Protein Supplementation May Dampen Positive Effects of Exercise on Glucose Homeostasis: A Pilot Weight Loss Intervention
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Exercise and Protein Intervention
2.3. Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BCAA | Branched-chain amino acid |
BIA | Bioelectrical impedance analyzer |
BMI | Body mass index |
BW | Body weight |
CRP | C-reactive protein |
ESR | Erythrocyte sedimentation rate |
HOMA-IR | Homeostasis model assessment of insulin resistance |
IL-1β | Interleukin-1 beta |
IL-6 | Interleukin-6 |
IRS-1 | Insulin receptor substrate 1 |
MAPK | Mitogen-activated protein kinase |
mBCA | Medical body composition analyzer |
mTORC1 | Mammalian target of rapamycin complex 1 |
NPG | Nonprotein group |
PG | Protein group |
RCT | Randomized control trial |
T2D | Type 2 diabetes |
TNF-α | Tumor necrosis factor-alpha |
References
- Piché, M.-E.; Tchernof, A.; Després, J.-P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Res. 2020, 126, 1477–1500. [Google Scholar] [CrossRef] [PubMed]
- Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 2016, 48, e219. [Google Scholar] [CrossRef] [PubMed]
- Lebovitz, H.E. Insulin resistance: Definition and consequences. Exp. Clin. Endocrinol. Diabetes 2001, 109 (Suppl. S2), S135–S148. [Google Scholar] [CrossRef]
- Engin, A. The Definition and Prevalence of Obesity and Metabolic Syndrome; Springer International Publishing: Cham, Swutzerland, 2017; pp. 1–17. [Google Scholar]
- Mattson, M.P.; Longo, V.D.; Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 2017, 39, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Varady, K.A.; Bhutani, S.; Church, E.C.; Klempel, M.C. Short-term modified alternate-day fasting: A novel dietary strategy for weight loss and cardioprotection in obese adults. Am. J. Clin. Nutr. 2009, 90, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Freiberger, E.; Goisser, S.; Porzel, S.; Volkert, D.; Kemmler, W.; Sieber, C.; Bollheimer, C. Sarcopenic obesity and complex interventions with nutrition and exercise in community-dwelling older persons—A narrative review. Clin. Interv. Aging 2015, 10, 1267. [Google Scholar] [CrossRef]
- Eisenstein, J.; Roberts, S.B.; Dallal, G.; Saltzman, E. High-protein weight-loss diets: Are they safe and do they work? A review of the experimental and epidemiologic data. Nutr. Rev. 2002, 60, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Boulé, N.G.; Weisnagel, S.J.; Lakka, T.A.; Tremblay, A.; Bergman, R.N.; Rankinen, T.; Leon, A.S.; Skinner, J.S.; Wilmore, J.H.; Rao, D.C.; et al. Effects of exercise training on glucose homeostasis: The HERITAGE Family Study. Diabetes Care 2005, 28, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Szoke, E.; Shrayyef, M.Z.; Messing, S.; Woerle, H.J.; van Haeften, T.W.; Meyer, C.; Mitrakou, A.; Pimenta, W.; Gerich, J.E. Effect of aging on glucose homeostasis: Accelerated deterioration of beta-cell function in individuals with impaired glucose tolerance. Diabetes Care 2008, 31, 539–543. [Google Scholar] [CrossRef]
