Berry Consumption and Sleep in the Adult US General Population: Results from the National Health and Nutrition Examination Survey 2005–2018
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Analytic Sample
2.3. Definition of Berry Consumption and Consumers
2.4. Short/Long Sleep Duration and Sleep Difficulty
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. Sample Characteristics by Berry Consumption Status
3.2. Sample Characteristics by Short Sleep, Long Sleep, and Sleep Difficulty
3.3. Berry Consumption Associations with Short but Not with Long Sleep Duration
3.4. Berry Consumption Associated with Sleep Difficulty
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Wheaton, A.G.; Chapman, D.P.; Cunningham, T.J.; Lu, H.; Croft, J.B. Prevalence of Healthy Sleep Duration among Adults—United States, 2014. MMWR Morb. Mortal. Wkly Rep. 2016, 65, 137–141. [Google Scholar] [CrossRef]
- Ohayon, M.M. Epidemiology of insomnia: What we know and what we still need to learn. Sleep Med. Rev. 2002, 6, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Doghramji, K. The epidemiology and diagnosis of insomnia. Am. J. Manag. Care 2006, 12 (Suppl. 8), S214–S220. [Google Scholar]
- Hafner, M.; Stepanek, M.; Taylor, J.; Troxel, W.M.; van Stolk, C. Why Sleep Matters-The Economic Costs of Insufficient Sleep: A Cross-Country Comparative Analysis. Rand Health Q. 2017, 6, 11. [Google Scholar]
- Rosekind, M.R.; Gregory, K.B. Insomnia risks and costs: Health, safety, and quality of life. Am. J. Manag. Care 2010, 16, 617–626. [Google Scholar] [PubMed]
- Cappuccio, F.P.; Cooper, D.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Sleep duration predicts cardiovascular outcomes: A systematic review and meta-analysis of prospective studies. Eur. Heart J. 2011, 32, 1484–1492. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Tunhasiriwet, A.; Wang, Z.; Zhang, H.; Farrell, A.M.; Chirapongsathorn, S.; Sun, T.; Kitai, T.; Argulian, E. Association between short and long sleep durations and cardiovascular outcomes: A systematic review and meta-analysis. Eur. Heart J. Acute Cardiovasc. Care 2019, 8, 762–770. [Google Scholar] [CrossRef]
- Jike, M.; Itani, O.; Watanabe, N.; Buysse, D.J.; Kaneita, Y. Long sleep duration and health outcomes: A systematic review, meta-analysis and meta-regression. Sleep Med. Rev. 2018, 39, 25–36. [Google Scholar] [CrossRef]
- Javaheri, S.; Redline, S. Insomnia and Risk of Cardiovascular Disease. Chest 2017, 152, 435–444. [Google Scholar] [CrossRef]
- Patel, S.R.; Zhu, X.; Storfer-Isser, A.; Mehra, R.; Jenny, N.S.; Tracy, R.; Redline, S. Sleep duration and biomarkers of inflammation. Sleep 2009, 32, 200–204. [Google Scholar] [CrossRef]
- Dowd, J.B.; Goldman, N.; Weinstein, M. Sleep duration, sleep quality, and biomarkers of inflammation in a Taiwanese population. Ann. Epidemiol. 2011, 21, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Anothaisintawee, T.; Reutrakul, S.; Van Cauter, E.; Thakkinstian, A. Sleep disturbances compared to traditional risk factors for diabetes development: Systematic review and meta-analysis. Sleep Med. Rev. 2016, 30, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.; Ma, H.; Xie, M.; Yan, P.; Guo, Y.; Bao, W.; Rong, Y.; Jackson, C.L.; Hu, F.B.; Liu, L. Sleep duration and risk of type 2 diabetes: A meta-analysis of prospective studies. Diabetes Care 2015, 38, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tan, F.; Wei, L.; Li, X.; Lyu, Z.; Feng, X.; Wen, Y.; Guo, L.; He, J.; Dai, M.; et al. Sleep duration and the risk of cancer: A systematic review and meta-analysis including dose-response relationship. BMC Cancer 2018, 18, 1149. [Google Scholar] [CrossRef] [PubMed]
- Grandner, M.A.; Hale, L.; Moore, M.; Patel, N.P. Mortality associated with short sleep duration: The evidence, the possible mechanisms, and the future. Sleep Med. Rev. 2010, 14, 191–203. [Google Scholar] [CrossRef]
- He, Q.; Sun, H.; Wu, X.; Zhang, P.; Dai, H.; Ai, C.; Shi, J. Sleep duration and risk of stroke: A dose-response meta-analysis of prospective cohort studies. Sleep Med. 2017, 32, 66–74. [Google Scholar] [CrossRef]
- Smiley, A.; King, D.; Bidulescu, A. The Association between Sleep Duration and Metabolic Syndrome: The NHANES 2013/2014. Nutrients 2019, 11, 2582. [Google Scholar] [CrossRef]
- Gottlieb, D.J.; Redline, S.; Nieto, F.J.; Baldwin, C.M.; Newman, A.B.; Resnick, H.E.; Punjabi, N.M. Association of usual sleep duration with hypertension: The Sleep Heart Health Study. Sleep 2006, 29, 1009–1014. [Google Scholar] [CrossRef]
- Fang, J.; Wheaton, A.G.; Keenan, N.L.; Greenlund, K.J.; Perry, G.S.; Croft, J.B. Association of sleep duration and hypertension among US adults varies by age and sex. Am. J. Hypertens. 2012, 25, 335–341. [Google Scholar] [CrossRef]
- Steptoe, A.; Peacey, V.; Wardle, J. Sleep duration and health in young adults. Arch. Intern. Med. 2006, 166, 1689–1692. [Google Scholar] [CrossRef]
- Patel, S.R.; Malhotra, A.; Gottlieb, D.J.; White, D.P.; Hu, F.B. Correlates of long sleep duration. Sleep 2006, 29, 881–889. [Google Scholar] [CrossRef]
