Mitochondrial Function in Healthy Human White Adipose Tissue: A Narrative Review
Abstract
:1. Introduction
2. Mitochondria and White Adipose Tissue Depot Locations
3. White Adipose Tissue Mitochondria and Body Composition
4. White Adipose Tissue Mitochondria and “Interventions”
4.1. Exercice Training
4.2. Diet
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neamat-Allah, J.; Wald, D.; Hüsing, A.; Teucher, B.; Wendt, A.; Delorme, S.; Dinkel, J.; Vigl, M.; Bergmann, M.M.; Feller, S.; et al. Validation of Anthropometric Indices of Adiposity against Whole-Body Magnetic Resonance Imaging—A Study within the German European Prospective Investigation into Cancer and Nutrition (EPIC) Cohorts. PLoS ONE 2014, 9, e91586. [Google Scholar] [CrossRef] [PubMed]
- Guglielmi, V.; Sbraccia, P. Obesity phenotypes: Depot-differences in adipose tissue and their clinical implications. Eat Weight Disord. 2018, 23, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Kusminski, C.M.; Bickel, P.E.; Scherer, P.E. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat. Rev. Drug Discov. 2016, 15, 639–660. [Google Scholar] [CrossRef] [PubMed]
- Maffetone, P.B.; Rivera-Dominguez, I.; Laursen, P.B. Overfat and Underfat: New Terms and Definitions Long Overdue. Front. Public Health 2017, 4, 279. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, J.; Heiligensetzer, M.; Krakowski-Roosen, H.; Büchler, M.W.; Friess, H.; Martignoni, M.E. Cachexia Worsens Prognosis in Patients with Resectable Pancreatic Cancer. J. Gastrointest. Surg. 2008, 12, 1193–1201. [Google Scholar] [CrossRef]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Evans, W.J.; Morley, J.E.; Argilés, J.; Bales, C.; Baracos, V.; Guttridge, D.; Jatoi, A.; Kalantar-Zadeh, K.; Lochs, H.; Mantovani, G.; et al. Cachexia: A new definition. Clin. Nutr. 2008, 27, 793–799. [Google Scholar] [CrossRef]
- Agustsson, T.; Rydén, M.; Hoffstedt, J.; Van Harmelen, V.; Dicker, A.; Laurencikiene, J.; Isaksson, B.; Permert, J.; Arner, P. Mechanism of Increased Lipolysis in Cancer Cachexia. Cancer Res. 2007, 67, 5531–5537. [Google Scholar] [CrossRef]
- Dahlman, I.; Mejhert, N.; Linder, K.; Agustsson, T.; Mutch, D.M.; Kulyte, A.; Isaksson, B.; Permert, J.; Petrovic, N.; Nedergaard, J.; et al. Adipose tissue pathways involved in weight loss of cancer cachexia. Br. J. Cancer 2010, 102, 1541–1548. [Google Scholar] [CrossRef]
- Baracos, V.E.; Martin, L.; Korc, M.; Guttridge, D.C.; Fearon, K.C.H. Cancer-associated cachexia. Nat. Rev. Dis. Primers. 2018, 4, 17105. [Google Scholar] [CrossRef]
- Frigolet, M.E.; Gutiérrez-Aguilar, R. The colors of adipose tissue. GMM 2020, 156, 3932. [Google Scholar] [CrossRef] [PubMed]
- Saponaro, C.; Gaggini, M.; Carli, F.; Gastaldelli, A. The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients 2015, 7, 9453–9474. [Google Scholar] [CrossRef] [PubMed]
- Yépez, V.A.; Kremer, L.S.; Iuso, A.; Gusic, M.; Kopajtich, R.; Koňaříková, E.; Nadel, A.; Wachutka, L.; Prokisch, H.; Gagneur, J. OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. PLoS ONE 2018, 13, e0199938. [Google Scholar] [CrossRef] [PubMed]
- McBride, H.M.; Neuspiel, M.; Wasiak, S. Mitochondria: More Than Just a Powerhouse. Curr. Biol. 2006, 16, R551–R560. [Google Scholar] [CrossRef]
- Schöttl, T.; Kappler, L.; Braun, K.; Fromme, T.; Klingenspor, M. Limited Mitochondrial Capacity of Visceral Versus Subcutaneous White Adipocytes in Male C57BL/6N Mice. Endocrinology 2015, 156, 923–933. [Google Scholar] [CrossRef]
