Lower Adherence to a Mediterranean Diet Is Associated with High Adiposity in Community-Dwelling Older Adults: Results from the Longevity Check-Up (Lookup) 7+ Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropometry and Lifestyle Habits
2.2. Relative Fat Mass
2.3. Adherence to a Mediterranean Diet and Daily Energy Intake
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Regional Office for Europe. WHO European Regional Obesity Report 2022. Available online: https://apps.who.int/iris/handle/10665/353747 (accessed on 3 July 2023).
- WHO: Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 21 April 2023).
- World Obesity Federation. World Obesity Atlas 2023. Available online: https://s3-eu-west-1.amazonaws.com/wof-files/World_Obesity_Atlas_2023_Report.pdf (accessed on 16 November 2023).
- De Lorenzo, A.; Romano, L.; Di Renzo, L.; Di Lorenzo, N.; Cenname, G.; Gualtieri, P. Obesity: A preventable, treatable, but relapsing disease. Nutrition 2020, 71, 110615. [Google Scholar] [CrossRef] [PubMed]
- Fuster, J.J.; Ouchi, N.; Gokce, N.; Walsh, K. Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ. Res. 2016, 118, 1786–1807. [Google Scholar] [CrossRef]
- Hilton, T.N.; Tuttle, L.J.; Bohnert, K.L.; Mueller, M.J.; Sinacore, D.R. Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: Association with performance and function. Phys. Ther. 2008, 88, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Global BMI Mortality Collaboration; Di Angelantonio, E.; Bhupathiraju, S.; Wormser, D.; Gao, P.; Kaptoge, S.; Berrington de Gonzalez, A.; Cairns, B.J.; Huxley, R.; Jackson, C.L.; et al. Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 2016, 388, 776–786. [Google Scholar] [CrossRef]
- Kivimaki, M.; Strandberg, T.; Pentti, J.; Nyberg, S.T.; Frank, P.; Jokela, M.; Ervasti, J.; Suominen, S.B.; Vahtera, J.; Sipilä, P.N.; et al. Body-mass index and risk of obesity-related complex multimorbidity: An observational multicohort study. Lancet Diabetes Endocrinol. 2022, 10, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Okorodudu, D.O.; Jumean, M.F.; Montori, V.M.; Romero-Corral, A.; Somers, V.K.; Erwin, P.J.; Lopez-Jimenez, F. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: A systematic review and meta-analysis. Int. J. Obes. 2010, 34, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Lahav, Y.; Kfir, A.; Gepner, Y. The paradox of obesity with normal weight; A cross-sectional study. Front. Nutr. 2023, 10, 1173488. [Google Scholar] [CrossRef]
- Dramé, M.; Godaert, L. The obesity paradox and mortality in older adults: A systematic review. Nutrients 2023, 15, 1780. [Google Scholar] [CrossRef]
- Baumgartner, R.N. Body composition in healthy aging. Ann. N. Y. Acad. Sci. 2000, 904, 437–448. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef]
- Moosaie, F.; Fatemi Abhari, S.M.; Deravi, N.; Karimi Behnagh, A.; Esteghamati, S.; Dehghani Firouzabadi, F.; Rabizadeh, S.; Nakhjavani, M.; Esteghamati, A. Waist-to-height ratio is a more accurate tool for predicting hypertension than waist-to-hip circumference and BMI in patients with type 2 diabetes: A prospective study. Front. Public Health 2021, 9, 726288. [Google Scholar] [CrossRef] [PubMed]
- Woolcott, O.O.; Bergman, R.N. Relative fat mass (RFM) as a new estimator of whole-body fat percentage—A cross-sectional study in American adult individuals. Sci. Rep. 2018, 8, 10980. [Google Scholar] [CrossRef] [PubMed]