- Batsis, J.A.; Petersen, C.L.; Clark, M.M.; Cook, S.B.; Lopez-Jimenez, F.; Al-Nimr, R.I.; Pidgeon, D.; Kotz, D.; Mackenzie, T.A.; Bartels, S.J. A Weight Loss Intervention Augmented by a Wearable Device in Rural Older Adults With Obesity: A Feasibility Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2021, 76, 95–100. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Y.-J.; Sun, J.-P.; Zhang, T.-Y.; Liu, T.-L.; Ke, B.; Shi, X.-F.; Li, H.; Zhang, G.-P.; Ye, Z.-Y.; et al. Protective effects of calorie restriction on insulin resistance and islet function in STZ-induced type 2 diabetes rats. Nutr. Metab. 2021, 18, 48. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.A.; Wu, N.; Rohdin-Bibby, L.; Moore, A.H.; Kelly, N.; Liu, Y.E.; Philip, E.; Vittinghoff, E.; Heymsfield, S.B.; Olgin, J.E.; et al. Effects of Time-Restricted Eating on Weight Loss and Other Metabolic Parameters in Women and Men With Overweight and Obesity: The TREAT Randomized Clinical Trial. JAMA Intern. Med. 2020, 180, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Chia, C.W.; Egan, J.M.; Ferrucci, L. Age-Related Changes in Glucose Metabolism, Hyperglycemia, and Cardiovascular Risk. Circ. Res. 2018, 123, 886–904. [Google Scholar] [CrossRef]
- Sergeev, I.N.; Aljutaily, T.; Walton, G.; Huarte, E. Effects of Synbiotic Supplement on Human Gut Microbiota, Body Composition and Weight Loss in Obesity. Nutrients 2020, 12, 222. [Google Scholar] [CrossRef] [PubMed]
- Clamp, L.D.; Hume, D.J.; Lambert, E.V.; Kroff, J. Enhanced insulin sensitivity in successful, long-term weight loss maintainers compared with matched controls with no weight loss history. Nutr. Diabetes 2017, 7, e282. [Google Scholar] [CrossRef]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Gonzalo-Encabo, P.; Maldonado, G.; Valadés, D.; Ferragut, C.; Pérez-López, A. The Role of Exercise Training on Low-Grade Systemic Inflammation in Adults with Overweight and Obesity: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 13258. [Google Scholar] [CrossRef]
- Venkatasamy, V.V.; Pericherla, S.; Manthuruthil, S.; Mishra, S.; Hanno, R. Effect of Physical activity on Insulin Resistance, Inflammation and Oxidative Stress in Diabetes Mellitus. J. Clin. Diagn. Res. 2013, 7, 1764–1766. [Google Scholar] [CrossRef]
- Ruze, R.; Liu, T.; Zou, X.; Song, J.; Chen, Y.; Xu, R.; Yin, X.; Xu, Q. Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments. Front. Endocrinol. 2023, 14, 1161521. [Google Scholar] [CrossRef]
- Karahmet, E.; Prnjavorac, B.; Bego, T.; Softić, A.; Begić, L.; Begić, E.; Karahmet, E.; Prnjavorac, L.; Prnjavorac, I. Clinical use of an analysis of oxidative stress and IL-6 as the promoters of diabetic polyneuropathy. Med. Glas. 2021, 18, 12–17. [Google Scholar] [CrossRef]
- Sher, E.K.; Prnjavorac, B.; Farhat, E.K.; Palić, B.; Ansar, S.; Sher, F. Effect of Diabetic Neuropathy on Reparative Ability and Immune Response System. Mol. Biotechnol. 2023. [Google Scholar] [CrossRef]
- Cava, E.; Yeat, N.C.; Mittendorfer, B. Preserving Healthy Muscle during Weight Loss. Adv. Nutr. 2017, 8, 511–519. [Google Scholar] [CrossRef]
- Batsis, J.A.; Villareal, D.T. Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies. Nat. Rev. Endocrinol. 2018, 14, 513–537. [Google Scholar] [CrossRef]
