Association between Alcohol Consumption and Metabolic Dysfunction-Associated Steatotic Liver Disease Based on Alcohol Flushing Response in Men: The Korea National Health and Nutrition Examination Survey 2019–2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Alcohol Flushing Response
2.3. Alcohol Consumption
2.4. Metabolic Dysfunction-Associated Steatotic Liver Disease
2.5. Covariates
2.6. Statistical Analysis
2.7. Ethics Consideration
3. Results
3.1. Characteristics of Study Participants
3.2. Association between Alcohol Consumption and MASLD Risk by LAP
3.3. Association between Alcohol Consumption and MASLD Risk by HSI
3.4. Association between Alcohol Consumption and MASLD Risk by NFLS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cobbina, E.; Akhlaghi, F. Metabolic dysfunction-associated steatotic liver disease (MASLD)—Pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev. 2017, 49, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Malnick, S.D.H.; Alin, P.; Somin, M.; Neuman, M.G. Fatty liver disease-alcoholic and Metabolic associated: Similar but different. Int. J. Mol. Sci. 2022, 23, 16226. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Lim Si En, R.; Wong Kang Min, D. Psychosocial Motivators for Moderate Drinking among Young Asian Flushers in Singapore. Int. J. Environ. Res. Public Health 2019, 16, 1897. [Google Scholar] [CrossRef]
- Seo, Y.R.; Kim, J.S.; Kim, S.S.; Jung, J.G.; Yoon, S.J. Association between Alcohol Consumption and Metabolic Syndrome Determined by Facial Flushing in Korean Women. Korean J. Fam. Med. 2021, 42, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-Y.; Kim, S.-S.; Kim, J.-S.; Jung, J.-G.; Kwon, B.-R.; Ryou, Y.-I. Relationship between Alcohol Consumption and Metabolic Syndrome according to Facial Flushing in Korean Males. Korean J. Fam. Med. 2012, 33, 211–218. [Google Scholar] [CrossRef]
- Jung, J.-G.; Kim, J.-S.; Yoon, S.-J.; Oh, M.-K. Relationships among Alcohol Consumption, Facial Flushing Response, and Metabolic Syndrome in Healthy Men. Ann. Epidemiol. 2012, 22, 480–486. [Google Scholar] [CrossRef]
- Zhong, S.; Li, L.; Liang, N.; Zhang, L.; Xu, X.; Chen, S.; Yin, H. Acetaldehyde Dehydrogenase 2 regulates HMG-CoA reductase stability and cholesterol synthesis in the liver. Redox Biol. 2021, 41, 101919. [Google Scholar] [CrossRef]
- Chen, C.H.; Ferreira, J.C.; Gross, E.R.; Mochly-Rosen, D. Targeting Aldehyde Dehydrogenase 2: New Therapeutic Opportunities. Physiol. Rev. 2014, 94, 1–34. [Google Scholar] [CrossRef]
- Li, H.; Borinskaya, S.; Yoshimura, K.; Kal’ina, N.; Marusin, A.; Stepanov, V.A.; Qin, Z.; Khaliq, S.; Lee, M.Y.; Yang, Y.; et al. Re-fined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Ann. Hum. Genet. 2009, 73, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Lee, G.B.; Yim, S.Y.; Cho, K.H.; Shin, K.E.; Kim, J.H.; Park, Y.G.; Han, K.D.; Kim, Y.H. Non-Alcoholic Fatty Liver Disease Defined by Fatty Liver Index and Incidence of Heart Failure in the Korean Population: A Nationwide Cohort Study. Diagnostics 2022, 12, 663. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Chon, N.R.; Lim, H.C.; Lee, K.S.; Han, K.H.; Chon, C.Y.; Park, Y.N.; Paik, Y.H. Transitional features of histologic type of Metabolic dysfunction-associated steatotic liver disease in Korean young men. J. Gastroenterol. Hepatol. 2012, 27, 142–148. [Google Scholar] [CrossRef]