- Senkus, K.; Crowe-White, K.; Locher, J.; Ard, J. Relative fat mass (RFM) as an estimate of total adiposity in older adults. Curr. Dev. Nutr. 2021, 5 (Suppl. S2), 51. [Google Scholar] [CrossRef]
- Woolcott, O.O.; Seuring, T. Temporal trends in obesity defined by the relative fat mass (RFM) index among adults in the United States from 1999 to 2020: A population-based study. BMJ Open 2023, 13, e071295. [Google Scholar] [CrossRef]
- Zwartkruis, V.W.; Suthahar, N.; Idema, D.L.; Mahmoud, B.; van Deutekom, C.; Rutten, F.H.; van der Schouw, Y.T.; Rienstra, M.; de Boer, R.A. Relative fat mass and prediction of incident atrial fibrillation, heart failure and coronary artery disease in the general population. Int. J. Obes. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Suthahar, N.; Wang, K.; Zwartkruis, V.W.; Bakker, S.J.L.; Inzucchi, S.E.; Meems, L.M.G.; Eijgenraam, T.R.; Ahmadizar, F.; Sijbrands, E.G.; Gansevoort, R.T.; et al. Associations of relative fat mass, a new index of adiposity, with type-2 diabetes in the general population. Eur. J. Intern. Med. 2023, 109, 73–78. [Google Scholar] [CrossRef]
- Ghulam, A.; Gianfagna, F.; Bonaccio, M.; Costanzo, S.; Di Castelnuovo, A.; De Curtis, A.; Gialluisi, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; et al. Association between BMI, RFM and mortality and potential mediators: Prospective findings from the Moli-sani study. Int. J. Obes. 2023, 47, 697–708. [Google Scholar] [CrossRef]
- Suthahar, N.; Meems, L.M.G.; Withaar, C.; Gorter, T.M.; Kieneker, L.M.; Gansevoort, R.T.; Bakker, S.J.L.; van Veldhuisen, D.J.; de Boer, R.A. Relative fat mass, a new index of adiposity, is strongly associated with incident heart failure: Data from Prevend. Sci. Rep. 2022, 12, 147. [Google Scholar] [CrossRef]
- Hayón-Ponce, M.; García-Fontana, B.; Avilés-Pérez, M.D.; González-Salvatierra, S.; Andújar-Vera, F.; Moratalla-Aranda, E.; Muñoz-Torres, M. Lower trabecular bone score in type 2 diabetes mellitus: A role for fat mass and insulin resistance beyond hyperglycaemia. Diabetes Metab. 2021, 47, 101276. [Google Scholar] [CrossRef]
- Senkus, K.E.; Crowe-White, K.M.; Locher, J.L.; Ard, J.D. Relative fat mass assessment estimates changes in adiposity among female older adults with obesity after a 12-month exercise and diet intervention. Ann. Med. 2022, 54, 1160–1166. [Google Scholar] [CrossRef]
- Biddle, S.J.H.; Garcia Bengoechea, E.; Pedisic, Z.; Bennie, J.; Vergeer, I.; Wiesner, G. Screen time, other sedentary behaviours, and obesity risk in adults: A review of reviews. Curr. Obes. Rep. 2017, 6, 134–147. [Google Scholar] [CrossRef]
- Ferro-Luzzi, A.; Branca, F. Mediterranean diet, Italian-style: Prototype of a healthy diet. Am. J. Clin. Nutr. 1995, 61, 1338S–1345S. [Google Scholar] [CrossRef] [PubMed]
- Boccardi, V.; Calvani, R.; Limongi, F.; Marseglia, A.; Mason, A.; Noale, M.; Rogoli, D.; Veronese, N.; Crepaldi, G.; Maggi, S. Consensus paper on the “executive summary of the international conference on Mediterranean diet and health: A lifelong approach” an Italian initiative supported by the Mediterranean Diet Foundation and the Menarini Foundation. Nutrition 2018, 51–52, 38–45. [Google Scholar] [CrossRef]