- Enzi, G.; Gasparo, M.; Biondetti, P.; Fiore, D.; Semisa, M.; Zurlo, F. Subcutaneous and visceral fat distribution according to sex, age, and overweight, evaluated by computed tomography. Am. J. Clin. Nutr. 1986, 44, 739–746. [Google Scholar] [CrossRef]
- Kaaman, M.; Sparks, L.M.; van Harmelen, V.; Smith, S.R.; Sjölin, E.; Dahlman, I.; Arner, P. Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia 2007, 50, 2526–2533. [Google Scholar] [CrossRef]
- Chella Krishnan, K.; Vergnes, L.; Acín-Pérez, R.; Stiles, L.; Shum, M.; Ma, L.; Mouisel, E.; Pan, C.; Moore, T.M.; Péterfy, M.; et al. Sex-specific genetic regulation of adipose mitochondria and metabolic syndrome by Ndufv2. Nat. Metab. 2021, 3, 1552–1568. [Google Scholar] [CrossRef]
- Nookaew, I.; Svensson, P.-A.; Jacobson, P.; Jernås, M.; Taube, M.; Larsson, I.; Andersson-Assarsson, J.C.; Sjöström, L.; Froguel, P.; Walley, A.; et al. Adipose Tissue Resting Energy Expenditure and Expression of Genes Involved in Mitochondrial Function Are Higher in Women than in Men. J. Clin. Endocrinol. Metab. 2013, 98, E370–E378. [Google Scholar] [CrossRef]
- Gudiksen, A.; Qoqaj, A.; Ringholm, S.; Wojtaszewski, J.; Plomgaard, P.; Pilegaard, H. Ameliorating Effects of Lifelong Physical Activity on Healthy Aging and Mitochondrial Function in Human White Adipose Tissue. J. Gerontol. Ser. A 2022, 77, 1101–1111. [Google Scholar] [CrossRef]
- Kraunsøe, R.; Boushel, R.; Hansen, C.N.; Schjerling, P.; Qvortrup, K.; Støckel, M.; Mikines, K.J.; Dela, F. Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity. J. Physiol. 2010, 588, 2023–2032. [Google Scholar] [CrossRef] [PubMed]
- Tchkonia, T.; Thomou, T.; Zhu, Y.; Karagiannides, I.; Pothoulakis, C.; Jensen, M.D.; Kirkland, J.L. Mechanisms and Metabolic Implications of Regional Differences among Fat Depots. Cell Metab. 2013, 17, 644–656. [Google Scholar] [CrossRef] [PubMed]
- Mendham, A.E.; Larsen, S.; George, C.; Adams, K.; Hauksson, J.; Olsson, T.; Fortuin-de Smidt, M.C.; Nono Nankam, P.A.; Hakim, O.; Goff, L.M.; et al. Exercise training results in depot-specific adaptations to adipose tissue mitochondrial function. Sci. Rep. 2020, 10, 3785. [Google Scholar] [CrossRef] [PubMed]
- Lindinger, P.W.; Christe, M.; Eberle, A.N.; Kern, B.; Peterli, R.; Peters, T.; Jayawardene, K.J.I.; Fearnley, I.M.; Walker, J.E. Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity. J. Proteom. 2015, 124, 79–87. [Google Scholar] [CrossRef]
- Ruschke, K.; Fishbein, L.; Dietrich, A.; Klöting, N.; Tönjes, A.; Oberbach, A.; Fasshauer, M.; Jenkner, J.; Schön, M.R.; Stumvoll, M.; et al. Gene expression of PPARγ and PGC-1α in human omental and subcutaneous adipose tissues is related to insulin resistance markers and mediates beneficial effects of physical training. Eur. J. Endocrinol. 2010, 162, 515–523. [Google Scholar] [CrossRef]
- Raajendiran, A.; Krisp, C.; Souza, D.P.D.; Ooi, G.; Burton, P.R.; Taylor, R.A.; Molloy, M.P.; Watt, M.J. Proteome analysis of human adipocytes identifies depot-specific heterogeneity at metabolic control points. Am. J. Physiol. -Endocrinol. Metab. 2021, 320, E1068–E1084. [Google Scholar] [CrossRef]
- Zuriaga, M.A.; Fuster, J.J.; Gokce, N.; Walsh, K. Humans and Mice Display Opposing Patterns of “Browning” Gene Expression in Visceral and Subcutaneous White Adipose Tissue Depots. Front. Cardiovasc. Med. 2017, 4, 27. [Google Scholar] [CrossRef]