- Zhu, G.; Cassidy, S.; Hiden, H.; Woodman, S.; Trenell, M.; Gunn, D.A.; Catt, M.; Birch-Machin, M.; Anderson, K.N. Exploration of Sleep as a Specific Risk Factor for Poor Metabolic and Mental Health: A UK Biobank Study of 84,404 Participants. Nat. Sci. Sleep 2021, 13, 1903–1912. [Google Scholar] [CrossRef] [PubMed]
- Grandner, M.A.; Jackson, N.; Gerstner, J.R.; Knutson, K.L. Dietary nutrients associated with short and long sleep duration. Data from a nationally representative sample. Appetite 2013, 64, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Grandner, M.A.; Jackson, N.; Gerstner, J.R.; Knutson, K.L. Sleep symptoms associated with intake of specific dietary nutrients. J. Sleep Res. 2014, 23, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Ferri, R.; Castellano, S.; Angelino, D.; Mena, P.; Del Rio, D.; Caraci, F.; Galvano, F.; Grosso, G. Specific Dietary (Poly)phenols Are Associated with Sleep Quality in a Cohort of Italian Adults. Nutrients 2020, 12, 1226. [Google Scholar] [CrossRef] [PubMed]
- Zisapel, N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol. 2018, 175, 3190–3199. [Google Scholar] [CrossRef] [PubMed]
- Carpentieri, A.; Díaz de Barboza, G.; Areco, V.; Peralta López, M.; Tolosa de Talamoni, N. New perspectives in melatonin uses. Pharmacol. Res. 2012, 65, 437–444. [Google Scholar] [CrossRef]
- Ross, K.; Siow, Y.; Brown, D.; Isaak, C.; Fukumoto, L.; Godfrey, D. Characterization of Water Extractable Crude Polysaccharides from Cherry, Raspberry, and Ginseng Berry Fruits: Chemical Composition and Bioactivity. Int. J. Food Prop. 2015, 18, 670–689. [Google Scholar] [CrossRef]
- Garrido, M.; González-Gómez, D.; Lozano, M.; Barriga, C.; Paredes, S.D.; Rodríguez, A.B. A Jerte valley cherry product provides beneficial effects on sleep quality. Influence on aging. J. Nutr. Health Aging 2013, 17, 553–560. [Google Scholar] [CrossRef]
- Garrido, M.; Paredes, S.D.; Cubero, J.; Lozano, M.; Toribio-Delgado, A.F.; Muñoz, J.L.; Reiter, R.J.; Barriga, C.; Rodríguez, A.B. Jerte Valley cherry-enriched diets improve nocturnal rest and increase 6-sulfatoxymelatonin and total antioxidant capacity in the urine of middle-aged and elderly humans. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 909–914. [Google Scholar] [CrossRef]
- Garrido, M.; Espino, J.; González-Gómez, D.; Lozano, M.; Cubero, J.; Toribio-Delgado, A.F.; Maynar-Mariño, J.I.; Terrón, M.P.; Muñoz, J.L.; Pariente, J.A.; et al. A nutraceutical product based on Jerte Valley cherries improves sleep and augments the antioxidant status in humans. E-Spen Eur. E-J. Clin. Nutr. Metab. 2009, 4. [Google Scholar] [CrossRef]
- Noorwali, E.; Hardie, L.; Cade, J. Fruit and Vegetable Consumption and Their Polyphenol Content Are Inversely Associated with Sleep Duration: Prospective Associations from the UK Women’s Cohort Study. Nutrients 2018, 10, 1803. [Google Scholar] [CrossRef]
- Schutte-Rodin, S.; Broch, L.; Buysse, D.; Dorsey, C.; Sateia, M. Clinical guideline for the evaluation and management of chronic insomnia in adults. J. Clin. Sleep Med. 2008, 4, 487–504. [Google Scholar] [CrossRef] [PubMed]
- Riemann, D.; Benz, F.; Dressle, R.J.; Espie, C.A.; Johann, A.F.; Blanken, T.F.; Leerssen, J.; Wassing, R.; Henry, A.L.; Kyle, S.D.; et al. Insomnia disorder: State of the science and challenges for the future. J. Sleep Res. 2022, 31, e13604. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention NCfHS. National Health and Nutrition Examination Survey. Available online: https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx (accessed on 10 January 2020).
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, D.G.; Murayi, T.; Clemens, J.C.; Baer, D.J.; Sebastian, R.S.; Moshfegh, A.J. The USDA Automated Multiple-Pass Method accurately assesses population sodium intakes. Am. J. Clin. Nutr. 2013, 97, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Bodner-Montville, J.; Ahuja, J.K.C.; Ingwersen, L.A.; Haggerty, E.S.; Enns, C.W.; Perloff, B.P. USDA Food and Nutrient Database for Dietary Studies: Released on the web. J. Food Compos. Anal. 2006, 19, S100–S107. [Google Scholar] [CrossRef]
- USDA Food and Nutrient Database for Dietary Studies Beltsville, MD2020. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds/ (accessed on 19 July 2020).
- Sullivan, V.K.; Na, M.; Proctor, D.N.; Kris-Etherton, P.M.; Petersen, K.S. Consumption of Dried Fruits Is Associated with Greater Intakes of Underconsumed Nutrients, Higher Total Energy Intakes, and Better Diet Quality in US Adults: A Cross-Sectional Analysis of the National Health and Nutrition Examination Survey, 2007–2016. J. Acad. Nutr. Diet. 2021, 121, 1258–1272. [Google Scholar] [CrossRef]
- Burton-Freeman, B.M.; Guenther, P.M.; Oh, M.; Stuart, D.; Jensen, H.H. Assessing the consumption of berries and associated factors in the United States using the National Health and Nutrition Examination Survey (NHANES), 2007–2012. Food Funct. 2018, 9, 1009–1016. [Google Scholar] [CrossRef]
- Food Pattern Equivalence Databases, 2005–2006, 2007–2008, 2009–2010, 2011–2012, 2013–2014, 2015–2016, 2017–2018. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fped-databases/ (accessed on 10 January 2021).