- Russo, G.L.; Siani, A.; Fogliano, V.; Geleijnse, J.M.; Giacco, R.; Giampaoli, S.; Iacoviello, L.; Kromhout, D.; Lionetti, L.; Naska, A.; et al. The Mediterranean diet from past to future: Key concepts from the second “Ancel Keys” International Seminar. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 717–732. [Google Scholar] [CrossRef] [PubMed]
- Uusitupa, M.; Khan, T.A.; Viguiliouk, E.; Kahleova, H.; Rivellese, A.A.; Hermansen, K.; Pfeiffer, A.; Thanopoulou, A.; Salas-Salvadó, J.; Schwab, U.; et al. Prevention of type 2 diabetes by lifestyle changes: A systematic review and meta-analysis. Nutrients 2019, 11, 2611. [Google Scholar] [CrossRef]
- Coelho-Junior, H.J.; Trichopoulou, A.; Panza, F. Cross-sectional and longitudinal associations between adherence to Mediterranean diet with physical performance and cognitive function in older adults: A systematic review and meta-analysis. Ageing Res. Rev. 2021, 70, 101395. [Google Scholar] [CrossRef]
- Limongi, F.; Siviero, P.; Bozanic, A.; Noale, M.; Veronese, N.; Maggi, S. The effect of adherence to the Mediterranean diet on late-life cognitive disorders: A systematic review. J. Am. Med. Dir. Assoc. 2020, 21, 1402–1409. [Google Scholar] [CrossRef] [PubMed]
- Cacciatore, S.; Calvani, R.; Marzetti, E.; Picca, A.; Coelho-Junior, H.J.; Martone, A.M.; Massaro, C.; Tosato, M.; Landi, F. Low adherence to Mediterranean diet is associated with probable sarcopenia in community-dwelling older adults: Results from the Longevity Check-Up (Lookup) 7+ project. Nutrients 2023, 15, 1026. [Google Scholar] [CrossRef]
- Quattrini, S.; Pampaloni, B.; Gronchi, G.; Giusti, F.; Brandi, M.L. The Mediterranean diet in osteoporosis prevention: An insight in a peri- and post-menopausal population. Nutrients 2021, 13, 531. [Google Scholar] [CrossRef]
- Veronese, N.; Stubbs, B.; Noale, M.; Solmi, M.; Luchini, C.; Smith, T.O.; Cooper, C.; Guglielmi, G.; Reginster, J.Y.; Rizzoli, R.; et al. Adherence to a Mediterranean diet is associated with lower prevalence of osteoarthritis: Data from the osteoarthritis initiative. Clin. Nutr. 2017, 36, 1609–1614. [Google Scholar] [CrossRef]
- Veronese, N.; La Tegola, L.; Crepaldi, G.; Maggi, S.; Rogoli, D.; Guglielmi, G. The association between the Mediterranean diet and magnetic resonance parameters for knee osteoarthritis: Data from the Osteoarthritis Initiative. Clin. Rheumatol. 2018, 37, 2187–2193. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Stubbs, B.; Noale, M.; Solmi, M.; Luchini, C.; Maggi, S. Adherence to the Mediterranean diet is associated with better quality of life: Data from the Osteoarthritis Initiative. Am. J. Clin. Nutr. 2016, 104, 1403–1409. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Lagiou, P. Healthy traditional Mediterranean diet: An expression of culture, history, and lifestyle. Nutr. Rev. 1997, 55 Pt 1, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean diet; A literature review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef] [PubMed]
- D’Innocenzo, S.; Biagi, C.; Lanari, M. Obesity and the Mediterranean diet: A review of evidence of the role and sustainability of the Mediterranean diet. Nutrients 2019, 11, 1306. [Google Scholar] [CrossRef] [PubMed]
- Buckland, G.; Bach, A.; Serra-Majem, L. Obesity and the Mediterranean diet: A systematic review of observational and intervention studies. Obes. Rev. 2008, 9, 582–593. [Google Scholar] [CrossRef]
