Effectiveness of NCD-Related Fiscal Policies: Evidence from the Pacific
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Measures
2.2.1. Consumption of SSBs, Ultra-Processed Packaged Snacks, Fruits and Vegetables
2.2.2. Access to SSBs, Ultra-Processed Packaged Snacks, Fruits and Vegetables
2.2.3. Price Considerations
2.2.4. Self-Reported Body Mass Index (BMI)
2.2.5. Unhealthy Eating Attitudes
2.3. Statistical Analysis
2.4. Ethical Approval
3. Results
3.1. Sample Characteristics
3.2. Consumption and Access to Types of Food and Drink, by Country
3.3. Importance of Price as a Food Choice Motive, by Country
3.4. Attitudes toward Unhealthy Eating, by Country
3.5. Relationship between Consumption of Different Types of Food and Drink and Price as a Food Choice Motive, Household Access and Unhealthy Eating Attitudes
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Nagelkerke R Square | B | SE | Wald | p | OR | 95% CI | |
SSB | |||||||
Step 1 | 0.001 | ||||||
Price food choice | 0.079 | 0.044 | 3.233 | 0.072 | 1.083 | 0.993–1.181 | |
Step 2 | 0.136 | ||||||
Price food choice | 0.138 | 0.047 | 8.607 | 0.003 | 1.148 | 1.047–1.259 | |
House hold access | 0.637 | 0.033 | 375.207 | <0.001 | 1.891 | 1.773–2.017 | |
Ultra-processed Snacks | |||||||
Step 1 | 0.004 | ||||||
Price food choice | 0.167 | 0.046 | 13.068 | <0.001 | 1.182 | 1.080–1.294 | |
Step 2 | 0.106 | ||||||
Price food choice | 0.229 | 0.048 | 22.546 | <0.001 | 1.258 | 1.144–1.383 | |
House hold access | 0.570 | 0.034 | 277.005 | <0.001 | 1.769 | 1.654–1.892 | |
Fruits | |||||||
Step 1 | 0.000 | ||||||
Price food choice | 0.044 | 0.054 | 0.670 | 0.413 | 1.045 | 0.940–1.163 | |
Step 2 | 0.046 | ||||||
Price food choice | 0.038 | 0.055 | 0.487 | 0.485 | 1.039 | 0.933–1.158 | |
House hold access | 0.412 | 0.038 | 118.798 | <0.001 | 1.510 | 1.402–1.626 | |
Vegetables | |||||||
Step 1 | 0.007 | ||||||
Price food choice | 0.265 | 0.071 | 14.017 | <0.001 | 1.303 | 1.134–1.497 | |
Step 2 | 0.130 | ||||||
Price food choice | 0.787 | 0.052 | 225.181 | <0.001 | 2.198 | 1.136–1.516 | |
House hold access | −1.504 | 0.290 | 26.952 | <0.001 | 0.222 | 2.055–2.545 |
Appendix B
References
- Global Obesity Observatory. Ranking (% Obesity by Country). Available online: https://data.worldobesity.org/rankings/ (accessed on 2 April 2023).
- Helble, M.; Francisco, K. The Upcoming Obesity Crisis in Asia and the Pacific: First Cost Estimates. In ADBI Working Paper 743; Asian Development Bank Institute: Tokyo, Japan, 2017; 33p, Available online: https://www.adb.org/sites/default/files/publication/320411/adbi-wp743.pdf (accessed on 2 April 2023).
- World Health Organization. Non-Communicable Diseases Country Profiles 2018; World Health Organization: Geneva, Switzerland, 2018; 223p, Available online: https://apps.who.int/iris/handle/10665/274512 (accessed on 2 April 2023).
- Wright, S.M.; Aronne, L.J. Causes of obesity. Abdom. Imaging 2012, 37, 730–732. [Google Scholar] [CrossRef]
- Conn, C.; Cammock, R.; Ford, K.; Faesen Kloet, G. Pacific Food Systems: A Policy Review. New Zealand Institute for Pacific Research. 2019. Available online: https://apo.org.au/node/25629 (accessed on 15 March 2023).