- Fischer, B.; Schöttl, T.; Schempp, C.; Fromme, T.; Hauner, H.; Klingenspor, M.; Skurk, T. Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes. Am. J. Physiol. -Endocrinol. Metab. 2015, 309, E380–E387. [Google Scholar] [CrossRef]
- Wessels, B.; Honecker, J.; Schöttl, T.; Stecher, L.; Klingenspor, M.; Hauner, H.; Skurk, T. Adipose Mitochondrial Respiratory Capacity in Obesity is Impaired Independently of Glycemic Status of Tissue Donors. Obesity 2019, 27, 756–766. [Google Scholar] [CrossRef]
- Yin, X.; Lanza, I.R.; Swain, J.M.; Sarr, M.G.; Nair, K.S.; Jensen, M.D. Adipocyte Mitochondrial Function Is Reduced in Human Obesity Independent of Fat Cell Size. J. Clin. Endocrinol. Metab. 2014, 99, E209–E216. [Google Scholar] [CrossRef]
- Christe, M.; Hirzel, E.; Lindinger, A.; Kern, B.; von Flüe, M.; Peterli, R.; Peters, T.; Eberle, A.N.; Lindinger, P.W. Obesity Affects Mitochondrial Citrate Synthase in Human Omental Adipose Tissue. ISRN Obes. 2013, 2013, 826027. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Mendoza, R.; Rosas-Vargas, H.; Ramos-Cervantes, M.T.; Garcia-Zuniga, P.; Perez-Lorenzana, H.; Mendoza-Lorenzo, P.; Perez-Ortiz, A.C.; Estrada-Mena, F.J.; Miliar-Garcia, A.; Lara-Padilla, E.; et al. Dysregulation of mitochondrial function and biogenesis modulators in adipose tissue of obese children. Int. J. Obes. 2018, 42, 618–624. [Google Scholar] [CrossRef]
- Hansen, M.; Lund, M.T.; Gregers, E.; Kraunsøe, R.; Hall, G.V.; Helge, J.W.; Dela, F. Adipose tissue mitochondrial respiration and lipolysis before and after a weight loss by diet and RYGB. Obesity 2015, 23, 8. [Google Scholar] [CrossRef] [PubMed]
- Van Der Kolk, B.W.; Muniandy, M.; Kaminska, D.; Alvarez, M.; Ko, A.; Miao, Z.; Valsesia, A.; Langin, D.; Vaittinen, M.; Pääkkönen, M.; et al. Differential Mitochondrial Gene Expression in Adipose Tissue Following Weight Loss Induced by Diet or Bariatric Surgery. J. Clin. Endocrinol. Metab. 2021, 106, 1312–1324. [Google Scholar] [CrossRef]
- Moreno-Castellanos, N.; Guzmán-Ruiz, R.; Cano, D.A.; Madrazo-Atutxa, A.; Peinado, J.R.; Pereira-Cunill, J.L.; García-Luna, P.P.; Morales-Conde, S.; Socas-Macias, M.; Vázquez-Martínez, R.; et al. The Effects of Bariatric Surgery-Induced Weight Loss on Adipose Tissue in Morbidly Obese Women Depends on the Initial Metabolic Status. Obes. Surg. 2016, 26, 1757–1767. [Google Scholar] [CrossRef]
- Heinonen, S.; Buzkova, J.; Muniandy, M.; Kaksonen, R.; Ollikainen, M.; Ismail, K.; Hakkarainen, A.; Lundbom, J.; Lundbom, N.; Vuolteenaho, K.; et al. Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity. Diabetes 2015, 64, 3135–3145. [Google Scholar] [CrossRef]
- Gonzalez-Franquesa, A.; Gama-Perez, P.; Kulis, M.; Szczepanowska, K.; Dahdah, N.; Moreno-Gomez, S.; Latorre-Pellicer, A.; Fernández-Ruiz, R.; Aguilar-Mogas, A.; Hoffman, A.; et al. Remission of obesity and insulin resistance is not sufficient to restore mitochondrial homeostasis in visceral adipose tissue. Redox Biol. 2022, 54, 102353. [Google Scholar] [CrossRef]
- Ling, Y.; Carayol, J.; Galusca, B.; Canto, C.; Montaurier, C.; Matone, A.; Vassallo, I.; Minehira, K.; Alexandre, V.; Cominetti, O.; et al. Persistent low body weight in humans is associated with higher mitochondrial activity in white adipose tissue. Am. J. Clin. Nutr. 2019, 110, 605–616. [Google Scholar] [CrossRef]
- Larsen, S.; Danielsen, J.H.; Søndergård, S.D.; Søgaard, D.; Vigelsoe, A.; Dybboe, R.; Skaaby, S.; Dela, F.; Helge, J.W. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. Scand. J. Med. Sci. Sports 2015, 25, e59–e69. [Google Scholar] [CrossRef]