- DHHS; USDA. 2015–2020 Dietary Guidelines for Americans. 2015. Available online: https://www.dietaryguidelines.gov/sites/default/files/2019-05/2015-2020_Dietary_Guidelines.pdf (accessed on 19 November 2023).
- Chaput, J.-P.; Dutil, C.; Featherstone, R.; Ross, R.; Giangregorio, L.; Saunders, T.J.; Janssen, I.; Poitras, V.J.; Kho, M.E.; Ross-White, A.; et al. Sleep duration and health in adults: An overview of systematic reviews. Appl. Physiol. Nutr. Metab. 2020, 45 (Suppl. 2), S218–S231. [Google Scholar] [CrossRef]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef]
- SAS. SAS, version 9.4; SAS Institute Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Centers for Disease Control and Prevention NCfHS. NHANES Web Tutorial 2019. Available online: https://wwwn.cdc.gov/nchs/nhanes/tutorials/module3.aspx (accessed on 10 February 2020).
- Centers for Disease Control and Prevention NCfHS. National Health and Nutrition Examination Survey: Analytic Guidelines, 2011–2016. 2018. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/analyticguidelines/11-16-analytic-guidelines.pdf (accessed on 19 June 2023).
- Noorwali, E.A.; Cade, J.E.; Burley, V.J.; Hardie, L.J. The relationship between sleep duration and fruit/vegetable intakes in UK adults: A cross-sectional study from the National Diet and Nutrition Survey. BMJ Open 2018, 8, e020810. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Kumar, A.; Wang, Z.; Jneid, H.; Baber, U.; Mehran, R.; Tang, W.H.W.; Bhatt, D.L. Sleep Duration and Cardiovascular Health in a Representative Community Population (from NHANES, 2005 to 2016). Am. J. Cardiol. 2020, 127, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.G.; Nie, J.Q.; Li, Y.Y.; Yu, X.; Zhang, Z.J. Higher HEI-2015 Scores Are Associated with Lower Risk of Sleep Disorder: Results from a Nationally Representative Survey of United States Adults. Nutrients 2022, 14, 873. [Google Scholar] [CrossRef] [PubMed]
- Budtz-Jørgensen, E.; Keiding, N.; Grandjean, P.; Weihe, P. Confounder selection in environmental epidemiology: Assessment of health effects of prenatal mercury exposure. Ann. Epidemiol. 2007, 17, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Mursu, J.; Virtanen, J.K.; Tuomainen, T.P.; Nurmi, T.; Voutilainen, S. Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Am. J. Clin. Nutr. 2014, 99, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Hale, L. Who has time to sleep? J. Public Health 2005, 27, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Friedman, E.M.; Love, G.D.; Rosenkranz, M.A.; Urry, H.L.; Davidson, R.J.; Singer, B.H.; Ryff, C.D. Socioeconomic status predicts objective and subjective sleep quality in aging women. Psychosom. Med. 2007, 69, 682–691. [Google Scholar] [CrossRef]
- Grandner, M.A.; Patel, N.P.; Gehrman, P.R.; Xie, D.; Sha, D.; Weaver, T.; Gooneratne, N. Who gets the best sleep? Ethnic and socioeconomic factors related to sleep complaints. Sleep Med. 2010, 11, 470–478. [Google Scholar] [CrossRef]
- Stamatakis, K.A.; Kaplan, G.A.; Roberts, R.E. Short sleep duration across income, education, and race/ethnic groups: Population prevalence and growing disparities during 34 years of follow-up. Ann. Epidemiol. 2007, 17, 948–955. [Google Scholar] [CrossRef]
- Patel, S.R. Social and demographic factors related to sleep duration. Sleep 2007, 30, 1077–1078. [Google Scholar] [CrossRef] [PubMed]
- Basner, M.; Fomberstein, K.M.; Razavi, F.M.; Banks, S.; William, J.H.; Rosa, R.R.; Dinges, D.F. American time use survey: Sleep time and its relationship to waking activities. Sleep 2007, 30, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Sejbuk, M.; Mirończuk-Chodakowska, I.; Witkowska, A.M. Sleep Quality: A Narrative Review on Nutrition, Stimulants, and Physical Activity as Important Factors. Nutrients 2022, 14, 1912. [Google Scholar] [CrossRef] [PubMed]
- Kredlow, M.A.; Capozzoli, M.C.; Hearon, B.A.; Calkins, A.W.; Otto, M.W. The effects of physical activity on sleep: A meta-analytic review. J. Behav. Med. 2015, 38, 427–449. [Google Scholar] [CrossRef] [PubMed]
- Andruskiene, J.; Varoneckas, G.; Martinkenas, A.; Grabauskas, V. Factors associated with poor sleep and health-related quality of life. Medicina 2008, 44, 240–246. [Google Scholar] [CrossRef]
- Zhai, L.; Zhang, H.; Zhang, D. Sleep duration and depression among adults: A meta-analysis of prospective studies. Depress. Anxiety 2015, 32, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Caraballo, C.; Mahajan, S.; Valero-Elizondo, J.; Massey, D.; Lu, Y.; Roy, B.; Riley, C.; Annapureddy, A.R.; Murugiah, K.; Elumn, J.; et al. Evaluation of Temporal Trends in Racial and Ethnic Disparities in Sleep Duration Among US Adults, 2004–2018. JAMA Netw. Open 2022, 5, e226385. [Google Scholar] [CrossRef]
- Golden, L. Limited Access: Disparities in Flexible Work Schedules and Work-at-home. J. Fam. Econ. Issues 2008, 29, 86–109. [Google Scholar] [CrossRef]
- Bureau of Labor Statistics. Workers on Flexible and Shift Schedules in May 2004. US Dep Labor. 2005. Available online: https://www.bls.gov/news.release/pdf/flex.pdf (accessed on 18 November 2023).