- Tyrovolas, S.; Bountziouka, V.; Papairakleous, N.; Zeimbekis, A.; Anastassiou, F.; Gotsis, E.; Metallinos, G.; Polychronopoulos, E.; Lionis, C.; Panagiotakos, D. Adherence to the Mediterranean diet is associated with lower prevalence of obesity among elderly people living in Mediterranean islands: The MEDIS study. Int. J. Food Sci. Nutr. 2009, 60 (Suppl. S6), 137–150. [Google Scholar] [CrossRef]
- Estruch, R.; Martinez-Gonzalez, M.A.; Corella, D.; Salas-Salvado, J.; Fito, M.; Chiva-Blanch, G.; Fiol, M.; Gómez-Gracia, E.; Arós, F.; Lapetra, J.; et al. Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: A prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial. Lancet Diabetes Endocrinol. 2019, 7, e6–e17. [Google Scholar] [CrossRef]
- Zelicha, H.; Kloting, N.; Kaplan, A.; Yaskolka Meir, A.; Rinott, E.; Tsaban, G.; Chassidim, Y.; Bluher, M.; Ceglarek, U.; Isermann, B.; et al. The effect of high-polyphenol Mediterranean diet on visceral adiposity: The DIRECT PLUS randomized controlled trial. BMC Med. 2022, 20, 327. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Picca, A.; Tosato, M.; Martone, A.M.; Ortolani, E.; Salini, S.; Pafundi, T.; Savera, G.; Pantanelli, C.; et al. Cardiovascular health metrics, muscle mass and function among Italian community-dwellers: The Lookup 7+ project. Eur. J. Public Health 2018, 28, 766–772. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Picca, A.; Tosato, M.; D’Angelo, E.; Martone, A.M.; Serafini, E.; Ortolani, E.; Savera, G.; Salini, S.; et al. Relationship between cardiovascular health metrics and physical performance in community-living people: Results from the Longevity check-up (Lookup) 7+ project. Sci. Rep. 2018, 8, 16353. [Google Scholar] [CrossRef] [PubMed]
- Coelho-Júnior, H.J.; Calvani, R.; Picca, A.; Tosato, M.; Landi, F.; Marzetti, E. Engagement in aerobic exercise is associated with a reduced prevalence of sarcopenia and severe sarcopenia in Italian older adults. J. Pers. Med. 2023, 13, 655. [Google Scholar] [CrossRef]
- Coelho-Junior, H.J.; Calvani, R.; Picca, A.; Cacciatore, S.; Tosato, M.; Landi, F.; Marzetti, E. Combined aerobic training and Mediterranean diet is not associated with a lower prevalence of sarcopenia in Italian older adults. Nutrients 2023, 15, 2693. [Google Scholar] [CrossRef] [PubMed]
- Woolcott, O.O.; Bergman, R.N. Defining cutoffs to diagnose obesity using the relative fat mass (RFM): Association with mortality in NHANES 1999–2014. Int. J. Obes. 2020, 44, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Coelho-Junior, H.J.; Calvani, R.; Picca, A.; Tosato, M.; Savera, G.; Landi, F.; Marzetti, E. Protein intake is associated with blood pressure and cholesterol levels in Italian older adults: A cross-sectional study. Metabolites 2023, 13, 431. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Picca, A.; Ortolani, E.; Savera, G.; Salini, S.; Ramaschi, M.; Bernabei, R.; et al. Animal-derived protein consumption is associated with muscle mass and strength in community-dwellers: Results from the Milan EXPO survey. J. Nutr. Health Aging 2017, 21, 1050–1056. [Google Scholar] [CrossRef]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef]
- Sofi, F.; Dinu, M.; Pagliai, G.; Marcucci, R.; Casini, A. Validation of a literature-based adherence score to Mediterranean diet: The Medi-lite score. Int. J. Food Sci. Nutr. 2017, 68, 757–762. [Google Scholar] [CrossRef]
- CREA Centro di Ricerca Alimenti e Nutrizione. Available online: https://www.alimentinutrizione.it/ (accessed on 16 November 2023).