- Fritzen, A.; Thøgersen, F.; Thybo, K.; Vissing, C.; Krag, T.; Ruiz-Ruiz, C.; Risom, L.; Wibrand, F.; Høeg, L.; Kiens, B.; et al. Adaptations in Mitochondrial Enzymatic Activity Occurs Independent of Genomic Dosage in Response to Aerobic Exercise Training and Deconditioning in Human Skeletal Muscle. Cells 2019, 8, 237. [Google Scholar] [CrossRef]
- Mendham, A.E.; Goedecke, J.H.; Zeng, Y.; Larsen, S.; George, C.; Hauksson, J.; Fortuin-de Smidt, M.C.; Chibalin, A.V.; Olsson, T.; Chorell, E. Exercise training improves mitochondrial respiration and is associated with an altered intramuscular phospholipid signature in women with obesity. Diabetologia 2021, 64, 1642–1659. [Google Scholar] [CrossRef] [PubMed]
- Pino, M.F.; Parsons, S.A.; Smith, S.R.; Sparks, L.M. Active individuals have high mitochondrial content and oxidative markers in their abdominal subcutaneous adipose tissue: Transcriptional Markers in WAT with Training. Obesity 2016, 24, 2467–2470. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, C.; Schneeweiss, P.; Randrianarisoa, E.; Schnauder, G.; Kappler, L.; Machann, J.; Schick, F.; Fritsche, A.; Heni, M.; Birkenfeld, A.; et al. Response of Mitochondrial Respiration in Adipose Tissue and Muscle to 8 Weeks of Endurance Exercise in Obese Subjects. J. Clin. Endocrinol. Metab. 2020, 105, e4023–e4037. [Google Scholar] [CrossRef] [PubMed]
- Mandrup, C.M.; Roland, C.B.; Egelund, J.; Nyberg, M.; Enevoldsen, L.H.; Kjaer, A.; Clemmensen, A.; Christensen, A.N.; Suetta, C.; Frikke-Schmidt, R.; et al. Effects of High-Intensity Exercise Training on Adipose Tissue Mass, Glucose Uptake and Protein Content in Pre- and Post-menopausal Women. Front. Sports Act. Living 2020, 2, 60. [Google Scholar] [CrossRef]
- Tsiloulis, T.; Carey, A.L.; Bayliss, J.; Canny, B.; Meex, R.C.R.; Watt, M.J. No evidence of white adipocyte browning after endurance exercise training in obese men. Int. J. Obes. 2018, 42, 721–727. [Google Scholar] [CrossRef]
- Dreher, S.I.; Irmler, M.; Pivovarova-Ramich, O.; Kessler, K.; Jürchott, K.; Sticht, C.; Fritsche, L.; Schneeweiss, P.; Machann, J.; Pfeiffer, A.F.H.; et al. Acute and long-term exercise adaptation of adipose tissue and skeletal muscle in humans: A matched transcriptomics approach after 8-week training-intervention. Int. J. Obes. 2023, 47, 313–324. [Google Scholar] [CrossRef]
- Dohlmann, T.L.; Hindsø, M.; Dela, F.; Helge, J.W.; Larsen, S. High-intensity interval training changes mitochondrial respiratory capacity differently in adipose tissue and skeletal muscle. Physiol. Rep. 2018, 6, e13857. [Google Scholar] [CrossRef]
- Brandao, C.F.C.; de Carvalho, F.G.; Souza, A.d.O.; Junqueira-Franco, M.V.M.; Batitucci, G.; Couto-Lima, C.A.; Fett, C.A.; Papoti, M.; de Freitas, E.C.; Alberici, L.C.; et al. Physical training, UCP1 expression, mitochondrial density, and coupling in adipose tissue from women with obesity. Scand. J. Med. Sci. Sports 2019, 29, 1699–1706. [Google Scholar] [CrossRef]
- De Carvalho, F.G.; Brandao, C.F.C.; Batitucci, G.; Souza, A.D.O.; Ferrari, G.D.; Alberici, L.C.; Muñoz, V.R.; Pauli, J.R.; De Moura, L.P.; Ropelle, E.R.; et al. Taurine supplementation associated with exercise increases mitochondrial activity and fatty acid oxidation gene expression in the subcutaneous white adipose tissue of obese women. Clin. Nutr. 2021, 40, 2180–2187. [Google Scholar] [CrossRef]