- Blanchflower, D.G.; Bryson, A. Unemployment and sleep: Evidence from the United States and Europe. Econ. Hum. Biol. 2021, 43, 101042. [Google Scholar] [CrossRef]
- Kalgotra, P.; Sharda, R.; Croff, J.M. Examining multimorbidity differences across racial groups: A network analysis of electronic medical records. Sci. Rep. 2020, 10, 13538. [Google Scholar] [CrossRef]
- Grandner, M.A.; Petrov, M.E.; Rattanaumpawan, P.; Jackson, N.; Platt, A.; Patel, N.P. Sleep symptoms, race/ethnicity, and socioeconomic position. J. Clin. Sleep Med. 2013, 9, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Grandner, M.A.; Jackson, N.J.; Pigeon, W.R.; Gooneratne, N.S.; Patel, N.P. State and regional prevalence of sleep disturbance and daytime fatigue. J. Clin. Sleep Med. 2012, 8, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Jansen, E.C.; Prather, A.; Leung, C.W. Associations between sleep duration and dietary quality: Results from a nationally-representative survey of US adults. Appetite 2020, 153, 104748. [Google Scholar] [CrossRef] [PubMed]
- Theorell-Haglöw, J.; Lemming, E.W.; Michaëlsson, K.; Elmståhl, S.; Lind, L.; Lindberg, E. Sleep duration is associated with healthy diet scores and meal patterns: Results from the population-based EpiHealth study. J. Clin. Sleep Med. 2020, 16, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Kelly, G.S. Folates: Supplemental forms and therapeutic applications. Altern. Med. Rev. 1998, 3, 208–220. [Google Scholar] [PubMed]
- Dashti, H.S.; Scheer, F.A.; Jacques, P.F.; Lamon-Fava, S.; Ordovás, J.M. Short sleep duration and dietary intake: Epidemiologic evidence, mechanisms, and health implications. Adv. Nutr. 2015, 6, 648–659. [Google Scholar] [CrossRef]
- Waldhauser, F.; Kovács, J.; Reiter, E. Age-related changes in melatonin levels in humans and its potential consequences for sleep disorders. Exp. Gerontol. 1998, 33, 759–772. [Google Scholar] [CrossRef]
- Del Bo, C.; Martini, D.; Porrini, M.; Klimis-Zacas, D.; Riso, P. Berries and oxidative stress markers: An overview of human intervention studies. Food Funct. 2015, 6, 2890–2917. [Google Scholar] [CrossRef]
- Del Rio, D.; Borges, G.; Crozier, A. Berry flavonoids and phenolics: Bioavailability and evidence of protective effects. Br. J. Nutr. 2010, 104 (Suppl. 3), S67–S90. [Google Scholar] [CrossRef]
- Rendeiro, C.; Rhodes, J.S.; Spencer, J.P. The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochem. Int. 2015, 89, 126–139. [Google Scholar] [CrossRef]
- Martini, D.; Marino, M.; Angelino, D.; Del Bo’, C.; Del Rio, D.; Riso, P.; Porrini, M. Role of berries in vascular function: A systematic review of human intervention studies. Nutr. Rev. 2020, 78, 189–206. [Google Scholar] [CrossRef]
- Huang, H.; Chen, G.; Liao, D.; Zhu, Y.; Xue, X. Effects of Berries Consumption on Cardiovascular Risk Factors: A Meta-analysis with Trial Sequential Analysis of Randomized Controlled Trials. Sci. Rep. 2016, 6, 23625. [Google Scholar] [CrossRef]
- Luís, Â.; Domingues, F.; Pereira, L. Association between berries intake and cardiovascular diseases risk factors: A systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Food Funct. 2018, 9, 740–757. [Google Scholar] [CrossRef]
- Godos, J.; Vitale, M.; Micek, A.; Ray, S.; Martini, D.; Del Rio, D.; Riccardi, G.; Galvano, F.; Grosso, G. Dietary Polyphenol Intake, Blood Pressure, and Hypertension: A Systematic Review and Meta-Analysis of Observational Studies. Antioxidants 2019, 8, 152. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Lefevre, M.; Beecher, G.R.; Gross, M.D.; Keen, C.L.; Etherton, T.D. Bioactive compounds in nutrition and health-research methodologies for establishing biological function: The antioxidant and anti-inflammatory effects of flavonoids on atherosclerosis. Annu. Rev. Nutr. 2004, 24, 511–538. [Google Scholar] [CrossRef]
- Paredes-López, O.; Cervantes-Ceja, M.L.; Vigna-Pérez, M.; Hernández-Pérez, T. Berries: Improving human health and healthy aging, and promoting quality life—A review. Plant Foods Hum. Nutr. 2010, 65, 299–308. [Google Scholar] [CrossRef]
- Cooper, D.C.; Ziegler, M.G.; Milic, M.S.; Ancoli-Israel, S.; Mills, P.J.; Loredo, J.S.; Von Känel, R.; Dimsdale, J.E. Endothelial function and sleep: Associations of flow-mediated dilation with perceived sleep quality and rapid eye movement (REM) sleep. J. Sleep Res. 2014, 23, 84–93. [Google Scholar] [CrossRef]
- Lo, K.; Woo, B.; Wong, M.; Tam, W. Subjective sleep quality, blood pressure, and hypertension: A meta-analysis. J. Clin. Hypertens. 2018, 20, 592–605. [Google Scholar] [CrossRef]
- Zielinski, M.R.; Gibbons, A.J. Neuroinflammation, Sleep, and Circadian Rhythms. Front. Cell Infect. Microbiol. 2022, 12, 853096. [Google Scholar] [CrossRef]
- Haytowitz, D.B.; Ahuja, J.K.C.; Wu, X.; Somanchi, M.; Nickle, M.; Nguyen, Q.A.; Roseland, J.M.; Williams, J.R.; Patterson, K.Y.; Li, Y.; et al. USDA National Nutrient Database for Standard Reference, Legacy Release. Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, ARS, USDA. 2019. Available online: https://data.nal.usda.gov/dataset/usda-national-nutrient-database-standard-reference-legacy-release (accessed on 10 June 2023).