- Kang, S.Y.; Kim, Y.J.; Park, H.S. Trends in the prevalence of Metabolic dysfunction-associated steatotic liver disease and its future predictions in Korean men, 1998–2035. J. Clin. Med. 2020, 9, 2626. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Seyedi, S.A.; Nabipoorashrafi, S.A.; Rabizadeh, S.; Sarzaeim, M.; Yadegar, A.; Mohammadi, F.; Bahri, R.A.; Pakravan, P.; Shafiekhani, P.; et al. Lipid accumulation product (LAP) index for the diagnosis of nonalcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis. Lipids Health Dis. 2023, 22, 41. [Google Scholar] [CrossRef]
- Park, S.K.; Ryoo, J.-H.; Choi, J.-M.; Seo, M.W.; Park, C.M. The Risk of Abdominal Obesity according to the Degree of Metabolic dysfunction-associated steatotic liver disease in Korean Men. J. Korean Med. Sci. 2016, 31, 410–416. [Google Scholar] [CrossRef]
- Song, D.S.; Chang, U.I.; Choi, S.; Jung, Y.D.; Han, K.; Ko, S.-H.; Ahn, Y.-B.; Yang, J.M. Heavy Alcohol Consumption with Alcoholic Liver Disease Accelerates Sarcopenia in Elderly Korean Males: The Korean National Health and Nutrition Examination Survey 2008-2010. PLoS ONE 2016, 11, e0163222. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Y.; Luo, H.; Lin, R. The lipid accumulation product is a powerful tool to diagnose metabolic dysfunction-associated fatty liver disease in the United States adults. Front. Endocrinol. 2022, 13, 977625. [Google Scholar] [CrossRef]
- Yu, M.W.; Chang, H.C.; Chang, S.C.; Liaw, Y.F.; Lin, S.M.; Liu, C.J.; Lee, S.D.; Lin, C.L.; Chen, P.J.; Lin, S.C.; et al. Role of re-productive factors in hepatocellular carcinoma: Impact on hepatitis B- and C-related risk. Hepatology 2003, 38, 1393–1400. [Google Scholar] [CrossRef]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. Can. Med. Assoc. J. 2005, 172, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Goossens, N.; Negro, F. Insulin resistance, Metabolic dysfunction-associated steatotic liver disease and hepatitis C virus infection. Rev. Recent Clin. Trials 2014, 9, 204–209. [Google Scholar] [CrossRef]
- Kim, S.-K.; Bae, J.; Choe, J.-Y. The relationship between alcohol consumption and knee osteoarthritis in Korean population over 50 years-old: Results from Korea National Health and Nutrition Examination Survey. Medicine 2021, 100, e24746. [Google Scholar] [CrossRef]
- Heo, I.R.; Kim, T.H.; Jeong, J.H.; Heo, M.; Ju, S.M.; Yoo, J.-W.; Lee, S.J.; Cho, Y.J.; Jeong, Y.Y.; Lee, J.D.; et al. Impact of Alcohol Consumption on Quality of Life, Depressive Mood and Metabolic Syndrome in Obstructive Lung Disease Patients: Analysis of Data from Korean National Health and Nutrition Examination Survey from 2014 and 2016. Tuberc. Respir. Dis. 2023, 86, 111–119. [Google Scholar] [CrossRef]
- Hong, J.W.; Noh, J.H.; Kim, D.-J. The prevalence of and factors associated with high-risk alcohol consumption in Korean adults: The 2009–2011 Korea National Health and Nutrition Examination Survey. PLoS ONE 2017, 12, e0175299. [Google Scholar] [CrossRef]
