Spatial Distribution and Temporal Trends of Dietary Niacin Intake in Chinese Residents ≥ 5 Years of Age between 1991 and 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Calculating the Intake of Niacin
2.3. Outcome Variables
2.4. Sociodemographic Variables
2.5. Statistical Analysis
2.6. Spatial Analysis
3. Results
3.1. Sample Characteristics
3.2. Trends of the Prevalence of Inadequate Niacin Intake
3.3. Factors Associated with Inadequate Niacin Intake
3.4. Spatial Burden of Inadequate Niacin Intake
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Song, P.K.; Zhao, L.Y.; Sun, Y.; Yu, K.; Yin, J.; Pang, S.J.; Liu, Z.; Man, Q.Q.; He, L.; et al. Malnutrition in Relation with Dietary, Geographical, and Socioeconomic Factors among Older Chinese. Biomed. Environ. Sci. 2021, 34, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.A.; Spence, J.D.; Giovannucci, E.L.; Kim, Y.I.; Josse, R.; Vieth, R.; Blanco Mejia, S.; Viguiliouk, E.; Nishi, S.; Sahye-Pudaruth, S.; et al. Supplemental Vitamins and Minerals for CVD Prevention and Treatment. J. Am. Coll. Cardiol. 2018, 71, 2570–2584. [Google Scholar] [CrossRef] [PubMed]
- Lavigne, P.M.; Karas, R.H. The current state of niacin in cardiovascular disease prevention: A systematic review and meta-regression. J. Am. Coll. Cardiol. 2013, 61, 440–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasperi, V.; Sibilano, M.; Savini, I.; Catani, M.V. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int. J. Mol. Sci. 2019, 20, 974. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, M.; Zhou, C.; He, P.; Zhang, Y.; Li, H.; Li, Q.; Liu, C.; Qin, X. Evaluation of Dietary Niacin and New-Onset Hypertension Among Chinese Adults. JAMA Netw. Open 2021, 4, e2031669. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Wang, W.; Zhang, D. Associations of dietary vitamin B1, vitamin B2, niacin, vitamin B6, vitamin B12 and folate equivalent intakes with metabolic syndrome. Int. J. Food. Sci. Nutr. 2020, 71, 738–749. [Google Scholar] [CrossRef]
- Newby, P.K.; Noel, S.E.; Grant, R.; Judd, S.; Shikany, J.M.; Ard, J. Race and region have independent and synergistic effects on dietary intakes in black and white women. Nutr. J. 2012, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Wang, H.; Zhang, B.; Popkin, B.M. Dietary Potassium Intake Remains Low and Sodium Intake Remains High, and Most Sodium is Derived from Home Food Preparation for Chinese Adults, 1991-2015 Trends. J. Nutr. 2020, 150, 1230–1239. [Google Scholar] [CrossRef]
- Carr, A.C.; Rowe, S. Factors Affecting Vitamin C Status and Prevalence of Deficiency: A Global Health Perspective. Nutrients 2020, 12, 1963. [Google Scholar] [CrossRef]
- Popkin, B.M.; Du, S.; Zhai, F.; Zhang, B. Cohort Profile: The China Health and Nutrition Survey--monitoring and understanding socio-economic and health change in China, 1989-2011. Int. J. Epidemiol. 2010, 39, 1435–1440. [Google Scholar] [CrossRef]
- Zhang, B.; Zhai, F.Y.; Du, S.F.; Popkin, B.M. The China Health and Nutrition Survey, 1989-2011. Obes. Rev. 2014, 15 (Suppl. 1), 2–7. [Google Scholar] [CrossRef] [Green Version]
- Kirby, R.S.; Delmelle, E.; Eberth, J.M. Advances in spatial epidemiology and geographic information systems. Ann. Epidemiol. 2017, 27, 1–9. [Google Scholar] [CrossRef]
- Banerjee, S. Spatial Data Analysis. Annu. Rev. Public Health 2016, 37, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Wackernagel, H. Ordinary Kriging. In Multivariate Geostatistics: An Introduction with Applications; Springer: Berlin/Heidelberg, Germany, 1995; pp. 74–81. [Google Scholar] [CrossRef]
- Huang, S.; Xiang, H.; Yang, W.; Zhu, Z.; Tian, L.; Deng, S.; Zhang, T.; Lu, Y.; Liu, F.; Li, X.; et al. Short-term Effect of Air Pollution on Tuberculosis Based on Kriged Data: A Time-series Analysis. Int. J. Environ. Res. Public Health 2020, 17, 1522. [Google Scholar] [CrossRef] [Green Version]
- Patil, B.; Hegde, V.; Sridhara, S.; Narayanaswamy, H.; Naik, M.K.; Patil, K.K.R.; Rajashekara, H.; Mishra, A.K. Exploring the Impact of Climatic Variables on Arecanut Fruit Rot Epidemic by Understanding the Disease Dynamics in Relation to Space and Time. J. Fungi 2022, 8, 745. [Google Scholar] [CrossRef]
- Liyew, A.M.; Sisay, M.M.; Muche, A.A. Spatial distribution and factors associated with low birth weight in Ethiopia using data from Ethiopian Demographic and Health Survey 2016: Spatial and multilevel analysis. BMJ Paediatr. Open 2021, 5, e000968. [Google Scholar] [CrossRef]