- Paulussen, K.J.M.; McKenna, C.F.; Beals, J.W.; Wilund, K.R.; Salvador, A.F.; Burd, N.A. Anabolic Resistance of Muscle Protein Turnover Comes in Various Shapes and Sizes. Front. Nutr. 2021, 8, 615849. [Google Scholar] [CrossRef]
- Kumar, V.; Selby, A.; Rankin, D.; Patel, R.; Atherton, P.; Hildebrandt, W.; Williams, J.; Smith, K.; Seynnes, O.; Hiscock, N.; et al. Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J. Physiol. 2009, 587, 211–217. [Google Scholar] [CrossRef]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.I.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef]
- Moro, T.; Brightwell, C.R.; Velarde, B.; Fry, C.S.; Nakayama, K.; Sanbongi, C.; Volpi, E.; Rasmussen, B.B. Whey Protein Hydrolysate Increases Amino Acid Uptake, mTORC1 Signaling, and Protein Synthesis in Skeletal Muscle of Healthy Young Men in a Randomized Crossover Trial. J. Nutr. 2019, 149, 1149–1158. [Google Scholar] [CrossRef]
- Coelho-Junior, H.J.; Marzetti, E.; Picca, A.; Cesari, M.; Uchida, M.C.; Calvani, R. Protein Intake and Frailty: A Matter of Quantity, Quality, and Timing. Nutrients 2020, 12, 2915. [Google Scholar] [CrossRef]
- Yanagisawa, Y. How dietary amino acids and high protein diets influence insulin secretion. Physiol. Rep. 2023, 11, e15577. [Google Scholar] [CrossRef]
- Bawadi, H.; Al-Bayyari, N.; Tayyem, R.; Shi, Z. Protein Intake Among Patients with Insulin-Treated Diabetes is Linked to Poor Glycemic Control: Findings of NHANES Data. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 767–775. [Google Scholar] [CrossRef]
- Promintzer, M.; Krebs, M. Effects of dietary protein on glucose homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Tettamanzi, F.; Bagnardi, V.; Louca, P.; Nogal, A.; Monti, G.S.; Mambrini, S.P.; Lucchetti, E.; Maestrini, S.; Mazza, S.; Rodriguez-Mateos, A.; et al. A High Protein Diet Is More Effective in Improving Insulin Resistance and Glycemic Variability Compared to a Mediterranean Diet—A Cross-Over Controlled Inpatient Dietary Study. Nutrients 2021, 13, 4380. [Google Scholar] [CrossRef] [PubMed]
- Soo, J.; Raman, A.; Lawler, N.G.; Goods, P.S.R.; Deldicque, L.; Girard, O.; Fairchild, T.J. The role of exercise and hypoxia on glucose transport and regulation. Eur. J. Appl. Physiol. 2023, 123, 1147–1165. [Google Scholar] [CrossRef] [PubMed]
- Batsis, J.A.; Petersen, C.L.; Cook, S.B.; Al-Nimr, R.I.; Driesse, T.; Pidgeon, D.; Fielding, R. Impact of whey protein supplementation in a weight-loss intervention in rural dwelling adults: A feasibility study. Clin. Nutr. ESPEN 2021, 45, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and Abuse of HOMA Modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.-Q.; Li, Q.; Rentfro, A.R.; Fisher-Hoch, S.P.; McCormick, J.B. The Definition of Insulin Resistance Using HOMA-IR for Americans of Mexican Descent Using Machine Learning. PLoS ONE 2011, 6, e21041. [Google Scholar] [CrossRef] [PubMed]
- Sung, K.C.; Reaven, G.M.; Kim, S.H. Utility of homeostasis model assessment of beta-cell function in predicting diabetes in 12,924 healthy Koreans. Diabetes Care 2010, 33, 200–202. [Google Scholar] [CrossRef]
