
Grapefruit peel | CCD | Time | 125 s, | 38% | [23] | |
Power | 550 W | |||||
Ratio liquid–solid | 1:25 g/L | |||||
Orange peel | CCD | Time | 3 min | 24.20% | [24] | |
Power | 500 W | |||||
OhAE | Tomato peel | BBD | Voltage | 60 V | 10.65% | [22] |
Time | 5 min | |||||
Temperature | 60 °C | |||||
Grapefruit/lemon/orange peel | BBD | Time | 180 min. | [25] | ||
Ratio liquid–solid | 1:40 mg/L | 18% Grapefruit | ||||
Voltage | 9 V/cm | 18% Lemon | ||||
Temperature | 80 °C | 14% Orange | ||||
UAE | Tomato peel | BBD | Power | 600 W | 15.21% | [22] |
Time | 8.61 min | |||||
Temperature | 60 °C | |||||
Grapefruit wastes | BBD | Time | 30 min | 26% | [26] | |
Temperature | 80 °C | |||||
Power | 130 W | |||||
Frequency | 20 kHz | |||||
Tomato peel (UAME) | BBD | Power | 450 W | 18% | [22] | |
Time | 8 min | |||||
Temperature | 85.1 °C | |||||
Tomato peel (UAOhE) | BBD | Temperature | 68.9 °C | 14.60% | [22] | |
Time | 5 min | |||||
Voltage | 60 V | |||||
Pomegranate peel (celullase treatment pretreated with ultrasounds) | BBD | Ultrasound time | 10 min | 25.3% | [27] | |
Ratio liquid–solid | 15 mL/g | |||||
Celullase | 55 U/g | |||||
Celullase treatment time | 6 h | |||||
HPP-alkali assisted | Citrus peels | BBD | Pressure | 500 MPa | 34% | [28] |
pH | 12 | |||||
Extraction by citric acid | Citrus limetta peels | BBD | Temperature | 90 °C | 22.03% | [29] |
pH | 1.8 | |||||
Time | 95 min | |||||
Ratio solid–liquid | 30 v/w | |||||
Clementine peel | BBD | Temperature | 85 °C | 34.94% | [30] | |
Solution pH | 8 | |||||
Extraction time | 2 h |
Bioactive Compounds | Donors’ Characteristics | Experimental Conditions | Microbiota Modulation | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Temperature | Fermentation Time | Sampling Time | Atmosphere Conditions | Concentration Inoculum | ||||||
Inulin from seaweed | 3 healthy donors | 37 °C | 24 h | 6, 12, 24 h | - | 10% (w/v) | (+) Bifidobacterium, Lactobacillus and Clostridium coccoides | [43] | ||
Commercial inulin | 3 healthy male and 2 female donors (23–39 years of age) | 37 °C | 24 h | 0, 12, 24 h | 85% N2, 10% CO2, and 5% H2 | 2% (v/v) | (+) Bifidobacterium, Lactobacillus, Bacteroides and Faecalibacterium prausnitzii | [44] | ||
Commercial inulin | 3 healthy individuals (62–66 years of age) | 37 °C | 48 h | 0, 5, 10, 24, 30, 48 h | - | 1:10 (w/w) | (+) Bifidobacteria and Lactobacillus | [45] | ||
(−) Clostridium butyricum | ||||||||||
Pectin from apple pomace | 3 healthy male donors (28–50 years of age) and 3 male CD patients (24–60 years of age). | 37 °C | 48 h | 0, 8, 24, 48 h | 10% (v/v) H2, 10% CO2 and 80% N2 | 10% (v/v) | (+) Akkermansia, Lachnospiraceae UCG-010, Prevotella, Sucinivibrio and Turicibacter on samples from healthy donors | [46] | ||
(+) Blautia, Lachnospiraceae CAG-56, Dialister, Eubacterium eligens and Intestinimonas from IBD patients | ||||||||||
Pectin from Kiwano peels | 3 healthy male donors | 37 °C | 48 h | Every 10 min | 5% CO2, 15% H2 and 80% N2 | 10% (v/v) | (+) Akkermansia, Bacteroides, Bifidobacterium Feacalibacterium and Roseburia | [47] | ||
Citrus pectin | 7 male and 3 female donors (26–42 years of age) | 37 °C | 24 h | - | 85% N2, 5% CO2, and 10% H2 | 20% (v/v) | (+) Anaerostipes sp. and Bacteroides uniformis | [48] | ||