- Hyeon, J.H.; Gwak, J.S.; Hong, S.W.; Kwon, H.; Oh, S.-W.; Lee, C.M. Relationship between bone mineral density and alcohol consumption in Korean men: The Fourth Korea National Health and Nutrition Examination Survey (KNHANES), 2008–2009. Asia Pac. J. Clin. Nutr. 2016, 25, 308–315. [Google Scholar]
- Greenfield, T.K.; Kerr, W.C. Alcohol measurement methodology in epidemiology: Recent advances and opportunities. Addiction 2008, 103, 1082–1099. [Google Scholar] [CrossRef]
- Tamaki, N.; Ajmera, V.; Loomba, R. Non-invasive methods for imaging hepatic steatosis and their clinical importance in MASLD. Nat. Rev. Endocrinol. 2021, 18, 55–66. [Google Scholar] [CrossRef]
- Ajmera, V.; Loomba, R. Imaging biomarkers of MASLD, NASH, and fibrosis. Mol. Metab. 2021, 50, 101167. [Google Scholar] [CrossRef]
- Kim, J.-H.; Jung, D.-H.; Kwon, Y.-J.; Lee, J.-I.; Shim, J.-Y. The impact of the sleep duration on MASLD score in Korean middle-aged adults: A community-based cohort study. Sleep Med. 2019, 57, 144–150. [Google Scholar] [CrossRef]
- Chang, J.W.; Lee, H.W.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Han, K.-H.; Kim, S.U. Hepatic Steatosis Index in the Detection of Fatty Liver in Patients with Chronic Hepatitis B Receiving Antiviral Therapy. Gut Liver 2021, 15, 117–127. [Google Scholar] [CrossRef]
- Jung, J.Y.; Shim, J.-J.; Park, S.K.; Ryoo, J.-H.; Choi, J.-M.; Oh, I.-H.; Jung, K.-W.; Cho, H.; Ki, M.; Won, Y.-J.; et al. Serum ferritin level is associated with liver steatosis and fibrosis in Korean general population. Hepatol. Int. 2018, 13, 222–233. [Google Scholar] [CrossRef]
- Han, A.L. Association between metabolic associated fatty liver disease and osteoarthritis using data from the Korean national health and nutrition examination survey (KNHANES). Inflammopharmacology 2021, 29, 1111–1118. [Google Scholar] [CrossRef]
- Kim, H.M.; Lee, Y.-H. The leg fat to total fat ratio is associated with lower risks of Metabolic dysfunction-associated steatotic liver disease and less severe hepatic fibrosis: Results from nationwide surveys (KNHANES 2008–2011). Endocrinol. Metab. 2021, 36, 1232–1242. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Park, S.; Kim, S.; Koh, H. Normal serum alanine aminotransferase and non-alcoholic fatty liver disease among Korean adolescents: A cross-sectional study using data from KNHANES 2010–2015. BMC Pediatr. 2018, 18, 215. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-H.; Kim, S.U.; Song, K.J.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Lee, B.-W.; Kang, E.S.; Cha, B.-S.; Han, K.-H. Sarcopenia is associated with significant liver fibrosis independently of obesity and insulin resistance in nonalcoholic fatty liver disease: Nationwide surveys (KNHANES 2008–2011). Hepatology 2016, 63, 776–786. [Google Scholar] [CrossRef]
- Kim, S.K.; Hong, S.H.; Chung, J.H.; Cho, K.B. Association between alcohol consumption and metabolic syndrome in a com-munity-based cohort of Korean adults. Med. Sci. Monit. 2017, 23, 2104–2110. [Google Scholar] [CrossRef]