- Bendall, C.L.; Mayr, H.L.; Opie, R.S.; Bes-Rastrollo, M.; Itsiopoulos, C.; Thomas, C.J. Central obesity and the Mediterranean diet: A systematic review of intervention trials. Crit. Rev. Food Sci. Nutr. 2018, 58, 3070–3084. [Google Scholar] [CrossRef]
- Schröder, H.; Marrugat, J.; Vila, J.; Covas, M.I.; Elosua, R. Adherence to the traditional Mediterranean diet is inversely associated with body mass index and obesity in a Spanish population. J. Nutr. 2004, 134, 3355–3361. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Polystipioti, A.; Papairakleous, N.; Polychronopoulos, E. Long-term adoption of a Mediterranean diet is associated with a better health status in elderly people; A cross-sectional survey in Cyprus. Asia Pac. J. Clin. Nutr. 2007, 16, 331–337. [Google Scholar]
- Alvarez-Perez, J.; Sanchez-Villegas, A.; Diaz-Benitez, E.M.; Ruano-Rodriguez, C.; Corella, D.; Martinez-Gonzalez, M.A.; Estruch, R.; Salas-Salvadó, J.; Serra-Majem, L.; PREDIMED Study Investigators. Influence of a Mediterranean dietary pattern on body fat distribution: Results of the PREDIMED-Canarias Intervention Randomized Trial. J. Am. Coll. Nutr. 2016, 35, 568–580. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A. Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: A preliminary study with 98 ready-to-eat foods. Food Funct. 2016, 7, 2338–2346. [Google Scholar] [CrossRef] [PubMed]
- Schroder, H. Protective mechanisms of the Mediterranean diet in obesity and type 2 diabetes. J. Nutr. Biochem. 2007, 18, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Cooper, J.A. Effect of dietary fatty acid composition on substrate utilization and body weight maintenance in humans. Eur. J. Nutr. 2014, 53, 691–710. [Google Scholar] [CrossRef] [PubMed]
- Monnard, C.R.; Dulloo, A.G. Polyunsaturated fatty acids as modulators of fat mass and lean mass in human body composition regulation and cardiometabolic health. Obes. Rev. 2021, 22 (Suppl. S2), e13197. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Villegas, A.; Bes-Rastrollo, M.; Martinez-Gonzalez, M.A.; Serra-Majem, L. Adherence to a Mediterranean dietary pattern and weight gain in a follow-up study: The SUN cohort. Int. J. Obes. 2006, 30, 350–358. [Google Scholar] [CrossRef]
- Piers, L.S.; Walker, K.Z.; Stoney, R.M.; Soares, M.J.; O’Dea, K. Substitution of saturated with monounsaturated fat in a 4-week diet affects body weight and composition of overweight and obese men. Br. J. Nutr. 2003, 90, 717–727. [Google Scholar] [CrossRef]
- Lafay, L.; Mennen, L.; Basdevant, A.; Charles, M.A.; Borys, J.M.; Eschwège, E.; Romon, M. Does energy intake underreporting involve all kinds of food or only specific food items? Results from the Fleurbaix Laventie Ville Santé (FLVS) study. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1500–1506. [Google Scholar] [CrossRef]
- Heitmann, B.L.; Lissner, L. Dietary underreporting by obese individuals—Is it specific or non-specific? BMJ 1995, 311, 986–989. [Google Scholar] [CrossRef]