- Matsunaga, T.; Nishikawa, K.; Adachi, T.; Yasuda, K. Associations between dietary consumption and sleep quality in young Japanese males. Sleep Breath 2021, 25, 199–206. [Google Scholar] [CrossRef]
- Rondanelli, M.; Opizzi, A.; Monteferrario, F.; Antoniello, N.; Manni, R.; Klersy, C. The effect of melatonin, magnesium, and zinc on primary insomnia in long-term care facility residents in Italy: A double-blind, placebo-controlled clinical trial. J. Am. Geriatr. Soc. 2011, 59, 82–90. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; Taggart, F.M.; Kandala, N.-B.; Currie, A.; Peile, E.; Stranges, S.; Miller, M.A. Meta-analysis of short sleep duration and obesity in children and adults. Sleep 2008, 31, 619–626. [Google Scholar] [CrossRef]
- Grandner, M.A.; Patel, N.P.; Gehrman, P.R.; Perlis, M.L.; Pack, A.I. Problems associated with short sleep: Bridging the gap between laboratory and epidemiological studies. Sleep Med. Rev. 2010, 14, 239–247. [Google Scholar] [CrossRef]
- Knutson, K.L. Sleep duration and cardiometabolic risk: A review of the epidemiologic evidence. Best. Pract. Res. Clin. Endocrinol. Metab. 2010, 24, 731–743. [Google Scholar] [CrossRef]
Characteristics | Nonconsumers | Berry Consumers | p-Value | ||
---|---|---|---|---|---|
n = 22,800 | n = 6417 | ||||
Age, mean ± S.E., y | 46.9 ± 0.3 | 51.1 ± 0.4 | <0.0001 | ||
BMI, mean ± S.E., kg/ | 25.6 ± 0.2 | 24.0 ± 0.3 | <0.0001 | ||
Sex (female), % | 11,331 | 49.2 (48.2, 50.2) | 3867 | 60.9 (59.2, 62.6) | <0.0001 |
Race/ethnicity, % | <0.0001 | ||||
Non-Hispanic White | 9643 | 64.7 (62.0, 67.5) | 3438 | 76.6 (74.2, 79.1) | |
Non-Hispanic Black | 5330 | 12.7 (11.1, 14.3) | 988 | 6.6 (5.6, 7.7) | |
Mexican American | 3590 | 9.3 (7.9, 10.8) | 759 | 5.6 (4.6, 6.7) | |
Other Hispanic | 2186 | 5.6 (4.6, 6.5) | 546 | 4.3 (3.5, 5.2) | |
Other | 2231 | 7.7 (6.9, 8.5) | 686 | 6.8 (5.7, 7.9) | |
Poverty-to-income ratio, % | <0.0001 | ||||
<1.3 | 7493 | 24.3 (22.8, 25.7) | 1349 | 13.6 (12.3, 15.0) | |
1.3–1.85 | 8817 | 36.4 (35.1, 37.7) | 2298 | 31.6 (29.5, 33.7) | |
>1.85 | 6490 | 39.3 (37.4, 41.3) | 2770 | 54.8 (52.2, 57.3) | |
Education, % | <0.0001 | ||||
Less than high school | 5864 | 17.0 (15.8, 18.2) | 881 | 8.6 (7.4, 9.8) | |
High school | 5564 | 25.6 (24.4, 26.8) | 1187 | 16.3 (14.9, 17.7) | |
Some college | 6785 | 32.1 (31.0, 33.2) | 1936 | 30.0 (27.8, 32.2) | |
≥4-year degree | 4587 | 25.3 (23.5, 27.0) | 2413 | 45.1 (42.4, 47.8) | |
Physical activity, % | <0.0001 | ||||
Sedentary | 6097 | 21.8 (20.7, 22.8) | 1304 | 16.1 (14.6, 17.7) | |
Low | 3751 | 16.6 (15.8, 17.4) | 1070 | 15.4 (14.3, 16.5) | |
Moderate | 3190 | 14.5 (13.7, 15.3) | 1091 | 18.1 (16.5, 19.7) | |
High | 9762 | 47.1 (45.8, 48.4) | 2952 | 50.4 (48.4, 52.4) | |
Current smoker (Yes), % | 5037 | 22.7 (21.6, 23.7) | 642 | 9.4 (8.2, 10.6) | <0.0001 |
Depression severity, % | <0.0001 | ||||
0–3 | 15,503 | 68.9 (67.9, 69.9) | 4757 | 75.0 (73.4, 76.6) | |
4–14 | 6438 | 27.8 (26.8, 28.7) | 1537 | 23.4 (21.9, 25.0) | |
15–27 | 859 | 3.3 (3.0, 3.7) | 123 | 1.6 (1.2, 2.0) | |
Modified HEI-2015, % | <0.0001 | ||||
<43.8 | 6135 | 29.1 (27.9, 30.3) | 818 | 13.0 (11.6, 14.5) | |
43.8–62.5 | 11,711 | 50.8 (49.7, 51.9) | 2982 | 47.8 (45.7, 49.8) | |
>62.5 | 4954 | 20.1 (19.1, 21.2) | 2617 | 39.2 (37.0, 41.5) | |
Alcohol intake, g/day | 9.0 ± 0.3 | 8.3 ± 0.4 | <0.0001 | ||
Energy intake, kcal/day | 2031.9 ± 8.3 | 2057.2 ± 14.3 | <0.0001 | ||