- Weng, G.; Dunn, W. Effect of alcohol consumption on nonalcoholic fatty liver disease. Transl. Gastroenterol. Hepatol. 2019, 4, 70. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 101133. [Google Scholar] [CrossRef]
- Yang, S.J.; Wang, H.Y.; Li, X.Q.; Du, H.Z.; Zheng, C.J.; Chen, H.G.; Mu, X.Y.; Yang, C.X. Genetic polymorphisms of ADH2 and ALDH2 association with esophageal cancer risk in southwest China. World J. Gastroenterol. 2007, 13, 5760–5764. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, C.; Xu, H.; Gao, Y. Aldehyde Dehydrogenase, Liver Disease and Cancer. Int. J. Biol. Sci. 2020, 16, 921–934. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Toth, E.; Cherrington, N.J. Alcohol Metabolism in the Progression of Human Metabolic associated Steatohepatitis. Toxicol. Sci. 2018, 164, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Baker, S.S.; Moylan, C.A.; Abdelmalek, M.F.; Guy, C.D.; Zamboni, F.; Wu, D.; Lin, W.; Liu, W.; Baker, R.D.; et al. Systematic transcriptome analysis reveals elevated expression of alcohol-metabolizing genes in MASLD livers. J. Pathol. 2016, 238, 531–542. [Google Scholar] [CrossRef]
- Seitz, H.K.; Bataller, R.; Cortez-Pinto, H.; Gao, B.; Gual, A.; Lackner, C.; Mathurin, P.; Mueller, S.; Szabo, G.; Tsukamoto, H. Alcoholic liver disease. Nat. Rev. Dis. Primers 2018, 4, 18; Erratum in Nat. Rev. Dis. Primers 2018, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Rumgay, H.; Murphy, N.; Ferrari, P.; Soerjomataram, I. Alcohol and Cancer: Epidemiology and Biological Mechanisms. Nutrients 2021, 13, 3173. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.-W.; Yang, T.-Y.; Teng, C.-S.; Lee, Y.-J.; Yu, M.-H.; Lee, H.-J.; Hsu, L.-S.; Wang, C.-J. Mulberry leaves extract ameliorates alcohol-induced liver damages through reduction of acetaldehyde toxicity and inhibition of apoptosis caused by oxidative stress signals. Int. J. Med Sci. 2021, 18, 53–64. [Google Scholar] [CrossRef]
- Ceni, E.; Mello, T.; Galli, A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism. World J. Gastroenterol. 2014, 20, 17756–17772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, S.-Y.; Brown, R.A.; Ren, J. Ethanol and acetaldehyde in alcoholic cardiomyopathy: From bad to ugly en route to oxidative stress. Alcohol 2004, 32, 175–186. [Google Scholar] [CrossRef]
- Pierantonelli, I.; Svegliati-Baroni, G. Nonalcoholic Fatty Liver Disease: Basic Pathogenetic Mechanisms in the Progression From NAFLD to NASH. Transplantation 2019, 103, e1–e13. [Google Scholar] [CrossRef]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of MASLD development and therapeutic strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef]
- Powell, E.E.; Wong, V.W.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef]
- Byrne, C.D.; Targher, G. MASLD: A multisystem disease. J. Hepatol. 2015, 62, S47–S64. [Google Scholar] [CrossRef]
- Mundi, M.S.; Velapati, S.; Patel, J.; Kellogg, T.A.; Abu Dayyeh, B.K.; Hurt, R.T. Evolution of MASLD and Its Management. Nutr. Clin. Pract. 2019, 35, 72–84. [Google Scholar] [CrossRef]