- Farrell, P.; Thow, A.M.; Rimon, M.; Roosen, A.; Vizintin, P.; Negin, J. An analysis of healthy food access amongst women in peri-urban Honiara. Hawai’i J. Health Soc. Welf. 2021, 80, 33–40. [Google Scholar]
- Savage, A.; Bambrick, H.; McIver, L.; Gallegos, D. Climate change and socioeconomic determinants are structural constraints to agency in diet-related non-communicable disease prevention in Vanuatu: A qualitative study. BMC Public Health 2021, 21, 1231. [Google Scholar] [CrossRef] [PubMed]
- Snowdon, W.; Waqa, G.; Raj, A.; Kanungo, A.; Robinson, H. Non-Communicable Diseases and Health System Responses in Fiji; Health Policy and Health Finance Knowledge Hub, The Nossal Institute, University of Melbourne: Melbourne, Australia, 2013. [Google Scholar]
- World Health Organization Regional Office for the Western Pacific. Overweight and Obesity in the Western Pacific Region. Manila, Philippines; World Health Organization: Geneva, Switzerland, 2017; Available online: https://apps.who.int/iris/handle/10665/255475 (accessed on 15 March 2023).
- McDonald, A. Sugar-Sweetened Beverage Tax in the Pacific Island Countries and Territories: A Discussion Paper; Secretariat of the Pacific Community: Noumea, New Caledonia, 2015; Available online: https://purl.org/spc/digilib/doc/27w3g (accessed on 1 April 2023).
- Lock, K.; Pomerleau, J.; Causer, L.; Altmann, D.R.; McKee, M. The global burden of disease attributable to low consumption of fruit and vegetables: Implications for the global strategy on diet. Bull. World Health Organ. 2005, 83, 100–108. Available online: https://apps.who.int/iris/bitstream/handle/10665/269344/PMC2623811.pdf?sequence=1&isAllowed=y (accessed on 2 April 2023). [PubMed]
- Reeve, E.; Lamichhane, P.; McKenzie, B.; Waqa, G.; Webster, J.; Snowdon, W.; Bell, C. The tide of dietary risks for no communicable diseases in Pacific Islands: An analysis of population NCD surveys. BMC Public Health 2022, 22, 1521. [Google Scholar] [CrossRef]
- World Health Organisation. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; World Health Organization: Geneva, Switzerland, 2013; Available online: https://www.who.int/publications/i/item/9789241506236 (accessed on 15 March 2023).
- Bell, C.; Latu, C.; Cariakula, J.; Waqa, G.; Snowdon, W.; Moodie, M. Fruit and Vegetable import duty reduction in Fiji to prevent obesity and non-communicable diseases: A case study. Public Health Nutr. 2019, 23, 181–183. [Google Scholar] [CrossRef]
- Bercholz, M.; Ng, S.W.; Stacey, N.; Swart, E.C. Decomposing consumer and producer effects on sugar from beverage purchases after a sugar-based tax on beverages in South Africa. Econ. Hum. Biol. 2022, 46, 101136. [Google Scholar] [CrossRef]
- Cabrera Escobar, M.A.; Veerman, J.L.; Tollman, S.M.; Bertram, M.Y.; Hofman, K.J. Evidence that a tax on sugar sweetened beverages reduces the obesity rate: A meta-analysis. BMC Public Health 2013, 13, 1072. [Google Scholar] [CrossRef]
- Thow, A.M.; Downs, S.; Jan, S. A systematic review of the effectiveness of food taxes and subsidies to improve diets: Understanding the recent evidence. Nutr. Rev. 2014, 72, 551–565. [Google Scholar] [CrossRef]
- Dogbe, W.; Revoredo-Giha, C. Nutritional and environmental assessment of increasing the content of fruit and vegetables in the UK diet. Sustainability 2021, 13, 1076. [Google Scholar] [CrossRef]
- World Health Organization. Fiscal Policies for Diet and the Prevention of Noncommunicable Diseases; World Health Organization: Geneva, Switzerland, 2016; Available online: https://www.who.int/publications/i/item/9789241511247 (accessed on 27 April 2023).