- Silvennoinen, M.; Ahtiainen, J.P.; Hulmi, J.J.; Pekkala, S.; Taipale, R.S.; Nindl, B.C.; Laine, T.; Häkkinen, K.; Selänne, H.; Kyröläinen, H.; et al. PGC-1 isoforms and their target genes are expressed differently in human skeletal muscle following resistance and endurance exercise. Physiol. Rep. 2015, 3, e12563. [Google Scholar] [CrossRef]
- Møller, A.B.; Vendelbo, M.H.; Rahbek, S.K.; Clasen, B.F.; Schjerling, P.; Vissing, K.; Jessen, N. Resistance exercise, but not endurance exercise, induces IKKβ phosphorylation in human skeletal muscle of training-accustomed individuals. Pflug. Arch. -Eur. J. Physiol. 2013, 465, 1785–1795. [Google Scholar] [CrossRef] [PubMed]
- Camera, D.M.; Anderson, M.J.; Hawley, J.A.; Carey, A.L. Short-term endurance training does not alter the oxidative capacity of human subcutaneous adipose tissue. Eur. J. Appl. Physiol. 2010, 109, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Vink, R.G.; Roumans, N.J.; Fazelzadeh, P.; Tareen, S.H.K.; Boekschoten, M.V.; van Baak, M.A.; Mariman, E.C. Adipose tissue gene expression is differentially regulated with different rates of weight loss in overweight and obese humans. Int. J. Obes. 2017, 41, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Rabøl, R.; Svendsen, P.F.; Skovbro, M.; Boushel, R.; Haugaard, S.B.; Schjerling, P.; Schrauwen, P.; Hesselink, M.K.C.; Nilas, L.; Madsbad, S.; et al. Reduced skeletal muscle mitochondrial respiration and improved glucose metabolism in nondiabetic obese women during a very low calorie dietary intervention leading to rapid weight loss. Metabolism 2009, 58, 1145–1152. [Google Scholar] [CrossRef]
- Walton, C.M.; Jacobsen, S.M.; Dallon, B.W.; Saito, E.R.; Bennett, S.L.H.; Davidson, L.E.; Thomson, D.M.; Hyldahl, R.D.; Bikman, B.T. Ketones Elicit Distinct Alterations in Adipose Mitochondrial Bioenergetics. Int. J. Mol. Sci. 2020, 21, 6255. [Google Scholar] [CrossRef]
- Bikman, B.T.; Shimy, K.J.; Apovian, C.M.; Yu, S.; Saito, E.R.; Walton, C.M.; Ebbeling, C.B.; Ludwig, D.S. A high-carbohydrate diet lowers the rate of adipose tissue mitochondrial respiration. Eur. J. Clin. Nutr. 2022, 76, 1339–1342. [Google Scholar] [CrossRef]
- Jokinen, R.; Rinnankoski-Tuikka, R.; Kaye, S.; Saarinen, L.; Heinonen, S.; Myöhänen, M.; Rappou, E.; Jukarainen, S.; Rissanen, A.; Pessia, A.; et al. Adipose tissue mitochondrial capacity associates with long-term weight loss success. Int. J. Obes. 2018, 42, 817–825. [Google Scholar] [CrossRef]
- Venables, M.C.; Hulston, C.J.; Cox, H.R.; Jeukendrup, A.E. Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. Am. J. Clin. Nutr. 2008, 87, 778–784. [Google Scholar] [CrossRef]
- Dulloo, A.G.; Duret, C.; Rohrer, D.; Girardier, L.; Mensi, N.; Fathi, M.; Chantre, P.; Vandermander, J. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am. J. Clin. Nutr. 1999, 70, 1040–1045. [Google Scholar] [CrossRef]
Reference | Adipose Tissue Location | Population Characteristics | Mitochondrial Analysis | Tissue Comparison |
---|---|---|---|---|
Kraunsøe (2010) [21] | Visceral (omentum majus) vs. subcutaneous abdominal | 4 men and 16 women aged 41.1 ± 2.0 years BMI: 40.7 ± 1.3 kg·m−2 | Mitochondrial density | vAT > scAT |
Mitochondrial respiration | scAT > vAT | |||
Mendham (2020) [23] | Subcutaneous abdominal vs. subcutaneous gluteal | 35 black south African women aged 20–35 years BMI: 30–40 kg·m−2 | Mitochondrial respiration | x |
H2O2 production | glut scAT > abd scAT | |||