- Duell, P.B.; Welty, F.K.; Miller, M.; Chait, A.; Hammond, G.; Ahmad, Z.; Cohen, D.E.; Horton, J.D.; Pressman, G.S.; Toth, P.P.; et al. Nonalcoholic Fatty Liver Disease and Cardiovascular Risk: A Scientific Statement From the American Heart Association. Arter. Thromb. Vasc. Biol. 2022, 42, e168–e185. [Google Scholar] [CrossRef] [PubMed]
- Tanase, D.M.; Gosav, E.M.; Costea, C.F.; Ciocoiu, M.; Lacatusu, C.M.; Maranduca, M.A.; Ouatu, A.; Floria, M. The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J. Diabetes Res. 2020, 2020, 3920196. [Google Scholar] [CrossRef] [PubMed]
- VanderWeele, T.J.; Shpitser, I. A New Criterion for Confounder Selection. Biometrics 2011, 67, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Nobili, V.; Alkhouri, N.; Alisi, A.; Della Corte, C.; Fitzpatrick, E.; Raponi, M.; Dhawan, A. Nonalcoholic Fatty Liver Disease: A Challenge for Pediatricians. JAMA Pediatr. 2015, 169, 170–176. [Google Scholar] [CrossRef]
- Ekstedt, M.; Hagström, H.; Nasr, P.; Fredrikson, M.; Stål, P.; Kechagias, S.; Hultcrantz, R. Fibrosis stage is the strongest predictor for disease-specific mortality in MASLD after up to 33 years of follow-up. Hepatology 2015, 61, 1547–1554. [Google Scholar] [CrossRef]
Characteristics | Total (n = 5134) | Non-or-Infrequent Drinker (n = 1827) | Light-to-Heavy Drinker (n = 3307) | p-Value | ||
---|---|---|---|---|---|---|
Non-Flusher (n = 1270) | Flusher (n = 557) | Non-Flusher (n = 997) | Flusher (n = 2310) | |||
Age (y) | 42.92 (13) | 43.42 (13.33) | 39.08 (13.22) | 43.35 (12.88) | 43.48 (12.66) | 0.01 |
Body mass index (kg/m2) | 24.93 (3.61) | 24.77 (3.68) | 24.79 (4.14) | 24.87 (3.45) | 25.07 (3.48) | 0.46 |
Systolic blood pressure (mmHg) | 119.57 (13.44) | 117.3 (12.81) | 117.09 (13.18) | 119.82 (13.48) | 121.32 (13.55) | 0.06 |
Diastolic blood pressure (mmHg) | 78.82 (9.91) | 76.91 (9.45) | 77.31 (10.08) | 78.86 (9.74) | 80.21 (9.96) | <0.001 |
Total cholesterol (mg/dL) | 195.89 (36.46) | 193.98 (36.08) | 193.12 (36.07) | 195.61 (35.43) | 197.75 (37.1) | 0.32 |
Triglyceride (mg/dL) | 159.94 (140.6) | 140.87 (118.43) | 141.1 (101.66) | 161.44 (144.85) | 174.32 (155.86) | 0.09 |
High-density lipoprotein cholesterol (mg/dL) | 48.72 (11.42) | 46.07 (10.55) | 47.09 (10.63) | 49.04 (11.28) | 50.4 (11.81) | 0.01 |
Low-density lipoprotein cholesterol (mg/dL) | 115.18 (36.15) | 119.73 (34.75) | 117.82 (32.95) | 114.28 (36.03) | 112.48 (37.45) | 0.41 |
Fasting plasma glucose (mg/dL) | 99.82 (19.14) | 98.05 (17.83) | 98.07 (23.03) | 99.77 (17.49) | 99.77 (19.25) | 0.24 |
Alanine aminotransferase (IU/L) | 30.57 (25.84) | 29.74 (23.36) | 34.3 (38.51) | 28.35 (18.88) | 30.97 (25.41) | 0.07 |
Aspartate aminotransferase (IU/L) | 26.91 (17.72) | 25.28 (15.71) | 27.58 (24.52) | 26.55 (18.25) | 27.75 (16.23) | 0.12 |
HSI score | 33.76 (5.94) | 33.81 (6.16) | 34.26 (6.84) | 33.32 (5.6) | 33.8 (5.7) | 0.04 |
LAP score | 44.86 (49.5) | 38.83 (49.5) | 39.66 (41.92) | 44.77 (45.53) | 49.45 (52.47) | 0.04 |
NLFS score | −0.8 (0.86) | −0.88 (0.75) | −0.8 (1.13) | −0.79 (0.87) | −0.76 (0.82) | 0.08 |
Alcohol consumption | 3.22 (0.69) | 2.97 (0.88) | 2.94 (0.9) | 3.3 (0.6) | 3.4 (0.44) | <0.001 |
SMOKING | <0.001 | |||||
Non-smoker | 1395 (0.27) | 411 (0.34) | 270 (0.44) | 239 (0.24) | 475 (0.21) | |