Pectin from Okra fruit | 10 healthy donors (18–30 years of age) | 37 °C | 48 h | 6, 12, 24, 48 h | 10% (v/v) H2, 10% CO2 and 80% N2 | 10% (w/v) | (+) Bacteroides, Phascolarctobacterium, Megasphaer and Lachnoclostridium | [49] | ||
(−) Firmicutes Bilophila and Fusobacterium | ||||||||||
Alginate | 5 healthy donors (24–27 years of age) | 37 °C | 72 h | 24, 48, 72 h | - | 10% (w/v) | (+) Bacteroides | [50] | ||
(−) Klebsiella and Prevotella | ||||||||||
Pectins and inulin from grapefruit peel powder | 5 healthy female donors (24–27 years of age) | 37 °C | 24 h | 0, 6, 12, 24 h | - | 10% (w/v) | Pectin (+) Clostridium leptum and Lactobacillus spp. | Inulin (+) Bacteroides spp. | Pectin and inulin (+) Bacteroides spp., Lactobacillus spp. and Clostridium leptum | [51] |
Pectin (−) Enterococcus sp. | Inulin (−) Firmicutes | Pectin and inulin (−) Enterococcus sp. and Firmicutes | ||||||||
Coadministration of pectins and polyphenols from commercial extracts | 2 healthy male and 1 healthy female donors (27 years of age) | 37 °C | 24 h | 0, 6, 24 h | 10% (v/v) H2, 10% CO2 and 80% N2 | 10% (v/v) | Polyphenols: (+) Bacteroidetes and Prevotella | [52] | ||
Pectin: (+) Faecalibacterium prausnitzii population | ||||||||||
Polyphenols and pectins: (+) Roseburia, Christensenellaceae, Ruminococcaceae, Lactobacillus and decreased Bacteroides and Prevotella | ||||||||||
Coadministration of pectins and polyphenols from commercial extracts | 10 healthy donors (19–33 years of age) | 37 °C | 24 h | 0, 2, 4, 6 and 24 h | 10% (v/v) H2, 10% CO2 and 80% N2 | 32% (v/v) | The effect of pectin was inhibited by almost all of the phenolic acids produced by the interaction of rutin/quercetin and microbiota | [53] | ||
Coadministration of pectins, inulin and polyphenols from commercial apples | 2 healthy male and 1 female donors (30–50 years of age) | 37 °C | 24 h | 0, 5, 10 and 24 h | - | 10% (w/v) | (+) Faecalibacterium prausnitzii | [54] | ||
(−) Bacteroidetes and Prevotella | ||||||||||
(+) Actinobacteria and Bifidobacterium | ||||||||||
Cocoa polyphenols encapsulated with inulin | 3 healthy donors (32 years of age) | 37 °C | 72 h | Every 4 h | 10% (v/v) H2, 10% CO2 and 80% N2 | 1:1 (w/v) | (+) Bifibacterium, Lactobacillus, Akkermansia and Bacteroides | [55] | ||
Group 1: 45% cocoa powder | Group 2: 70% cocoa powder | |||||||||
Cocoa polyphenols encapsulated with inulin and alginate | 3 healthy donors (32 years of age) | 37 °C | 72 h | Every 4 h | 10% (v/v) H2, 10% CO2 and 80% N2 | 1:1 (w/v) | (+) Bifibacterium, Lactobacillus, Akkermansia and Bacteroides (−) Klebsiella and Prevotella | |||
Group 1: 45% cocoa powder | Group 2: 70% cocoa powder |
Bioactive Compounds | Animal Models | Treatment | Microbiota Modulation | Ref. |
---|---|---|---|---|
Inulin | 24 C57BL/6J male mice fed with high-fat and high-sucrose diet (HF/HS diet) | Group 1 | (+) Verrucomicrobia (−) Firmicutes, Fusobacteria and Proteobacteria Major effects on group 4 | [62] |
Group 2 | ||||
Group 3 | ||||
Group 4 | ||||
Inulin | 30 C57BL/6 and APOE4 mice | Group 1 | - | [63] |
Group 2 | (+) Prevotella and Lactobacillus (−) Escherichia, Turicibacter and Akkermansia | |||