- Bingham, S.A.; Cassidy, A.; Cole, T.J.; Welch, A.; Runswick, S.A.; Black, A.E.; Thurnham, D.; Bates, C.; Khaw, K.T.; Key, T.J.; et al. Validation of weighed records and other methods of dietary assessment using the 24 h urine nitrogen technique and other biological markers. Br. J. Nutr. 1995, 73, 531–550. [Google Scholar] [CrossRef] [PubMed]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The effects of the Mediterranean diet on health and gut microbiota. Nutrients 2023, 15, 2150. [Google Scholar] [CrossRef] [PubMed]
- Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean diet on human gut microbiota. Nutrients 2020, 13, 7. [Google Scholar] [CrossRef]
- Calvani, R.; Picca, A.; Coelho-Junior, H.J.; Tosato, M.; Marzetti, E.; Landi, F. Diet for the prevention and management of sarcopenia. Metabolism 2023, 146, 155637. [Google Scholar] [CrossRef] [PubMed]
- Winter, J.E.; MacInnis, R.J.; Wattanapenpaiboon, N.; Nowson, C.A. BMI and all-cause mortality in older adults: A meta-analysis. Am. J. Clin. Nutr. 2014, 99, 875–890. [Google Scholar] [CrossRef] [PubMed]
- Flegal, K.M.; Kit, B.K.; Orpana, H.; Graubard, B.I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: A systematic review and meta-analysis. JAMA 2013, 309, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Calle, E.E.; Thun, M.J.; Petrelli, J.M.; Rodriguez, C.; Heath, C.W., Jr. Body-mass index and mortality in a prospective cohort of U.S. adults. N. Engl. J. Med. 1999, 341, 1097–1105. [Google Scholar] [CrossRef]
- Harris, T.; Cook, E.F.; Garrison, R.; Higgins, M.; Kannel, W.; Goldman, L. Body mass index and mortality among nonsmoking older persons. The Framingham Heart Study. JAMA 1988, 259, 1520–1524. [Google Scholar] [CrossRef]
- Stevens, J.; Cai, J.; Pamuk, E.R.; Williamson, D.F.; Thun, M.J.; Wood, J.L. The effect of age on the association between body-mass index and mortality. N. Engl. J. Med. 1998, 338, 1–7. [Google Scholar] [CrossRef]
- Banack, H.R.; Stokes, A. The ‘obesity paradox’ may not be a paradox at all. Int. J. Obes. 2017, 41, 1162–1163. [Google Scholar] [CrossRef]
- Bosello, O.; Vanzo, A. Obesity paradox and aging. Eat. Weight Disord. 2021, 26, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Chang, M.; Wang, J. Abdominal obesity, body mass index and the risk of frailty in community-dwelling older adults: A systematic review and meta-analysis. Age Ageing 2021, 50, 1118–1128. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, L.; Napoli, N.; Waters, D.; Qualls, C.; Villareal, D.T.; Armamento-Villareal, R. Increasing adiposity is associated with higher adipokine levels and lower bone mineral density in obese older adults. J. Clin. Endocrinol. Metab. 2014, 99, 3290–3297. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, C.C.; Roriz, A.K.; Ramos, L.B.; Gomes Neto, M. Indicators of adiposity predictors of metabolic syndrome in the elderly. Ann. Nutr. Metab. 2017, 70, 9–15. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Shaper, A.G.; Morris, R.W.; Whincup, P.H. Measures of adiposity in the identification of metabolic abnormalities in elderly men. Am. J. Clin. Nutr. 2005, 81, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, W.; Han, P.; Kohzuki, M.; Guo, Q. Osteosarcopenic obesity associated with poor physical performance in the elderly Chinese community. Clin. Interv. Aging 2020, 15, 1343–1352. [Google Scholar] [CrossRef]