Ex-smoker | 1900 (0.37) | 466 (0.38) | 190 (0.31) | 369 (0.37) | 875 (0.38) | |
Current smoker | 1839 (0.36) | 338 (0.28) | 152 (0.25) | 389 (0.39) | 960 (0.42) | |
EXERCISE | 0.03 | |||||
Non-exercise | 4248 (0.83) | 1027 (0.85) | 531 (0.87) | 789 (0.79) | 1901 (0.82) | |
Irregular exercise | 506 (0.1) | 129 (0.11) | 48 (0.08) | 106 (0.11) | 223 (0.1) | |
Regular exercise | 380 (0.07) | 59 (0.04) | 33 (0.05) | 102 (0.1) | 186 (0.08) |
Alcohol Consumption Level | Non–Flusher | Flusher | p for Interaction | ||
---|---|---|---|---|---|
aOR (95% CI) | p | aOR (95% CI) | p | ||
Age adjusted | |||||
Non-or-Infrequent Drinker | 1 (Ref.) | 0.020 | 1 (Ref.) | <0.001 | <0.001 |
Light-to-Heavy Drinker | 1.22 (1.03–1.44) | 1.47 (1.29–1.68) | |||
Multivariable adjusted * | |||||
Non-or-Infrequent Drinker | 1 (Ref.) | <0.001 | 1 (Ref.) | <0.001 | <0.001 |
Light-to-Heavy Drinker | 1.90 (1.51–2.40) | 2.35 (1.94–2.84) |
Alcohol Consumption Level | Non–Flusher | Flusher | p for Interaction | ||
---|---|---|---|---|---|
aOR (95% CI) | p | aOR (95% CI) | p | ||
Age adjusted | |||||
Non-or-Infrequent Drinker | 1 (Ref.) | 0.003 | 1 (Ref.) | <0.001 | 0.156 |
Light-to-Heavy Drinker | 1.06 (1.02–1.10) | 1.07 (1.04–1.10) | |||
Multivariable adjusted * | |||||
Non-or-Infrequent Drinker | 1 (Ref.) | 0.011 | 1 (Ref.) | <0.001 | 0.118 |
Light-to-Heavy Drinker | 1.05 (1.01–1.09) | 1.07 (1.04–1.11) |
Alcohol Consumption Level | Non–Flusher | Flusher | p for Interaction | ||
---|---|---|---|---|---|
aOR (95% CI) | p | aOR (95% CI) | p | ||
Age adjusted | |||||
Non-or-Infrequent Drinker | 1 (Ref.) | 0.003 | 1 (Ref.) | <0.001 | 0.111 |
Light-to-Heavy Drinker | 1.05 (1.02–1.09) | 1.05 (1.02–1.08) | |||
Multivariable adjusted * | |||||
Non-or-Infrequent Drinker | 1 (Ref.) | 0.011 | 1 (Ref.) | 0.006 | 0.102 |
Light-to-Heavy Drinker | 1.04 (1.01–1.08) | 1.03 (1.01–1.07) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, D.E.; Oh, S.N. Association between Alcohol Consumption and Metabolic Dysfunction-Associated Steatotic Liver Disease Based on Alcohol Flushing Response in Men: The Korea National Health and Nutrition Examination Survey 2019–2021. Nutrients 2023, 15, 3901. https://doi.org/10.3390/nu15183901
Kang DE, Oh SN. Association between Alcohol Consumption and Metabolic Dysfunction-Associated Steatotic Liver Disease Based on Alcohol Flushing Response in Men: The Korea National Health and Nutrition Examination Survey 2019–2021. Nutrients. 2023; 15(18):3901. https://doi.org/10.3390/nu15183901
Chicago/Turabian StyleKang, Dae Eon, and Si Nae Oh. 2023. "Association between Alcohol Consumption and Metabolic Dysfunction-Associated Steatotic Liver Disease Based on Alcohol Flushing Response in Men: The Korea National Health and Nutrition Examination Survey 2019–2021" Nutrients 15, no. 18: 3901. https://doi.org/10.3390/nu15183901
APA StyleKang, D. E., & Oh, S. N. (2023). Association between Alcohol Consumption and Metabolic Dysfunction-Associated Steatotic Liver Disease Based on Alcohol Flushing Response in Men: The Korea National Health and Nutrition Examination Survey 2019–2021. Nutrients, 15(18), 3901. https://doi.org/10.3390/nu15183901