- Reeve, E.; Thow, A.M.; Naohunu, S.; Bell, C.; Lal, A.; Sacks, G. Action oriented prospective policy analysis to inform the adoption of a fiscal policy to reduce diet-related disease in the Solomon Islands. Health Policy Plan. 2021, 36, 1257–1268. [Google Scholar] [PubMed]
- Dodd, R.; Reeve, E.; Sparks, E.; George, A.; Vivili, P.; Thu Win Tin, S.; Buresova, D.; Webster, J.; Thow, A. The politics of food in the Pacific: Coherence and tension in regional policies on nutrition, the food environment and non-communicable diseases. Public Health Nutr. 2019, 23, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Teng, A.; Snowdon, W.; Thu Win Tin, S.; Genc, M.; Na’ati, E.; Puloka, V.; Signal, L.; Wilson, N. Progress in the Pacific on sugar-sweetened beverage taxes: A systematic review of policy changes from 2000 to 2019. Aust. N. Z. J. Public Health 2021, 45, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Thow, A.M.; Quesyed, C.; Juventin, L.; Kun, R.; Khan, N.; Swinburn, B. Taxing soft drinks in the Pacific: Implementation lessons for improving health. Health Promot. Int. 2010, 26, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Snowdon, W.; Thow, A.M. Trade policy and obesity prevention: Challenges and innovation in the Pacific Islands. Obes. Rev. 2013, 14 (Suppl. S2), 150–158. [Google Scholar] [CrossRef]
- Thow, A.M.; Downs, A.M.; Mayes, C.; Trevena, H.; Waqanivalu, T.; Cawley, J. Fiscal policy to improve diets and prevent noncommunicable diseases: From recommendations to actions. Bull. World Health Organ. 2018, 96, 201–210. [Google Scholar] [CrossRef]
- Phillips, T.; Ravuvu, A.; McMichael, C.; Thow, A.M.; Browne, J.; Waqa, G.; Tutuo, J.; Gleeson, D. Nutrition policy-making in Fiji: Working in and around neoliberalisation in the Global South. Crit. Public Health 2021, 31, 316–326. [Google Scholar] [CrossRef]
- Mounsey, S.; Vaka, A.K.; Cama, T.; Waqa, G.; McKenzie, B.; Thow, A.M. Strengthening Sugar-Sweetened Beverage Taxation for Non-Communicable Disease Prevention: A Comparative Political Economy Analysis Case Study of Fiji and Tonga. Nutrients 2022, 14, 1212. [Google Scholar] [CrossRef]
- Latu, C.; Moodie, M.; Coriakula, J.; Waqa, G.; Snowdon, W.; Bell, C. Barriers and facilitators to food policy development in Fiji. Food Nutr. Policy 2018, 39, 621–631. [Google Scholar] [CrossRef]
- Food and Agricultural Organisation of the United Nations; Fiji National University Centre for the Prevention of Obesity and Non-communicable Diseases (C-POND). Effects of Food Taxation in Tonga: A Snapshot; Food and Agricultural Organisation: Rome, Italy; World Bank: Washington, DC, USA, 2017; Available online: https://www.fao.org/publications/card/en/c/559a7308-4550-4b56-89c8-f923eeb57345/ (accessed on 15 March 2023).