Caffeine intake, mg/day | 167.3 ± 2.9 | 163.3 ± 3.3 | <0.0001 |
Characteristics | Short Sleep Duration | Long Sleep Duration | Recommended/Adequate Sleep Duration | p-Value | |||
---|---|---|---|---|---|---|---|
n = 10,159 | n = 3403 | n = 15,655 | |||||
Age, mean ± S.E., y | 47.2 ± 0.3 | 49.8 ± 0.6 | 48.1 ± 0.3 | <0.0001 | |||
BMI, mean ± S.E., kg/ | 29.8 ± 0.1 | 29.0 ± 0.2 | 28.7 ± 0.1 | <0.0001 | |||
Sex (female), % | 5108 | 48.8 (47.3, 50.3) | 1935 | 60.5 (57.9, 63.2) | 8155 | 52.3 (51.3, 53.4) | <0.0001 |
Race/ethnicity, % | <0.0001 | ||||||
Non-Hispanic White | 3867 | 61.3 (58.2, 64.4) | 1594 | 67.0 (63.4, 70.6) | 7440 | 71.5 (69.0, 73.9) | |
Non-Hispanic Black | 2970 | 16.8 (14.7, 19.0) | 663 | 10.9 (9.0, 12.9) | 2685 | 8.1 (7.0, 9.2) | |
Mexican American | 1380 | 8.4 (7.1, 9.7) | 516 | 9.5 (7.4, 11.6) | 2453 | 8.1 (6.8, 9.4) | |
Other Hispanic | 1023 | 6.1 (5.0, 7.2) | 315 | 5.3 (4.0, 6.6) | 1394 | 4.8 (4.0, 5.6) | |
Other | 919 | 7.4 (6.5, 8.2) | 315 | 7.3 (5.6, 8.9) | 1683 | 7.5 (6.6, 8.5) | |
Poverty-to-income ratio, % | <0.0001 | ||||||
<1.3 | 3280 | 24.4 (22.6, 26.1) | 1255 | 28.6 (25.9, 31.2) | 4310 | 18.6 (17.4, 19.8) | |
1.3–1.85 | 3889 | 36.6 (35.1, 38.1) | 1347 | 37.8 (35.1, 40.6) | 5905 | 34.4 (32.8, 36.1) | |
>1.85 | 2990 | 39.0 (36.6, 41.3) | 801 | 33.6 (30.1, 37.1) | 5440 | 46.9 (44.9, 49.0) | |
Education, % | <0.0001 | ||||||
Less than high school | 2421 | 16.2 (14.9, 17.6) | 935 | 18.9 (17.0, 20.9) | 3387 | 13.3 (12.0, 14.6) | |
High school | 2513 | 26.6 (25.0, 28.2) | 849 | 26.4 (24.2, 28.6) | 3389 | 20.7 (19.5, 21.9) | |
Some college | 3223 | 34.5 (32.8, 36.1) | 996 | 31.0 (28.3, 33.7) | 4505 | 30.1 (28.7, 31.5) | |
≥4-year degree | 2002 | 22.7 (20.9, 24.5) | 623 | 23.7 (20.4, 26.9) | 4374 | 35.9 (33.7, 38.0) | |
Physical activity, % | <0.0001 | ||||||
Sedentary | 2564 | 21.0 (19.6, 22.4) | 1148 | 28.7 (26.2, 31.3) | 3689 | 18.2 (17.1, 19.3) | |
Low | 1656 | 15.5 (14.6, 16.5) | 559 | 15.7 (13.9, 17.5) | 2606 | 16.9 (15.8, 17.9) | |
Moderate | 1349 | 13.8 (12.8, 14.8) | 452 | 13.8 (11.8, 15.7) | 2480 | 16.7 (15.7, 17.6) | |
High | 4590 | 49.7 (47.8, 51.5) | 1244 | 41.8 (38.4, 45.2) | 6880 | 48.2 (46.7, 49.7) | |
Current smoker (Yes), % | 2425 | 25.3 (23.8, 26.7) | 657 | 20.3 (18.2, 22.4) | 2595 | 15.8 (14.7, 16.9) | <0.0001 |
Depression severity, % | |||||||
0–3 | 6312 | 63.1 (61.5, 64.8) | 2208 | 63.8 (61.4, 66.1) | 11,779 | 76.2 (74.5, 77.5) | |
4–14 | 3336 | 32.4 (31.0, 33.9) | 1046 | 31.7 (29.2, 34.2) | 3551 | 22.1 (20.8, 23.3) | |
15–27 | 511 | 4.5 (3.8, 5.1) | 149 | 4.5 (3.4, 5.6) | 325 | 1.7 (1.4, 2.0) | |
Modified HEI-2015 | <0.0001 | ||||||
<43.8 | 2699 | 28.0 (26.6, 29.4) | 879 | 28.3 (25.2, 31.4) | 3375 | 22.7 (21.3, 24.0) | |
43.8–62.5 | 5137 | 50.2 (48.8, 51.6) | 1686 | 49.6 (47.0, 52.3) | 7870 | 49.9 (48.7, 51.2) | |
>62.5 | 2323 | 21.8 (20.3, 23.3) | 838 | 22.1 (19.5, 24.7) | 4410 | 27.4 (26.0, 28.7) | |
Alcohol consumption, g/day | 8.3 ± 0.4 | 8.7 ± 0.6 | 9.2 ± 0.3 | <0.0001 | |||
Energy intake, kcal/day | 2044.7 ± 11.9 | 1927.7 ± 18.5 | 2057.3 ± 9.6 | <0.0001 | |||
Caffeine intake, mg/day | 176.8 ± 4.0 | 140.4 ± 4.2 | 165.7 ± 2.9 | <0.0001 | |||
Berry consumers (Yes), % | 1962 | 21.2 (19.7, 22.6) | 719 | 24.4 (21.8, 27.0) | 3736 | 28.0 (26.4, 29.6) | <0.0001 |
Characteristics | Sleep Difficulty (Yes) | Sleep Difficulty (No) | p-Value | ||
---|---|---|---|---|---|
n = 7694 | n = 21,523 | ||||
Age, mean ± S.E., y | 51.4 ± 0.3 | 46.6 ± 0.3 | <0.0001 | ||