- Sullivan, G.M.; Feinn, R. Using Effect Size-or Why the p Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Oikonomou, C.; Nychas, G.; Dimitriadis, G.D. Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance. Nutrients 2022, 14, 823. [Google Scholar] [CrossRef]
- Tremblay, F.; Lavigne, C.; Jacques, H.; Marette, A. Role of Dietary Proteins and Amino Acids in the Pathogenesis of Insulin Resistance. Annu. Rev. Nutr. 2007, 27, 293–310. [Google Scholar] [CrossRef]
- Linn, T.; Santosa, B.; Grönemeyer, D.; Aygen, S.; Scholz, N.; Busch, M.; Bretzel, R.G. Effect of long-term dietary protein intake on glucose metabolism in humans. Diabetologia 2000, 43, 1257–1265. [Google Scholar] [CrossRef]
- Krebs, M.; Krssak, M.; Bernroider, E.; Anderwald, C.; Brehm, A.; Meyerspeer, M.; Nowotny, P.; Roth, E.; Waldhäusl, W.; Roden, M. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 2002, 51, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.G.; Nowson, C.A.; Dunstan, D.W.; Kerr, D.A.; Menzies, D.; Daly, R.M. Effects of whey protein plus vitamin D supplementation combined with progressive resistance training on glycaemic control, body composition, muscle function and cardiometabolic risk factors in middle-aged and older overweight/obese adults with type 2 diabetes: A 24-week randomized controlled trial. Diabetes Obes. Metab. 2021, 23, 938–949. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.L.S.; Machado-Lima, A.; Brech, G.C.; Greve, J.M.D.; Dos Santos, J.R.; Inojossa, T.R.; Rogero, M.M.; Salles, J.E.N.; Santarem-Sobrinho, J.M.; Davis, C.L.; et al. The Influence of Whey Protein on Muscle Strength, Glycemic Control and Functional Tasks in Older Adults with Type 2 Diabetes Mellitus in a Resistance Exercise Program: Randomized and Triple Blind Clinical Trial. Int. J. Env. Res. Public Health 2023, 20, 5891. [Google Scholar] [CrossRef] [PubMed]
- Rieu, I.; Balage, M.; Sornet, C.; Giraudet, C.; Pujos, E.; Grizard, J.; Mosoni, L.; Dardevet, D. Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia. J. Physiol. 2006, 575, 305–315. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, J.; Yang, S.; Gao, M.; Cao, L.; Li, X.; Hong, D.; Tian, S.; Sun, C. Effect of the ketogenic diet on glycemic control, insulin resistance, and lipid metabolism in patients with T2DM: A systematic review and meta-analysis. Nutr. Diabetes 2020, 10, 38. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, M.; Liang, J.; He, G.; Chen, N. Ketogenic Diet Benefits to Weight Loss, Glycemic Control, and Lipid Profiles in Overweight Patients with Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trails. Int. J. Environ. Res. Public Health 2022, 19, 10429. [Google Scholar] [CrossRef]
- Yoon, M.-S. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism. Nutrients 2016, 8, 405. [Google Scholar] [CrossRef]
- Luo, M.; Langlais, P.; Yi, Z.; Lefort, N.; De Filippis, E.A.; Hwang, H.; Christ-Roberts, C.Y.; Mandarino, L.J. Phosphorylation of human insulin receptor substrate-1 at Serine 629 plays a positive role in insulin signaling. Endocrinology 2007, 148, 4895–4905. [Google Scholar] [CrossRef]
- Luc, K.; Schramm-Luc, A.; Guzik, T.J.; Mikolajczyk, T.P. Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol. 2019, 70, 809–824. [Google Scholar] [CrossRef]