- Webster, J.; Pillay, A.; Suku, A.; Gohil, P.; Santos, J.A.; Schultz, J.; Wate, J.; Trieu, K.; Hope, S.; Snowdon, W.; et al. Process evaluation and costing of a multi-faceted population wide intervention to reduce salt consumption in Fiji. Nutrients 2018, 10, 155. [Google Scholar] [CrossRef]
- Webster, J.; Waqa, G.; Thow, A.M.; Allender, S.; Lung, T.; Woodward, M.; Rogers, K.; Tukana, I.; Kama, A.; Wilson, D.; et al. Scaling up food policies in the Pacific Islands: Protocol for policy engagement and mixed methods evaluation of intervention implementation. Nutr. J. 2022, 21, 8. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Implementing Fiscal and Pricing Policies to Promote Healthy Diets: A Review of Contextual Factors; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240035027 (accessed on 15 March 2023).
- Buksh, S.M.; de Wit, J.B.; Hay, P. Sociocultural Influences Contribute to Overeating and Unhealthy Eating: Creating and Maintaining an Obesogenic Social Environment in Indigenous Communities in Urban Fiji. Nutrients 2022, 14, 2803. [Google Scholar] [CrossRef] [PubMed]
- Buksh, S.M.; Hay, P.; deWit, J.B.F. Urban Fijian Indigenous Families’ Positive and Negative Diet, Eating and Food Purchasing Experiences During the COVID 19 Safety Protocols. J. Pac. Stud. 2021, 41, 31–53. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, M.; Decourten, M.; Pryor, J.; Saketa, S.; Waqanivalu, T.K.; Laqeretabua, A.; Chung, E. Fiji Non-Communicable Diseases (NCD) STEPS Survey 2002. 2002. Available online: https://microdata.pacificdata.org/index.php/catalog/121 (accessed on 15 April 2023).
- The University of the South Pacific. USP is One of Only Two Regional Universities in the World. Available online: https://www.usp.ac.fj/why-usp/ (accessed on 2 April 2023).
- De Vet, E.; De Ridder, D.; Stok, M.; Brunso, K.; Baban, A.; Gaspar, T. Assessing self-regulation strategies: Development and validation of the tempest self-regulation questionnaire for eating (TESQ-E) in adolescents. IJBNPA 2014, 11, 106. [Google Scholar] [CrossRef] [PubMed]
- Steptoe, A.; Pollard, T.M.; Wardle, J. Development of a measure of the motives underlying the selection of food: The food choice questionnaire. Appetite 1995, 25, 267–284. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 2 April 2023).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988; p. 567. [Google Scholar]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Mavoa, H.M.; McCabe, M. Sociocultural factors relating to Tongans’ and Indigenous Fijians’ patterns of eating, physical activity and body size. Asia Pac. J. Clin. Nutr. 2008, 17, 375–384. [Google Scholar]