BMI, mean ± S.E., kg/ | 30.2 ± 0.1 | 28.7 ± 0.1 | <0.0001 | ||
Sex (female), % | 4561 | 59.0 (57.3, 60.8) | 10,637 | 49.6 (48.6, 50.5) | <0.0001 |
Race/ethnicity, % | <0.0001 | ||||
Non-Hispanic White | 4051 | 74.5 (72.0, 77.0) | 8850 | 65.2 (62.6, 67.8) | |
Non-Hispanic Black | 1639 | 10.3 (8.9, 11.7) | 4679 | 11.5 (10.1, 12.9) | |
Mexican American | 779 | 5.2 (4.2, 6.1) | 3570 | 9.6 (8.1, 11.0) | |
Other Hispanic | 642 | 4.1 (3.3, 4.9) | 2090 | 5.7 (4.8, 6.7) | |
Other | 583 | 5.9 (5.1, 6.8) | 2334 | 8.0 (7.1, 8.9) | |
Poverty-to-income ratio, % | 0.0196 | ||||
<1.3 | 2537 | 23.3 (21.5, 25.2) | 6308 | 20.9 (19.7, 22.1) | |
1.3–1.85 | 2817 | 34.3 (32.2, 36.3) | 8324 | 36.0 (34.7, 37.4) | |
>1.85 | 2340 | 42.4 (39.8, 45.0) | 6891 | 43.1 (41.2, 45.0) | |
Education, % | <0.0001 | ||||
Less than high school | 1636 | 13.3 (11.9, 14.7) | 5107 | 15.5 (14.2, 16.7) | |
High school | 1833 | 24.8 (23.1, 26.6) | 4918 | 22.6 (21.5, 23.7) | |
Some college | 2535 | 33.9 (32.0, 35.9) | 6189 | 30.7 (29.5, 31.8) | |
≥4-year degree | 1690 | 27.9 (25.5, 30.4) | 5309 | 31.3 (29.4, 33.1) | |
Physical activity, % | <0.0001 | ||||
Sedentary | 6097 | 21.8 (20.7, 22.8) | 5211 | 19.1 (18.1, 20.1) | |
Low | 3751 | 16.6 (15.8, 17.4) | 3495 | 15.9 (15.2, 16.7) | |
Moderate | 3190 | 14.5 (13.7, 15.3) | 3211 | 15.7 (14.8, 16.5) | |
High | 9762 | 47.1 (45.8, 48.4) | 9606 | 49.3 (48.0, 50.6) | |
Current smoker (Yes), % | 1855 | 23.7 (22.0, 25.4) | 3822 | 17.6 (16.7, 18.5) | <0.0001 |
Depression severity, % | <0.0001 | ||||
0–3 | 3729 | 51.1 (49.2, 53.0) | 16,570 | 78.1 (77.1, 79.2) | |
4–14 | 3331 | 42.0 (40.2, 43.8) | 4602 | 20.5 (19.5, 21.5) | |
15–27 | 634 | 6.9 (6.2, 7.6) | 351 | 1.4 (1.1, 1.6) | |
Modified HEI-2015 | 0.518 | ||||
<43.8 | 1981 | 25.6 (23.8, 27.3) | 4972 | 24.8 (23.5, 26.0) | |
43.8–62.5 | 3820 | 50.1 (48.4, 51.8) | 10,873 | 49.9 (48.8, 51.1) | |
>62.5 | 1893 | 24.3 (22.6, 26.1) | 5678 | 25.3 (24.0, 26.5) | |
Alcohol intake, g/day | 8.7 ± 0.4 | 8.9 ± 0.2 | <0.0001 | ||
Energy intake, kcal/day | 1976.6 ± 12.6 | 2061.9 ± 8.2 | <0.0001 | ||
Caffeine intake, mg/day | 180.5 ± 3.3 | 160.8 ± 2.8 | <0.0001 | ||
Berry consumers (Yes), % | 1684 | 25.5 (23.7, 27.2) | 4733 | 25.4 (24.1, 26.8) | 0.941 |
Types of Berries | Case # (Consumers/ Nonconsumers) | Self-Reported Sleep Duration | Adjusted OR (95% CI) for Model 1 | p-Value | Adjusted OR (95% CI) for Model 2 | p-Value | Adjusted OR (95% CI) for Model 3 | p-Value |
---|---|---|---|---|---|---|---|---|
Berries | ||||||||
1962/8197 | Short sleep | 0.75 (0.68, 0.83) | <0.0001 | 0.89 (0.80, 0.98) | 0.019 | 0.90 (0.81, 0.993) | 0.037 | |
719/2684 | Long sleep | 0.80 (0.69, 0.93) | 0.004 | 0.96 (0.83, 1.12) | 0.639 | 1.00 (0.86, 1.17) | 0.97 | |
3736/11,919 | Normal sleep | 1.00 | 1.00 | 1.00 | ||||
Strawberries | ||||||||
1214/8945 | Short sleep | 0.75 (0.68, 0.83) | <0.0001 | 0.88 (0.80, 0.98) | 0.014 | 0.90 (0.81, 0.99) | 0.024 | |
461/2942 | Long sleep | 0.87 (0.75, 1.02) | 0.092 | 1.04 (0.89, 1.22) | 0.627 | 1.08 (0.92, 1.26) | 0.351 | |
2326/13,329 | Normal sleep | 1.00 | 1.00 | 1.00 | ||||
Blueberries | ||||||||
703/9456 | Short sleep | 0.69 (0.60, 0.81) | <0.0001 | 0.82 (0.70, 0.96) | 0.012 | 0.83 (0.71, 0.97) | 0.018 | |
296/3107 | Long sleep | 0.82 (0.66, 1.01) | 0.061 | 0.99 (0.80, 1.24) | 0.952 | 1.03 (0.83, 1.28) | 0.775 | |
1494/14,161 | Normal sleep | 1.00 | 1.00 | 1.00 | ||||
Cranberries | ||||||||