Ruschke (2010) [25] | Visceral vs. subcutaneous abdominal | Lean group 28 men and 30 women aged 50.2 ± 15.7 years BMI: 23.9 ± 1.4 kg·m−2 | Mitochondrial biogenesis | scAT > vAT |
SC obese 28 men and 30 women aged 55.3 ± 11.6 years BMI: 33.6 ± 6.8 kg·m−2 | ||||
Visceral obese 19 men and 18 women aged 64.4 ± 13.2 years BMI: 33.6 ± 6.1 kg·m−2 | ||||
Raajendiran (2021) [26] | Visceral vs. subcutaneous abdominal vs. gluteal subcutaneous | 5 women BMI: 47.3 ± 1.4 kg·m−2 | Mitochondrial dysfunction | abd scAT > vAT glut scAT > vAT glut scAT > abd scAT |
Zuriaga (2017) [27] | Visceral omental vs. subcutaneous abdominal | 8 men and 24 women aged 42 ± 2 years BMI: 43 ± 1 kg·m−2 | Browning markers | vAT > scAT |
Reference | Adipose Tissue Location | Population Characteristics | Mitochondrial Analysis | Mitochondrial Effects |
---|---|---|---|---|
Fischer (2015) [28] | Subcutaneous abdominal | 16 women aged 41 ± 13 years BMI: 18 to 36 kg·m−2 | Mitochondrial respiration | ↓ when BMI ↑ |
Wessels (2019) [29] | Subcutaneous abdominal and visceral | 27 women and 13 men aged 46 ± 13 years BMI: 21 to 70 kg·m−2 | Mitochondrial respiration | ↓ when BMI ↑ in scAT |
Kaaman (2007) [17] | Subcutaneous abdominal | 116 women and 32 men aged 39 ± 9 years BMI: 33 ± 7 kg·m−2 | Mitochondrial density | ↓ when BMI ↑ |
Yin (2014) [30] | Subcutaneous abdominal and visceral | 20 women and 19 men aged 25 to 75 years BMI: 17.8 to 58.0 kg·m−2 | Mitochondrial respiration | ↓ when BMI ↑ |
Mitochondrial density | ↓ when BMI ↑ | |||
Christe (2013) [31] | Visceral | 90 obese aged 48.7 ± 12.9 years BMI: 42.3 ± 7.0 kg·m−2 45 non-obese aged 62.8 ± 13.9 years BMI: 24.7 ± 3.0 kg·m−2 | Mitochondrial enzymatic activity | ↓ when BMI ↑ |
Zamora-Mendoza (2018) [32] | Subcutaneous abdominal | 5 lean boys Aged 10.0 ± 1.4 years BMI: 15.6 ± 1.3 kg·m−2 5 obese boys aged 10.8 ± 1.6 years BMI: 26 ± 2.8 kg·m−2 | Mitochondrial enzymatic activity | ↓ when BMI ↑ |
Hansen (2015) [33] | Subcutaneous abdominal | 19 women and 6 men aged 38 ± 2 years BMI: 42 ± 1 kg·m−2 | Mitochondrial respiration | ↑ after weight loss |
Mitochondrial density | = after weight loss | |||
Van Der Kolk (2021) [34] | Subcutaneous abdominal | 124 women and 48 men aged 48.3 ± 9.3 years BMI: 43.0 ± 5.2 kg·m−2 | Mitochondrial genes | ↑ after weight loss |
Moreno-Castellanos (2016) [35] | Subcutaneous abdominal | Normoglycemic 9 women aged 38.2 ± 92.8 years BMI: 47.8 ± 2.4 kg·m−2 | Mitochondrial proteins | ↓ after weight loss |
Insulin resistant 9 women Aged 44.1 ± 3.5 years BMI: 51.2 ± 1.7 kg·m−2 | Mitochondrial proteins | ↑ after weight loss | ||
Heinonen (2015) [36] | Subcutaneous abdominal | 17 women and 9 men Monozygotic twins aged 29.9 ± 0.9 years BMI (lean): 25.3 ± 0.9 kg·m−2 BMI (obese): 31.3 ± 1.0 kg·m−2 | Mitochondrial genes | ↓ in the obese twin compared to the lean co-twin |
Gonzalez-Franquesa (2022) [37] | Visceral | 19 women and 4 men BMI: 37.1 to 78.9 kg·m−2 | Mitochondrial genes | ↑ after weight loss |
Ling (2019) [38] | Subcutaneous abdominal | Constitutional thinness 14 women and 15 men aged 25.0 ± 4.7 years BMI: 16.96 ± 0.74 kg·m−2 Control 15 women and 14 men aged 22.6 ± 2.9 years BMI: 22.99 ± 1.03 kg·m−2 | Mitochondrial respiration | ↑ in constitutional thinness |
Reference | Exercise Modalities | Adipose Tissue Location | Population Characteristics | Mitochondrial Analysis | Mitochondrial Effects |
---|---|---|---|---|---|