- Singh, K.N.; Sendall, M.C.; Gurung, A.; Carne, P. Understanding socio-cultural influences on food intake in relation to overweight and obesity in a rural indigenous community of Fiji Islands. Health Promot. J. Aust. 2021, 32 (Suppl. S2), 301–307. [Google Scholar] [CrossRef]
- Buksh, S.M.; Hay, P.; de Wit, J.B.F. Perceptions on Healthy Eating Impact the Home Food Environment: A Qualitative Exploration of Perceptions of Indigenous Food Gatekeepers in Urban Fiji. Nutrients 2023, 15, 3875. [Google Scholar] [CrossRef]
- Craig, A.; Kool, J.; Nilles, E. The Pacific experience: Supporting small island countries and territories to meet their 2012 International Health Regulations (2005) commitments. Western Pac. Surveill. Response J. 2013, 4, 14–18. [Google Scholar] [CrossRef]
- Veatupu, L.; Puloka, V.; McKerchar, C.; Signal, L. Me’akai in Tonga: Exploring the nature and context of the food Tongan children eat in Ha’apai using wearable cameras. Int. J. Environ. Res. Public Health 2019, 16, 1681. [Google Scholar] [CrossRef] [PubMed]
Fiji n = 2500 | Kiribati n = 304 | Samoa n = 99 | Solomon Islands n = 753 | Tonga n = 130 | Vanuatu n = 317 | Total N = 4116 | p | |
---|---|---|---|---|---|---|---|---|
Age mean (SD) | 30.39 (10.87) | 28.92 (10.52) | 29.38 (10.98) | 28.88 (9.13) | 30.40 (8.38) | 31.15 (8.69) | 30.04 (10.34) | <0.001 |
Sex | <0.001 | |||||||
Female | 1716 (68.6%) | 226 (74.3) | 71 (71.7) | 430 (56.9) | 94 (72.3) | 201 (63.4) | 2738 (66.7) | |
Male | 784 (31.4%) | 78 (25.7) | 28 (28.3) | 323 (43.1) | 36 (27.7) | 116 (36.6) | 1368 (33.3) | |
Residence | <0.001 | |||||||
Urban | 2071 (82.7) | 262 (86.2) | 85 (85.9) | 654 (86.3) | 100 (76.9) | 233 (74.0) | 3405 (82.8) | |
Rural | 433 (17.3) | 42 (13.8) | 14 (14.1) | 107 (13.7) | 30 (23.1) | 82 (26.0) | 705 (17.2) | |
Education | <0.001 | |||||||
Primary school or lower | 44 (1.8) | 0 (0.0) | 2 (2.0) | 14 (1.8) | 0 (0.0) | 4 (1.3) | 64 (1.6) | |
high school or secondary | 586 (23.5) | 60 (19.7) | 22 (22.2) | 114 (15.0) | 24 (18.6) | 84 (26.5) | 890 (21.7) | |
Vocational training | 133 (5.3) | 36 (11.8) | 8 (8.1) | 42 (5.5%) | 19 (14.7) | 38 (12.0) | 276 (6.7) | |
University | 1731 (69.4) | 208 (68.4) | 67 (67.7) | 588 (77.6) | 86 (66.7) | 191 (60.3) | 2871 (70) | |
Number of people in household | <0.001 | |||||||
1–5 | 1727 (69.6) | 146 (47.7) | 68 (68.7) | 411 (54.7) | 50 (38.5) | 198 (62.9) | 2600 (63.7) | |
6–10 | 667 (26.9) | 132 (43.1) | 27 (27.3) | 272 (36.2) | 80 (61.5) | 109 (34.6) | 1287 (31.5) | |
11 or more | 88 (3.5) | 28 (9.2) | 4 (4.0) | 69 (9.2) | 0 (0.0) | 8 (2.5) | 197 (4.8) | |