Inulin | 52 Sprague-Dawley rats | Group 1 | - | [64] |
Group 2 | (+) Lactobacillus and Clostridium butyricum (−) Lactobacillus helveticus. Major effects on group 4. | |||
Group 3 | ||||
Group 4 | ||||
Inulin | 30 male Fischer rats with colorectal cancer induced | Group 1 | - | [65] |
Group 2 | (+) Firmicutes, Lactobacillaceae, Clostridiaceae, Eubacteriaceae, Peptococcaceae or Sutterellaceae (−) Proteobacteria | |||
Group 3 | ||||
Pectin | 35 male ICR obese induced mice | Group 1 | - | [66] |
Group 2 | - | |||
Group 3 | (+) Ratio Bacteroides/Firmicutes (−) Proteobacteria, Muribaculaceae, Lachnospiraceae, Clostridium, Rikenellaceae, Ruminiclostridium | |||
Group 4 | ||||
Group 5 | ||||
Group 6 | - | |||
Pectin | 72 C57BL/6J obese induced male mice | Group 1 | - | [67] |
Group 2 | (+) Gut Microbial Richness and Diversity in HFHS-Fed Mice (−) Firmicutes Verrucomicrobia and Actinobacteria Phyla in HFHS Fed Mice | |||
Group 3 | ||||
Group 4 | ||||
Group 5 | ||||
Group 6 | - | |||
Alginate | 18 five-week-old male BALB/c mice | Group 1 | - | [68] |
Group 2 | (−) Salmonella and Staphylococcus. | |||
Group 3 | Higher in effect than HD-NA | |||
18 five-week-old male ICR mice | Group 1 | - | [69] | |
Group 2 | (+) Bacteroidetes and Bacteroides (−) Firmicutes | |||
Group 3 | ||||
24 five-week-old male ICR mice | Group 1 | - | [70] | |
Group 2 | (+) Bacteroides, Bifidobacteria and Prevotella (−) Clostridium | |||
Group 3 | - | |||
Group 4 | - | |||
Commercial inulin and polyphenols from purple sweet potato | 344 male Fisher rats weighing 125–155 g. | Group 1 | - | [71] |
Group 2 | (+) Dorea (−) Parabacteroides and Coproccus. | |||
Group 3 | (+) Dorea (−) Oscillopora and Bacteroides | |||
Group 4 | (+) Dorea (−) Osicllopora, Parabacteroides, Coproccus and Bacteroides | |||
Polyphenols and inulin from pomergranate | 40 male Fisher rats with induced diabetes type 2 | Group 1 | - | [72] |
Group 2 | - | |||
Group 3 | (+) Bacteroides (−) Firmicutes | |||
Group 4 | (+) Roseburia, Christensenellaceae, Ruminococcaceae, Lactobacillus, Bacteroides, and Allobaculum (−) Blautia and Firmicutes | |||
Group 5 | (+) Roseburia, Christensenellaceae, Ruminococcaceae, Lactobacillus, Bacteroides, and Allobaculum (−) Blautia and Firmicutes | |||
Inulins and pectins from Burdock root | 20 ICR male mice | Group 1 | - | [73] |
Group 2 | (+) Rodococcus (−) Oscillospira | |||
Group 3 | (+) The ratio Bacteroides/Firmicutes (−) Ruminococcus and Lactoccoccus. | |||
Group 4 | (+) The ratio Bacteroides/Firmicutes (−) Ruminococcus Oscillospira and Lactoccoccus | |||
Pectins and polyphenols from blueberry | 36 BALB/c mice were randomly divided into 6 groups. They were given dextran sodium sulfate (DSS)-induced colitis. | Group 1 | - | [74] |
Group 2 | (+) Firmicutes and Verrumicrobia (−) Bacteroides and Actinobacteria | |||
Group 3 | Higher in effect than group 2. | |||
Group 4 | (+) Actinobacteria (−) Verrumicrobia and Firmicutes | |||
Group 5 | (+) Proteobacteria and Actinobacteria (−) Bacteroides, Firmicutes and Verrumicrobia | |||
Group 6 | - |
Bioactive Compounds | Human Subjects | Treatment | Microbiota Modulation | Ref. |
---|---|---|---|---|