- Forhan, M.; Gill, S.V. Obesity, functional mobility and quality of life. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 129–137. [Google Scholar] [CrossRef]
- Falsarella, G.R.; Gasparotto, L.P.; Barcelos, C.C.; Coimbra, I.B.; Moretto, M.C.; Pascoa, M.A.; Ferreira, T.C.; Coimbra, A.M. Body composition as a frailty marker for the elderly community. Clin. Interv. Aging. 2015, 10, 1661–1666. [Google Scholar] [CrossRef]
- Cawthon, P.M.; Fox, K.M.; Gandra, S.R.; Delmonico, M.J.; Chiou, C.F.; Anthony, M.S.; Caserotti, P.; Kritchevsky, S.B.; Newman, A.B.; Goodpaster, B.H.; et al. Clustering of strength, physical function, muscle, and adiposity characteristics and risk of disability in older adults. J. Am. Geriatr. Soc. 2011, 59, 781–787. [Google Scholar] [CrossRef]
- Mikkola, T.M.; Kautiainen, H.; von Bonsdorff, M.B.; Salonen, M.K.; Wasenius, N.; Kajantie, E.; Eriksson, J.G. Body composition and changes in health-related quality of life in older age: A 10-year follow-up of the Helsinki Birth Cohort Study. Qual. Life Res. 2020, 29, 2039–2050. [Google Scholar] [CrossRef]
- Savanelli, M.C.; Barrea, L.; Macchia, P.E.; Savastano, S.; Falco, A.; Renzullo, A.; Scarano, E.; Nettore, I.C.; Colao, A.; Di Somma, C. Preliminary results demonstrating the impact of Mediterranean diet on bone health. J. Transl. Med. 2017, 15, 81. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.; Mulligan, A.A.; Khaw, K.T.; Luben, R.N.; Welch, A.A. A Mediterranean diet is positively associated with bone and muscle health in a non-Mediterranean region in 25,450 men and women from EPIC-Norfolk. Nutrients 2020, 12, 1154. [Google Scholar] [CrossRef] [PubMed]
- Kastorini, C.M.; Milionis, H.J.; Goudevenos, J.A.; Panagiotakos, D.B. Mediterranean diet and coronary heart disease: Is obesity a link?—A systematic review. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 536–551. [Google Scholar] [CrossRef] [PubMed]
- Di Castelnuovo, A.; Bonaccio, M.; Costanzo, S.; De Curtis, A.; Persichillo, M.; Panzera, T.; Bracone, F.; Baldassarre, D.; Roncaglioni, M.C.; Baviera, M.; et al. The Moli-sani risk score, a new algorithm for measuring the global impact of modifiable cardiovascular risk factors. Int. J. Cardiol. 2023, 389, 131228. [Google Scholar] [CrossRef]
- Apolzan, J.W.; Venditti, E.M.; Edelstein, S.L.; Knowler, W.C.; Dabelea, D.; Boyko, E.J.; Pi-Sunyer, X.; Kalyani, R.R.; Franks, P.W.; Srikanthan, P.; et al. Long-term weight loss with metformin or lifestyle intervention in the Diabetes Prevention Program Outcomes Study. Ann. Intern. Med. 2019, 170, 682–690. [Google Scholar] [CrossRef]
Total Sample (n = 2092) | Mediterranean Diet Adherence | p | |||
---|---|---|---|---|---|
Low (n = 413) | Moderate (n = 1198) | High (n = 481) | |||
Age, years | 73.1 (5.9) | 73.1 (6.0) | 73.2 (5.9) | 73.1 (5.8) | 0.929 |
Sex, female | 1117 (53.4%) | 240 (58.1%) | 611 (51.0%) a | 266 (55.3%) | 0.028 |
Active smoking | 315 (15.1%) | 71 (17.2%) | 189 (15.8%) | 55 (11.4%) a,b | 0.034 |