BMI | n = 2289 | n = 271 | n = 96 | n = 614 | n = 118 | n = 272 | n = 3660 | <0.001 |
Underweight | 110 (4.8) | 0 (0.0) | 2 (2.1) | 41 (6.7) | 2 (1.7) | 13 (4.8) | 168 (4.6) | |
Normal Weight | 806 (35.2) | 69 (25.5) | 14 (14.6) | 208 (33.9) | 26 (22.0) | 80 (29.4) | 1203 (32.9) | |
Overweight | 593 (25.9) | 71 (26.2) | 26 (27.1) | 161 (26.2) | 21 (17.8) | 79 (29.0) | 951 (26) | |
Obese | 780 (34.1) | 131 (48.3) | 54 (56.3) | 204 (33.2) | 69 (58.5) | 100 (36.8) | 1338 (36.6) | |
Median | 26.56 | 29.07 | 31.12 | 26.34 | 33.39 | 27.56 | 27.04 |
Fiji | Kiribati | Samoa | Solomon Islands | Tonga | Vanuatu | Total | Cramer’s V | p | |
---|---|---|---|---|---|---|---|---|---|
% participants | |||||||||
SSBs | 0.091 | <0.001 | |||||||
less than 1 | 52.4 | 37.9 | 46.5 | 38.5 | 41.5 | 61.6 | 49.0 | ||
1 | 17.8 | 24.2 | 9.1 | 27.3 | 23.8 | 23.2 | 20.4 | ||
2 | 16.2 | 21.6 | 28.3 | 21.8 | 11.5 | 10.8 | 17.3 | ||
3 | 7.4 | 12.4 | 6.1 | 9.0 | 14.6 | 2.5 | 7.9 | ||
4 | 2.2 | 2.0 | 2.0 | 0.8 | 3.8 | 1.6 | 1.9 | ||
more than 4 | 4.1 | 2.0 | 8.1 | 2.7 | 4.6 | 0.3 | 3.5 | ||
Ultra-processed packaged snacks | 0.062 | <0.001 | |||||||
less than 1 | 36.7 | 20.9 | 29.3 | 32.5 | 22.3 | 35.9 | 34.1 | ||
1 | 24.8 | 24.8 | 26.3 | 24.1 | 21.5 | 26.3 | 24.7 | ||
2 | 21.7 | 31.4 | 20.2 | 24.1 | 27.7 | 23.8 | 23.2 | ||
3 | 10.7 | 16.3 | 10.1 | 12.3 | 17.7 | 9.8 | 11.5 | ||
4 | 2.6 | 1.3 | 4.0 | 2.9 | 4.6 | 2.5 | 2.7 | ||
more than 4 | 3.5 | 5.2 | 10.1 | 4.0 | 6.2 | 1.6 | 3.8 | ||
Fruits | 0.075 | <0.001 | |||||||
less than 1 | 22.6 | 19.1 | 22.2 | 16.4 | 19.2 | 17.7 | 20.7 | ||
1 | 31.3 | 27.6 | 34.3 | 22.5 | 34.6 | 28.4 | 29.4 | ||
2 | 27.2 | 35.5 | 25.3 | 32.1 | 23.1 | 37.2 | 29.3 | ||
3 | 12.6 | 15.1 | 10.1 | 17.4 | 10.8 | 9.1 | 13.3 | ||
4 | 2.5 | 1.3 | 8.1 | 5.3 | 6.2 | 3.8 | 3.3 | ||
more than 4 | 3.7 | 1.3 | 0.0 | 6.2 | 6.2 | 3.8 | 4.0 | ||
Vegetables | 0.078 | <0.001 | |||||||
less than 1 | 9.4 | 19.6 | 14.1 | 10.0 | 13.1 | 4.7 | 10.1 | ||
1 | 18.2 | 24.2 | 20.2 | 18.1 | 15.4 | 20.2 | 18.7 | ||
2 | 30.7 | 30.1 | 28.3 | 29.3 | 37.7 | 39.4 | 31.2 | ||
3 | 21.5 | 16.3 | 15.2 | 26.7 | 16.2 | 18.9 | 21.5 | ||
4 | 7.4 | 2.6 | 10.1 | 9.6 | 11.5 | 7.6 | 7.7 | ||
more than 4 | 12.9 | 7.2 | 12.1 | 6.3 | 6.2 | 9.1 | 10.7 |
Fiji | Kiribati | Samoa | Solomon Islands | Tonga | Vanuatu | Total | Cramer’s V | p Value | |
---|---|---|---|---|---|---|---|---|---|
% participants | |||||||||
SSBs | 0.08 | <0.001 | |||||||
never | 11.2 | 7.9 | 12.1 | 14.6 | 6.9 | 15.8 | 11.8 | ||
rarely | 26.7 | 29.6 | 20.2 | 20.3 | 30.8 | 31.9 | 26.1 | ||
sometimes | 36.0 | 42.8 | 31.3 | 46.8 | 47.7 | 39.4 | 39.0 | ||