Commercial inulin | 16 patients with CKD stage 3G–4G Kidney Disease. | Group 1 | minor effects compared to group 2 | [88] |
Group 2 | (+) Bifidobacterium (−) Enterobacteriaceae. | |||
Commercial inulin | Obese women with 3 months of treatment | Group 1 | - | [90] |
Group 2 | (+) Bifidobacterium spp., Faecalibacterium prausnitzii, Anaerostipes caccae and Lactobacillus spp. (−) Roseburia spp. | |||
Commercial inulin | 30 participants between 23 and 29 years of age | Group 1 | (+) Bifidobacterium, Cellulomonas, Nesterenkonia, Brevibacterium (−) Lachnospira, Oscillospira. Major effects on group 2 | [91] |
Group 2 | ||||
Fruits pectin | 38 healthy adults between 56 and 67 years of age | Group 1 | (+) Akkermansia, Lactobacillus, Bacteroides and Bifidobacterium. (−) Clostridium leptum and Bifidobacterium cocoides | [92] |
Group 2 | ||||
Kiwi pectin | 14 participants (between 18 and 65 years of age) | Group 1 | - | [93] |
Group 2 | (+) Lactobacillus and Bifidobacteria. | |||
Inulin and pectin | Patients with T2D for 1–7 years and between 30 and 60 years of age and a healthy control group of subjects between 20 and 40 year of age | Group 1 | (+) Faecalibacterium prausnitzii, Akkermansia muciniphila, Bifidobacterium longum, Bacteroides fragilis. (−) Prevotella copri. | [94] |
Group 2 | ||||
Inulin and pectin | 20 obese patients (men) CORDIOPREV study | Group 1 | (+) Roseburia, Oscillospira, Parabacteroides distasonis in Mediterranean diet (−) Prevotella in Mediterranean diet | [95] |
Group 2 | (+) Faecalibacterium prausnitzi in LFHCC diet (−) Roseburia in LFHCC diet | |||
Coadministration of commercial inulin and polyphenols from blueberry | 30 individuals, between 18 and 70 years of age | Group 1 | - | [96] |
Group 2 | (+) Faecalibacterium prausnitzii Bifidobacterium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Expósito-Almellón, X.; Duque-Soto, C.; López-Salas, L.; Quirantes-Piné, R.; de Menezes, C.R.; Borrás-Linares, I.; Lozano-Sánchez, J. Non-Digestible Carbohydrates: Green Extraction from Food By-Products and Assessment of Their Effect on Microbiota Modulation. Nutrients 2023, 15, 3880. https://doi.org/10.3390/nu15183880
Expósito-Almellón X, Duque-Soto C, López-Salas L, Quirantes-Piné R, de Menezes CR, Borrás-Linares I, Lozano-Sánchez J. Non-Digestible Carbohydrates: Green Extraction from Food By-Products and Assessment of Their Effect on Microbiota Modulation. Nutrients. 2023; 15(18):3880. https://doi.org/10.3390/nu15183880
Chicago/Turabian StyleExpósito-Almellón, Xavier, Carmen Duque-Soto, Lucía López-Salas, Rosa Quirantes-Piné, Cristiano Ragagnin de Menezes, Isabel Borrás-Linares, and Jesús Lozano-Sánchez. 2023. "Non-Digestible Carbohydrates: Green Extraction from Food By-Products and Assessment of Their Effect on Microbiota Modulation" Nutrients 15, no. 18: 3880. https://doi.org/10.3390/nu15183880
APA StyleExpósito-Almellón, X., Duque-Soto, C., López-Salas, L., Quirantes-Piné, R., de Menezes, C. R., Borrás-Linares, I., & Lozano-Sánchez, J. (2023). Non-Digestible Carbohydrates: Green Extraction from Food By-Products and Assessment of Their Effect on Microbiota Modulation. Nutrients, 15(18), 3880. https://doi.org/10.3390/nu15183880