Camera (2010) [52] | 10 consecutive days of alternate endurance and HIIT training Endurance exercise: Cycling at 70% VO2 max 60–90 min HIIT: Cycling at 90% VO2 max 6 × 5 min | Subcutaneous abdominal | 11 healthy non-endurance trained, non-smoking men aged 21.7 ± 0.7 years BMI: 24.3 ± 1.1 kg·m−2 | Mitochondrial enzymatic activity | X |
Browning gene expression | X | ||||
WAT oxidative capacity | X | ||||
Ruschke (2010) [25] | Endurance exercise 60 min of supervised training 20 min biking or running 20 min swimming 20 min warming up/cooling down 3 times/week 4 weeks | Visceral and subcutaneous abdominal | 60 Caucasian men and women Categorized into groups of glucose tolerance NGT: 9 men and 11 women aged 32.8 ± 11.0 years BMI: 24.3 ± 1.5 kg·m−2 IGT: 9 men and 11 women aged 56.0 ± 11.5 years BMI: 29.8 ± 3.9 kg·m−2 T2D: 11 men and 9 women aged 53.1 ± 6.7 years BMI: 31.4 ± 3.2 kg·m−2 | Gene expression in WAT: mitochondrial biogenesis | ↑ |
Larsen (2015) [39] | HIIT 15 min (60 s high/90 s low ×5) 3 times/week 6 weeks | Subcutaneous abdominal | 10 overweight untrained men (8) and women (2) aged 38 ± 3 years Weight: 100.1 ± 5.0 kg Fat: 37.9 ± 2.6% | High resolution respirometry | X |
Citrate synthase activity | X | ||||
Pino (2016) [42] | Endurance exercise 70 to 85% VO2 max 30 to 60 min 6 times/week 3 weeks | Subcutaneous abdominal | 9 sedentary men (3) and women (6) aged 29.33 ± 7.42 years BMI: 26.65 ± 1.97 kg·m−2 | Mitochondrial DNA copy | X |
7 active men aged 29.33 ± 7.42 years BMImin: 26.65 ± 1.97 kg·m−2 | Gene expression: beige adipose genes | X | |||
Tsiloulis (2017) [45] | Endurance exercise 30 min of cycle ergometer at 75% HRmax (3 sessions/week) Interval Session 5 to 7 series: 3 min 85% HRmax/3 min 65% HRmax (1 session/week) 4 times/week 6 weeks | Subcutaneous abdominal and gluteofemoral | 6 healthy overweight sedentary men aged 37.3 ± 2.3 years BMI: 30.1 ± 2.3 kg·m−2 | Gene expression: beige adipose genes | X |
Dreher (2023) [46] | Endurance exercise 1 h: 30 min of cycling and 30 min of walking on a treadmill at 80% VO2 max 3 times/week 8 weeks | Subcutaneous abdominal | 14 healthy sedentary women (8) and men (6) aged 27.90 ± 4.11 years BMI: 31.20 ± 3.67 kg·m−2 | High resolution respirometry | x |
Mitochondrial biogenesis | x | ||||
Dohlmann (2018) [47] | HIIT 7 bouts of 1 min intensity up to 90% VO2 max 3 times/week 6 weeks | Subcutaneous abdominal | 12 healthy sedentary men (5) and women (7) aged 40 ± 2 years BMI: 32 ± 3 kg·m−2 | High resolution respirometry | ↓ |
Mitochondrial DNA content | X | ||||
Brandao (2019) [48] | Alternating strength and endurance exercise 15 stations of 30 s (at least 10 repetitions) alternated with 30 s jogging 55 min/session 3 times/week 10 weeks | Subcutaneous abdominal | 14 sedentary women aged 35 ± 6 years BMI: 33 ± 3 kg·m−2 | High resolution respirometry | ↓ |
Citrate synthase activity | ↑ | ||||
Hoffman (2020) [43] | Strength exercise 80% VO2 max 30 min of walk and 30 min of bicycle 8 weeks | Subcutaneous abdominal | 25 healthy sedentary men (9) and women (16) aged 29.8 ± 8.4 years BMI: 31.5 ± 4.3 kg·m−2 | High resolution respirometry | X |
Mandrup (2020) [44] | Endurance training 53 min of bike exercise with 3 blocks of intensity 3 times/week 3 months | Abdominal and femoral subcutaneous | 40 pre-menopausal et 39 post-menopausal women aged 45 to 57 years BMI: 23.5 kg·m−2 | Western blot: OXPHOS | ↑ |