often | 14.9 | 15.1 | 24.2 | 9.9 | 6.9 | 7.6 | 13.4 | ||
always | 11.2 | 4.6 | 12.1 | 8.4 | 7.7 | 5.4 | 9.7 | ||
Ultra-processed packaged snacks | 0.10 | <0.001 | |||||||
never | 5.4 | 5.9 | 0.0 | 11.1 | 3.1 | 6.3 | 6.4 | ||
rarely | 19.3 | 18.3 | 14.1 | 17.2 | 16.9 | 21.0 | 18.7 | ||
sometimes | 37.2 | 50.3 | 43.4 | 50.5 | 55.4 | 45.7 | 42.0 | ||
often | 19.7 | 17.6 | 24.2 | 12.9 | 13.1 | 20.0 | 18.2 | ||
always | 18.5 | 7.8 | 18.2 | 8.3 | 11.5 | 7.0 | 14.7 | ||
Fruits and vegetables | 0.15 | <0.001 | |||||||
never | 1.8 | 3.8 | 0.0 | 1.1 | 1.5 | 0.0 | 1.6 | ||
rarely | 3.6 | 13.9 | 18.2 | 3.3 | 3.1 | 2.5 | 4.6 | ||
sometimes | 23.9 | 52.0 | 26.3 | 40.5 | 41.5 | 32.8 | 30.3 | ||
often | 26.2 | 19.1 | 20.2 | 16.7 | 27.7 | 19.2 | 23.3 | ||
always | 44.5 | 11.2 | 35.4 | 38.4 | 26.2 | 45.4 | 40.2 |
n | Mean (SD) | Median | |
---|---|---|---|
Fiji | 2481 | 3.18 (0.70) | 3.33 |
Kiribati | 306 | 3.18 (0.69) | 3.33 |
Samoa | 95 | 3.16 (0.66) | 3.00 |
Solomon Islands | 744 | 3.03 (0.71) | 3.00 |
Tonga | 126 | 3.17 (0.66) | 3.33 |
Vanuatu | 311 | 2.93 (0.79) | 3.33 |
Total | 4063 | 3.13 (0.71) | 3.33 |
Fiji | Kiribati | Samoa | Solomon Islands | Tonga | Vanuatu | Total | Cramer’s V | p Value | |
---|---|---|---|---|---|---|---|---|---|
% participants | |||||||||
You only live once so I eat foods that I love even if they are not very healthy | 0.11 | <0.001 | |||||||
Strongly agree | 16.2 | 21.7 | 10.1 | 11.9 | 16.2 | 9.8 | 15.2 | ||
Agree | 42.1 | 50.7 | 49.5 | 31.4 | 36.2 | 29.0 | 39.7 | ||
Disagree | 30.1 | 23.7 | 34.3 | 41.6 | 34.6 | 38.5 | 32.7 | ||
Strongly disagree | 11.6 | 3.9 | 6.1 | 15.0 | 13.1 | 22.7 | 12.4 |
B | SE | Wald | p | OR | 95% CI | |
---|---|---|---|---|---|---|
SSB Nagelkerke R Square = 0.202 | ||||||
Nationality | ||||||
Kiribati | Reference | |||||
Fiji | −0.573 | 0.133 | 18.697 | <0.001 | 0.564 | −0.833–−0.313 |
Samoa | −0.392 | 0.255 | 2.353 | 0.125 | 0.676 | −0.892–0.109 |
Solomon Islands | 0.254 | 0.150 | 2.856 | 0.091 | 1.289 | −0.041–0.549 |
Tonga | 0.116 | 0.231 | 0.252 | 0.616 | 1.123 | −0.337–0.568 |
Vanuatu | −0.615 | 0.178 | 11.884 | <0.001 | 0.541 | −0.965–−0.265 |
Household access | 0.597 | 0.034 | 306.803 | <0.001 | 1.817 | 0.530–0.664 |
Price as food choice motive | 0.131 | 0.049 | 7.176 | 0.007 | 1.139 | 0.035–0.266 |
Unhealthy eating attitude | 0.460 | 0.041 | 127.309 | <0.001 | 1.584 | 0.38–0.54 |
Ultra-processed packaged snacks Nagelkerke R Square = 0.162 | ||||||
Nationality | ||||||
Kiribati | Reference | |||||
Fiji | −0.839 | 0.154 | 29.802 | <0.001 | 0.432 | −1.140–−0.538 |
Samoa | −0.664 | 0.277 | 5.769 | 0.016 | 0.515 | −1.206–−0.122 |