- Lopez-Legarrea, P.; de la Iglesia, R.; Abete, I.; Navas-Carretero, S.; Martinez, J.A.; Zulet, M.A. The protein type within a hypocaloric diet affects obesity-related inflammation: The RESMENA project. Nutrition 2014, 30, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Porter Starr, K.N.; Orenduff, M.; McDonald, S.R.; Mulder, H.; Sloane, R.; Pieper, C.F.; Bales, C.W. Influence of Weight Reduction and Enhanced Protein Intake on Biomarkers of Inflammation in Older Adults with Obesity. J. Nutr. Gerontol. Geriatr. 2019, 38, 33–49. [Google Scholar] [CrossRef]
- Azadbakht, L.; Izadi, V.; Surkan, P.J.; Esmaillzadeh, A. Effect of a High Protein Weight Loss Diet on Weight, High-Sensitivity C-Reactive Protein, and Cardiovascular Risk among Overweight and Obese Women: A Parallel Clinical Trial. Int. J. Endocrinol. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Di Giosia, P.; Stamerra, C.A.; Giorgini, P.; Jamialahamdi, T.; Butler, A.E.; Sahebkar, A. The role of nutrition in inflammaging. Ageing Res. Rev. 2022, 77, 101596. [Google Scholar] [CrossRef]
- Charisis, S.; Ntanasi, E.; Yannakoulia, M.; Anastasiou, C.A.; Kosmidis, M.H.; Dardiotis, E.; Gargalionis, A.N.; Patas, K.; Chatzipanagiotou, S.; Mourtzinos, I.; et al. Diet Inflammatory Index and Dementia Incidence: A Population-Based Study. Neurology 2021, 97, e2381–e2391. [Google Scholar] [CrossRef]
- Baum, J.I.; Kim, I.Y.; Wolfe, R.R. Protein Consumption and the Elderly: What Is the Optimal Level of Intake? Nutrients 2016, 8, 359. [Google Scholar] [CrossRef]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Mayer, J.P.; Zhang, F.; Dimarchi, R.D. Insulin structure and function. Biopolymers 2007, 88, 687–713. [Google Scholar] [CrossRef]
- Watson, J.; Whiting, P.; Salisbury, C.; Banks, J.; Hamilton, W. Raised inflammatory markers as a predictor of one-year mortality: A cohort study in primary care in the UK using electronic health record data. BMJ Open 2020, 10, e036027. [Google Scholar] [CrossRef]
- Wang, W.K.; Wang, B.; Lu, Q.H.; Zhang, W.; Qin, W.D.; Liu, X.J.; Liu, X.Q.; An, F.S.; Zhang, Y.; Zhang, M.X. Inhibition of high-mobility group box 1 improves myocardial fibrosis and dysfunction in diabetic cardiomyopathy. Int. J. Cardiol. 2014, 172, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Westerterp-Plantenga, M.S.; Lemmens, S.G.; Westerterp, K.R. Dietary protein—Its role in satiety, energetics, weight loss and health. Br. J. Nutr. 2012, 108, S105–S112. [Google Scholar] [CrossRef] [PubMed]
- Ravussin, E.; Beyl, R.A.; Poggiogalle, E.; Hsia, D.S.; Peterson, C.M. Early Time-Restricted Feeding Reduces Appetite and Increases Fat Oxidation But Does Not Affect Energy Expenditure in Humans. Obesity 2019, 27, 1244–1254. [Google Scholar] [CrossRef] [PubMed]
- Bai, K.; Pan, Y.; Lu, F.; Zhao, Y.; Wang, J.; Zhang, L. Kidney function and cognitive decline in an oldest-old Chinese population. Clin. Interv. Aging 2017, 12, 1049–1054. [Google Scholar] [CrossRef]
- Ryan, A.S.; Li, G.; McMillin, S.; Prior, S.J.; Blumenthal, J.B.; Mastella, L. Pathways in Skeletal Muscle: Protein Signaling and Insulin Sensitivity after Exercise Training and Weight Loss Interventions in Middle-Aged and Older Adults. Cells 2021, 10, 3490. [Google Scholar] [CrossRef]