Physically active | 1118 (53.4%) | 203 (49.2%) | 652 (54.4%) | 263 (54.7%) | 0.149 |
Energy intake, kcal/day | 1410 (264) | 1160 (244) | 1410 (240) a | 1586 (179) a,b | <0.001 |
Medi-Lite score | 10.4 (1.9) | 7.5 (0.8) | 10.1 (0.8) a | 12.8 (1.0) a,b | <0.001 |
BMI, kg/m2 | 25.9 (3.93) | 26.5 (4.11) | 26.0 (3.79) | 25.4 (4.03) a,b | <0.001 |
Waist circumference, cm | |||||
Women | 88.8 (12.1) | 90.5 (11.8) | 89.5 (12.4) | 86.4 (11.6) a,b | <0.001 |
Men | 98.9 (10.0) | 101 (10.1) | 98.9 (9.9) a | 97.5 (10.1) a | 0.002 |
RFM, % | |||||
Women | 39.6 (5.14) | 40.6 (4.86) | 40.0 (5.14) | 38.5 (5.03) a,b | <0.001 |
Men | 29.0 (3.58) | 29.9 (3.35) | 29.0 (3.57) | 28.4 (3.66) a,b | <0.001 |
High adiposity | 971 (46.4%) | 224 (54.2%) | 556 (46.4%) a | 191 (39.7%) a,b | <0.001 |
Characteristics | Unadjusted OR (95% CI) | p | Model 1 OR (95% CI) | p | Model 2 OR (95% CI) | p |
---|---|---|---|---|---|---|
Adherence to Mediterranean diet | ||||||
High adherence | Reference (1.00) | - | Reference (1.00) | - | Reference (1.00) | - |
Moderate adherence | 1.31 (1.06–1.63) | 0.013 | 1.34 (1.08–1.67) | 0.008 | 1.36 (1.09–1.71) | 0.007 |
Low adherence | 1.80 (1.38–2.35) | <0.001 | 1.80 (1.38–2.35) | <0.001 | 1.85 (1.33–2.58) | <0.001 |
Age | 1.03 (1.02–1.05) | <0.001 | 1.03 (1.01–1.04) | 0.001 | ||
Sex, female | 1.50 (1.26–1.78) | <0.001 | 1.47 (1.23–1.76) | <0.001 | ||
Active smoking | 1.01 (0.78–1.29) | 0.990 | ||||
Daily energy intake | 1.00 (0.99–1.01) | 0.400 | ||||
Physically active | 0.48 (0.40–0.58) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacciatore, S.; Gava, G.; Calvani, R.; Marzetti, E.; Coelho-Júnior, H.J.; Picca, A.; Esposito, I.; Ciciarello, F.; Salini, S.; Russo, A.; et al. Lower Adherence to a Mediterranean Diet Is Associated with High Adiposity in Community-Dwelling Older Adults: Results from the Longevity Check-Up (Lookup) 7+ Project. Nutrients 2023, 15, 4892. https://doi.org/10.3390/nu15234892
Cacciatore S, Gava G, Calvani R, Marzetti E, Coelho-Júnior HJ, Picca A, Esposito I, Ciciarello F, Salini S, Russo A, et al. Lower Adherence to a Mediterranean Diet Is Associated with High Adiposity in Community-Dwelling Older Adults: Results from the Longevity Check-Up (Lookup) 7+ Project. Nutrients. 2023; 15(23):4892. https://doi.org/10.3390/nu15234892
Chicago/Turabian StyleCacciatore, Stefano, Giordana Gava, Riccardo Calvani, Emanuele Marzetti, Hélio José Coelho-Júnior, Anna Picca, Ilaria Esposito, Francesca Ciciarello, Sara Salini, Andrea Russo, and et al. 2023. "Lower Adherence to a Mediterranean Diet Is Associated with High Adiposity in Community-Dwelling Older Adults: Results from the Longevity Check-Up (Lookup) 7+ Project" Nutrients 15, no. 23: 4892. https://doi.org/10.3390/nu15234892
APA StyleCacciatore, S., Gava, G., Calvani, R., Marzetti, E., Coelho-Júnior, H. J., Picca, A., Esposito, I., Ciciarello, F., Salini, S., Russo, A., Tosato, M., & Landi, F. (2023). Lower Adherence to a Mediterranean Diet Is Associated with High Adiposity in Community-Dwelling Older Adults: Results from the Longevity Check-Up (Lookup) 7+ Project. Nutrients, 15(23), 4892. https://doi.org/10.3390/nu15234892