Solomon Islands | −0.335 | 0.169 | 3.910 | 0.048 | 0.716 | −0.666–−0.003 |
Tonga | 0.063 | 0.269 | 0.056 | 0.814 | 1.065 | −0.463–0.590 |
Vanuatu | −0.423 | 0.195 | 4.712 | 0.030 | 0.655 | −0.804–−0.041 |
Household access | 0.544 | 0.036 | 234.320 | <0.001 | 1.723 | 1.671–2.691 |
Price as food choice motive | 0.230 | 0.050 | 21.266 | <0.001 | 1.259 | 0.132–0.328 |
Unhealthy eating attitude | 0.429 | 0.042 | 106.736 | <0.001 | 1.536 | 0.348–0.510 |
Fruits Nagelkerke R Square = 0.065 | ||||||
Nationality | ||||||
Kiribati | Reference | |||||
Fiji | −0.615 | 0.160 | 14.717 | <0.001 | 0.541 | −0.930–−0.301 |
Samoa | −0.503 | 0.291 | 2.993 | 0.084 | 0.605 | −1.073–0.067 |
Solomon Islands | −0.180 | 0.182 | 0.981 | 0.322 | 0.835 | −0.537–0.177 |
Tonga | −0.319 | 0.273 | 1.372 | 0.242 | 0.727 | −0.854–0.215 |
Vanuatu | −0.374 | 0.215 | 3.012 | 0.083 | 0.688 | −0.796–0.048 |
Household access | 0.433 | 0.039 | 121.995 | <0.001 | 1.542 | 0.356–0.510 |
Price as food choice motive | 0.080 | 0.056 | 2.021 | 0.155 | 1.083 | −0.030–0.189 |
Unhealthy eating attitude | −0.207 | 0.046 | 20.246 | <0.001 | 0.813 | −0.298–−0.117 |
Vegetables Nagelkerke R Square = 0.139 | ||||||
Nationality | ||||||
Kiribati | Reference | |||||
Fiji | 0.249 | 0.172 | 2.082 | 0.149 | 1.281 | −0.089–0.587 |
Samoa | −0.013 | 0.341 | 0.001 | 0.970 | 0.987 | −0.681–0.655 |
Solomon Islands | 0.381 | 0.203 | 3.521 | 0.061 | 1.464 | −0.017–0.780 |
Tonga | 0.171 | 0.323 | 0.280 | 0.597 | 2.909 | −0.463–0.804 |
Vanuatu | 1.068 | 0.313 | 11.605 | <0.001 | 1.186 | 0.453–1.682 |
Household access | 0.770 | 0.054 | 203.712 | <0.001 | 0.969 | 0.665–0.876 |
Price as food choice motive | 0.297 | 0.075 | 15.536 | <0.001 | 1.346 | 0.149–0.445 |
Unhealthy eating attitude | −0.032 | 0.064 | 0.244 | 0.622 | 2.161 | −0.157–0.094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buksh, S.M.; Crookes, A.; de Wit, J.B.F. Effectiveness of NCD-Related Fiscal Policies: Evidence from the Pacific. Nutrients 2023, 15, 4669. https://doi.org/10.3390/nu15214669
Buksh SM, Crookes A, de Wit JBF. Effectiveness of NCD-Related Fiscal Policies: Evidence from the Pacific. Nutrients. 2023; 15(21):4669. https://doi.org/10.3390/nu15214669
Chicago/Turabian StyleBuksh, Shazna M., Annie Crookes, and John B. F. de Wit. 2023. "Effectiveness of NCD-Related Fiscal Policies: Evidence from the Pacific" Nutrients 15, no. 21: 4669. https://doi.org/10.3390/nu15214669
APA StyleBuksh, S. M., Crookes, A., & de Wit, J. B. F. (2023). Effectiveness of NCD-Related Fiscal Policies: Evidence from the Pacific. Nutrients, 15(21), 4669. https://doi.org/10.3390/nu15214669