272/9887 | Short sleep | 0.70 (0.54, 0.91) | 0.007 | 0.84 (0.65, 1.09) | 0.182 | 0.85 (0.66, 1.10) | 0.217 | |
102/3301 | Long sleep | 0.88 (0.66, 1.19) | 0.416 | 1.09 (0.80, 1.48) | 0.595 | 1.13 (0.83, 1.55) | 0.429 | |
560/15,095 | Normal sleep | 1.00 | 1.00 | 1.00 | ||||
Raspberries | ||||||||
105/10,054 | Short sleep | 0.69 (0.45, 1.04) | 0.075 | 0.83 (0.54, 1.27) | 0.392 | 0.84 (0.55, 1.28) | 0.416 | |
35/3368 | Long sleep | 0.79 (0.48, 1.30) | 0.346 | 0.98 (0.59, 1.63) | 0.923 | 1.00 (0.60, 1.66) | 0.995 | |
222/15,433 | Normal sleep | 1.00 | 1.00 | 1.00 | ||||
Blackberries | ||||||||
58/10,101 | Short sleep | 0.58 (0.34, 0.99) | 0.045 | 0.73 (0.43, 1.26) | 0.265 | 0.74 (0.43, 1.29) | 0.277 | |
19/3384 | Long sleep | 0.44 (0.21, 0.95) | 0.034 | 0.57 (0.26, 1.26) | 0.166 | 0.58 (0.27, 1.29) | 0.182 | |
148/15,507 | Normal sleep | 1.00 | 1.00 | 1.00 |
Types of Berries | Case # (Consumers/Nonconsumers) | Sleep Difficulty | Adjusted OR (95% CI) for Model 1 | p-Value | Adjusted OR (95% CI) for Model 2 | p-Value | Adjusted OR (95% CI) for Model 3 | p-Value |
---|---|---|---|---|---|---|---|---|
Berries | 1684/6010 | Yes | 0.88 (0.80, 0.95) | 0.003 | 0.989 (0.90, 1.09) | 0.814 | 0.992 (0.90, 1.09) | 0.864 |
4733/16,790 | No | 1.00 | 1.00 | 1.00 | ||||
Strawberries | 1022/6672 | Yes | 0.92 (0.83, 1.03) | 0.128 | 1.04 (0.93, 1.17) | 0.501 | 1.05 (0.93, 1.18) | 0.436 |
2979/18,544 | No | 1.00 | 1.00 | 1.00 | ||||
Blueberries | 662/7032 | Yes | 0.88 (0.77, 0.99) | 0.045 | 0.96 (0.83, 1.10) | 0.535 | 0.98 (0.85, 1.13) | 0.825 |
1831/19,692 | No | 1.00 | 1.00 | 1.00 | ||||
Cranberries | 274/7420 | Yes | 0.92 (0.73, 1.16) | 0.476 | 1.05 (0.83, 1.33) | 0.683 | 1.07 (0.85, 1.36) | 0.564 |
660/20,863 | No | 1.00 | 1.00 | 1.00 | ||||
Raspberries | 96/7598 | Yes | 0.66 (0.45, 0.97) | 0.035 | 0.75 (0.52, 1.08) | 0.118 | 0.74 (0.49, 1.14) | 0.169 |
266/21,257 | No | 1.00 | 1.00 | 1.00 | ||||
Blackberries | 63/7631 | Yes | 0.58 (0.37, 0.91) | 0.018 | 0.62 (0.40,0.97) | 0.034 | 0.63 (0.40, 0.97) | 0.036 |
162/21,361 | No | 1.00 | 1.00 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Muscat, J.E.; Kris-Etherton, P.M.; Chinchilli, V.M.; Fernandez-Mendoza, J.; Al-Shaar, L.; Richie, J.P. Berry Consumption and Sleep in the Adult US General Population: Results from the National Health and Nutrition Examination Survey 2005–2018. Nutrients 2023, 15, 5115. https://doi.org/10.3390/nu15245115
Zhang L, Muscat JE, Kris-Etherton PM, Chinchilli VM, Fernandez-Mendoza J, Al-Shaar L, Richie JP. Berry Consumption and Sleep in the Adult US General Population: Results from the National Health and Nutrition Examination Survey 2005–2018. Nutrients. 2023; 15(24):5115. https://doi.org/10.3390/nu15245115
Chicago/Turabian StyleZhang, Li, Joshua E. Muscat, Penny M. Kris-Etherton, Vernon M. Chinchilli, Julio Fernandez-Mendoza, Laila Al-Shaar, and John P. Richie. 2023. "Berry Consumption and Sleep in the Adult US General Population: Results from the National Health and Nutrition Examination Survey 2005–2018" Nutrients 15, no. 24: 5115. https://doi.org/10.3390/nu15245115
APA StyleZhang, L., Muscat, J. E., Kris-Etherton, P. M., Chinchilli, V. M., Fernandez-Mendoza, J., Al-Shaar, L., & Richie, J. P. (2023). Berry Consumption and Sleep in the Adult US General Population: Results from the National Health and Nutrition Examination Survey 2005–2018. Nutrients, 15(24), 5115. https://doi.org/10.3390/nu15245115