Mendham (2020) [23] | Endurance and strength training Endurance: 60–70% HRpeak Strength: 75–80% HRpeak 40 to 60 min 4 days/week 12 weeks | Subcutaneous abdominal and gluteal (liposuction) | 35 sedentary black South African women aged from 20 to 35 years BMI: 30 to 40 kg·m−2 | High resolution respirometry Mitochondrial DNA | X |
De Carvalho (2021) [49] | Endurance training and strength training 15 stations of resistance exercises for 30 s, 10 times alternated with 30 s of jogging Total volume: 55 min 75 to 90% of heart rate 3 times/week 8 weeks | Subcutaneous abdominal | 8 women aged 33.9 ± 1.9 years BMI: 32.4 ± 0.9 kg·m−2 | Fatty acid oxidation gene expression | ↑ |
Mitochondrial respiration | ↑ |
Reference | Intervention | Adipose Tissue Location | Population Characteristics | Mitochondrial Analysis | Mitochondrial Effects |
---|---|---|---|---|---|
Vink (2017) [53] | LCD 1250 kcal/day | Subcutaneous abdominal | 14 women and 13 men aged 51.7 ± 2.1 years BMI: 31.5 ± 0.5 kg·m−2 | OXPHOS and TCA (transcriptomic) | ↑ after weight loss ↓ during weight loss |
VLCD 500 kcal/day | 14 women and 12 men aged 50.4 ± 1.5 years BMI: 30.8 ± 0.4 kg·m−2 | OXPHOS and TCA (transcriptomic) | ↑ after weight loss ↓ during weight loss | ||
Kaaman (2007) [17] | LFD or HFD | Subcutaneous abdominal | 116 women and 32 men aged 39 ± 9 years BMI: 33 ± 7 kg·m−2 | Mitochondrial DNA copy number | = after weight loss |
Bikman (2022) [56] | High Carbohydrate Diet | Subcutaneous abdominal | 7 women and 3 men BMI: 30.0 ± 2.9 kg·m−2 | Mitochondrial respiration (high resolution respirometry) | ↓ after weight loss |
Van Der Kolk (2021) [34] | LCD 800 kcal/day | Subcutaneous abdominal | 203 women and 111 men aged 42.8 ± 6.6 years BMI: 27 to 45 kg·m−2 | OXPHOS (RNA sequencing) | ↓ after weight loss |
Jokinen (2017) [57] | VLCD | Subcutaneous | 6 weight loss subjects BMI: 35 ± 0.7 kg·m−2 | OXPHOS TCA (Transcriptomic) | Controls > weight losers |
Mitochondrial DNA copy number | ↓ after 12 months VLCD | ||||
Venables (2008) [58] | Green tea extract supplementation | / | 12 men aged 26 ± 2 years BMI: 23.9 ± 0.8 kg·m−2 | Fat oxidation | ↑ after ingestion of green tea extract |
Dulloo (1999) [59] | Green tea extract and caffeine | / | 10 men aged 25 ± 1 years BMI: 25.1 ± 1.2 kg·m−2 | Energy expenditure | ↑ after ingestion of green tea extract |
Fat oxidation | ↓ after ingestion of green tea extract | ||||
De Carvalho (2021) [49] | Taurine | Subcutaneous abdominal | 8 women aged 31.9 ± 2.1 years BMI: 34.1 ± 1.2 kg·m−2 | Fatty acid oxidation gene expression | ↑ after taurine supplementation |
Mitochondrial respiration | = after Taurine supplementation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrier, L.; Malpuech-Brugère, C.; Richard, R.; Touron, J. Mitochondrial Function in Healthy Human White Adipose Tissue: A Narrative Review. Nutrients 2023, 15, 4430. https://doi.org/10.3390/nu15204430
Guerrier L, Malpuech-Brugère C, Richard R, Touron J. Mitochondrial Function in Healthy Human White Adipose Tissue: A Narrative Review. Nutrients. 2023; 15(20):4430. https://doi.org/10.3390/nu15204430
Chicago/Turabian StyleGuerrier, Lisa, Corinne Malpuech-Brugère, Ruddy Richard, and Julianne Touron. 2023. "Mitochondrial Function in Healthy Human White Adipose Tissue: A Narrative Review" Nutrients 15, no. 20: 4430. https://doi.org/10.3390/nu15204430
APA StyleGuerrier, L., Malpuech-Brugère, C., Richard, R., & Touron, J. (2023). Mitochondrial Function in Healthy Human White Adipose Tissue: A Narrative Review. Nutrients, 15(20), 4430. https://doi.org/10.3390/nu15204430