- Areta, J.L.; Burke, L.M.; Ross, M.L.; Camera, D.M.; West, D.W.; Broad, E.M.; Jeacocke, N.A.; Moore, D.R.; Stellingwerff, T.; Phillips, S.M.; et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J. Physiol. 2013, 591, 2319–2331. [Google Scholar] [CrossRef]
- Kume, W.; Yasuda, J.; Hashimoto, T. Acute Effect of the Timing of Resistance Exercise and Nutrient Intake on Muscle Protein Breakdown. Nutrients 2020, 12, 1177. [Google Scholar] [CrossRef]
Protein Supplement (PG) (N = 14) | No Protein Supplement (NPG) (N = 14) | p Value | |
---|---|---|---|
Age | 72.9 (4.4) | 73.0 (6.3) | 0.94 |
Female sex | 12 (85.7) | 11 (78.6) | 0.62 |
Marital status | 0.07 | ||
Married | 4 (28.6) | 10 (71.4) | |
Divorced/widowed | 10 (71.4) | 4 (28.5) | |
Insurance status | |||
Medicare | 14 (100.0) | 14 (100.0) | 1.00 |
Medicaid | 0 (0.0) | 0 (0.0) | 1.00 |
Private insurance | 8 (57.1) | 10 (71.4) | 0.44 |
Smoking status | 0.005 | ||
Nonsmoker | 6 (42.9) | 13 (92.9) | |
Former smoker | 8 (57.1) | 1 (7.1) | |
Education | 0.12 | ||
High school | 2 (14.3) | 0 (0.0) | |
Some college | 5 (35.7) | 3 (21.4) | |
College degree | 3 (21.4) | 5 (35.7) | |
Post-college degree | 4 (28.6) | 6 (42.9) | |
Drinks per week | 0.54 | ||
None | 6 (42.9) | 7 (50.0) | |
1 to 5 | 7 (50.0) | 6 (42.9) | |
6+ | 1 (7.1) | 1 (7.1) | |
Income | 0.42 | ||
Less than USD 25,000 | 2 (14.3) | 0 (0.0) | |
USD 25,000 to USD 49,999 | 9 (64.3) | 9 (64.3) | |
USD 50,000 to USD 74,999 | 1 (7.1) | 3 (21.4) | |
USD 75,000 to USD 99,999 | 1 (7.1) | 1 (7.1) | |
USD 100,000+ | 1 (7.1) | 1 (7.1) | |
Comorbidities | |||
Anxiety | 2 (14.3) | 1 (7.1) | 0.55 |
Coronary artery disease | 1 (7.1) | 2 (14.3) | 0.55 |
Chronic obstructive pulmonary disease | 1 (7.1) | 0 (0.0) | 0.32 |
Depression | 3 (21.4) | 3 (21.4) | 1.00 |
Diabetes | 3 (21.4) | 2 (14.3) | 0.63 |
Fibromyalgia | 0 (0.0) | 1 (7.1) | 0.32 |
High cholesterol | 5 (35.7) | 4 (28.6) | 0.69 |
Hypertension | 7 (50.0) | 7 (50.0) | 1.00 |
Non skin cancer | 1 (7.1) | 0 (0.0) | 0.32 |
Osteoarthritis | 6 (42.9) | 6 (42.9) | 1.00 |
Rheumatologic disease | 1 (7.1) | 1 (7.1) | 1.00 |
Sleep apnea | 2 (14.3) | 4 (28.6) | 0.37 |
Stroke | 0 (0.0) | 0 (0.0) | 1.00 |
Variables | Protein Supplement | No Protein Supplement | p-Value | Effect Sizes |
---|---|---|---|---|
(n = 14) | (n = 14) | |||
Anthropometric Variables | ||||
% Weight change | −3.7 (3.1) | −6.0 (3.4) | 0.07 | 0.79 |
Body mass index, kg/m2 | −1.36 (1.09) | −2.15 (1.18) | 0.08 | 0.71 |
Waist Circumference (cm) | −14.8 (45.5) | −6.45 (6.25) | 0.03 | 0.88 |
Body Composition Variables | ||||
Fat-free mass index, | −0.66 (0.63) | −0.23 (0.65) | 0.08 | 0.68 |
Skeletal muscle mass, kg | −1.69 (2.51) | −1.67 (1.78) | 0.98 | 0.01 |
Appendicular lean mass/BMI, m2 | 0.00 (0.01) | 0.02 (0.01) | <0.001 | 0.30 |
Fat mass index | −0.97 (1.28) | −1.35 (0.91) | 0.37 | 0.34 |
Visceral adipose tissue, L | −0.02 (0.81) | −1.02 (0.98) | <0.001 | 1.11 |
Markers | Protein Supplement (n = 14) | No Protein Supplement (n = 14) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | Week 12 | Difference | p Value | Baseline | Week 12 | Difference | p Value | ** Δ p Value | Effect Size | |
Fasting plasma glucose (mg/dL) | 109.1 (21.9) | 105.1 (17.3) | −4.0 (13.9) | 0.30 | 113.1 (33.8) | 100.9 (11.3) | −12.2 (25.8) | 0.10 | 0.36 | −0.39 (−1.14, 0.36) |
Insulin levels (pmol/L) | 109.8 (55.2) | 102.0 (61.2) | −7.8 (28.2) | 0.31 | 119,4 (89.4) | 72.6 (33.0) | −46.8 (60.6) | 0.01 | 0.04 | −0.82 (−1.58, −0.04) |
C-peptide (ng/mL) | 3.01 (1.1) | 2.99 (1.36) | −0.02 (0.67) | 0.91 | 3.58 (1.98) | 2.89 (1.03) | −0.69 (1.25) | 0.06 | 0.17 | −0.66 (−1.42, 0.11) |
Insulin resistance (HOMA-IR) | 2.43 (1.19) | 2.25 (1.35) | −0.18 (0.64) | 0.32 | 2.68 (2.16) | 1.60 (0.75) | −1.08 (1.50) | 0.02 | 0.05 | −0.78 (−1.54, −0.001) |
% β-cell function | 119.7 (41.6) | 115.8 (36.3) | −3.9 (22.6) | 0.52 | 117.7 (37.4) | 100.9 (21.4) | −16.8 (33.9) | 0.09 | 0.27 | 0.45 (−1.19, 0.31) |
Protein Supplement (n = 14) | No Protein Supplement (n = 14) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Markers | Baseline | Week 12 | Difference | p Value | Baseline | Week 12 | Difference | p Value | ** Δ p Value | Effect Size |
CRP (mg/L) | 5.01 (4.19) | 4.36 (3.64) | −0.65 (1.86) | 0.21 | 5.09 (4.02) | 3.09 (2.18) | −2.00 (3.96) | 0.08 | 0.16 | −0.44 (−1.18, 0.32) |
ESR (mm/h) | 13.4 (4.5) | 12.4 (3.7) | −0.93 (1.82) | 0.08 | 17.0 (11.4) | 14.9 (9.2) | −2.14 (5.30) | 0.16 | 0.19 | −0.31 (−1.05, 0.44) |
TNF-α (pg/mL) | 1.16 (0.37) | 1.09 (0.32) | −0.08 (0.28) | 0.33 | 1.30 (0.43) | 1.08 (0.43) | −0.19 (0.23) | 0.01 | 0.14 | −0.45 (−1.21, 0.32) |
IL-6 (pg/mL) | 2.73 (1.38) | 2.29 (1.12) | −0.44 (1.26) | 0.21 | 2.68 (1.93) | 2.92 (2.51) | 0.10 (2.14) | 0.87 | 0.18 | 0.31 (−0.47, 1.09) |
* IL-1β | <0.001 | <0.001 | 0.13 | |||||||
<5 (pg/mL) | 13 (92.9%) | 13 (92.9%) | 0 (0.0%) | 9 (64.3%) | 11 (78.6%) | 0 (0.0%) | ||||
5–50 (pg/mL) | 1 (7.1%) | 1 (7.1%) | 0 (0.0%) | 3 (21.4%) | 2 (14.3%) | 2 (66.7%) | ||||
>50 (pg/mL) | 0 (0.0%) | 0 (0.00%) | --- | 2 (14.3%) | 1 (7.1%) | 1 (50.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batsis, J.A.; Batchek, D.J.; Petersen, C.L.; Gross, D.C.; Lynch, D.H.; Spangler, H.B.; Cook, S.B. Protein Supplementation May Dampen Positive Effects of Exercise on Glucose Homeostasis: A Pilot Weight Loss Intervention. Nutrients 2023, 15, 4947. https://doi.org/10.3390/nu15234947
Batsis JA, Batchek DJ, Petersen CL, Gross DC, Lynch DH, Spangler HB, Cook SB. Protein Supplementation May Dampen Positive Effects of Exercise on Glucose Homeostasis: A Pilot Weight Loss Intervention. Nutrients. 2023; 15(23):4947. https://doi.org/10.3390/nu15234947
Chicago/Turabian StyleBatsis, John A., Dakota J. Batchek, Curtis L. Petersen, Danae C. Gross, David H. Lynch, Hillary B. Spangler, and Summer B. Cook. 2023. "Protein Supplementation May Dampen Positive Effects of Exercise on Glucose Homeostasis: A Pilot Weight Loss Intervention" Nutrients 15, no. 23: 4947. https://doi.org/10.3390/nu15234947
APA StyleBatsis, J. A., Batchek, D. J., Petersen, C. L., Gross, D. C., Lynch, D. H., Spangler, H. B., & Cook, S. B. (2023). Protein Supplementation May Dampen Positive Effects of Exercise on Glucose Homeostasis: A Pilot Weight Loss Intervention. Nutrients, 15(23), 4947. https://doi.org/10.3390/nu15234947