- Seboka, B.T.; Hailegebreal, S.; Mamo, T.T.; Yehualashet, D.E.; Gilano, G.; Kabthymer, R.H.; Ewune, H.A.; Kassa, R.; Debisa, M.A.; Yawo, M.N.; et al. Spatial trends and projections of chronic malnutrition among children under 5 years of age in Ethiopia from 2011 to 2019: A geographically weighted regression analysis. J. Health Popul. Nutr. 2022, 41, 28. [Google Scholar] [CrossRef]
- Beal, T.; Massiot, E.; Arsenault, J.E.; Smith, M.R.; Hijmans, R.J. Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLoS ONE 2017, 12, e0175554. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Han, A.; Chai, L. Assessing the Nutrient Adequacy in China's Food Supply from 1965 to 2018. Nutrients 2021, 13, 2734. [Google Scholar] [CrossRef]
- Maimaiti, M.; Zhao, X.; Jia, M.; Ru, Y.; Zhu, S. How we eat determines what we become: Opportunities and challenges brought by food delivery industry in a changing world in China. Eur. J. Clin. Nutr. 2018, 72, 1282–1286. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Aparicio-Ugarriza, R.; Olza, J.; Aranceta-Bartrina, J.; Gil, A.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G.; Gonzalez-Gross, M. Dietary Intake and Food Sources of Niacin, Riboflavin, Thiamin and Vitamin B(6) in a Representative Sample of the Spanish Population. The Anthropometry, Intake, and Energy Balance in Spain (ANIBES) Study dagger. Nutrients 2018, 10, 846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troesch, B.; Hoeft, B.; McBurney, M.; Eggersdorfer, M.; Weber, P. Dietary surveys indicate vitamin intakes below recommendations are common in representative Western countries. Br. J. Nutr. 2012, 108, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Fulgoni, V.L., 3rd; Keast, D.R.; Bailey, R.L.; Dwyer, J. Foods, fortificants, and supplements: Where do Americans get their nutrients? J. Nutr. 2011, 141, 1847–1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Zhang, B.; Wang, H.J.; Ouyang, Y.F.; Huang, F.F.; Wang, Y.; Zhang, J.G.; Su, C.; Du, W.W.; Jia, X.F.; et al. Sociodemographic Factors Associated with Dietary Intake of Thiamine, Riboflavin, and Niacin among Chinese Adults in 2015. Biomed. Environ. Sci. 2020, 33, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; DeFries, R.S.; Liu, L.; Davis, K. Understanding dietary and staple food transitions in China from multiple scales. PLoS ONE 2018, 13, e0195775. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Zhao, L.; Zhao, W. Status and trends in consumption of grains and dietary fiber among Chinese adults (1982-2015). Nutr. Rev. 2020, 78, 43–53. [Google Scholar] [CrossRef]
- Society, C.N. The Dietary Guidelines for Chinese Residents (2016); People’s Medical Publishing House: Beijing, China, 2016. [Google Scholar]
- DeFries, R.; Fanzo, J.; Remans, R.; Palm, C.; Wood, S.; Anderman, T.L. Global nutrition. Metrics for land-scarce agriculture. Science 2015, 349, 238–240. [Google Scholar] [CrossRef]
- Gong, W.; Liu, A.; Yao, Y.; Ma, Y.; Ding, C.; Song, C.; Yuan, F.; Zhang, Y.; Feng, G.; Chen, Z.; et al. Nutrient Supplement Use among the Chinese Population: A Cross-Sectional Study of the 2010(-)2012 China Nutrition and Health Surveillance. Nutrients 2018, 10, 1733. [Google Scholar] [CrossRef] [Green Version]
- Mark, H.E.; Houghton, L.A.; Gibson, R.S.; Monterrosa, E.; Kraemer, K. Estimating dietary micronutrient supply and the prevalence of inadequate intakes from national Food Balance Sheets in the South Asia regiona. Asia Pac. J. Clin. Nutr. 2016, 25, 368–376. [Google Scholar] [CrossRef]
- Torheim, L.E.; Ferguson, E.L.; Penrose, K.; Arimond, M. Women in resource-poor settings are at risk of inadequate intakes of multiple micronutrients. J. Nutr. 2010, 140, 2051S–2058S. [Google Scholar] [CrossRef] [Green Version]
- Barennes, H.; Sengkhamyong, K.; Rene, J.P.; Phimmasane, M. Beriberi (thiamine deficiency) and high infant mortality in northern Laos. PLoS Negl. Trop. Dis. 2015, 9, e0003581. [Google Scholar] [CrossRef] [Green Version]
- Mullie, P.; Clarys, P.; Hulens, M.; Vansant, G. Dietary patterns and socioeconomic position. Eur. J. Clin. Nutr. 2010, 64, 231–238. [Google Scholar] [CrossRef]
- WHO; FAO. Guidelines on Food Fortification with Micronutrients; WHO: Geneva, Switzerland, 2006; Available online: https://www.who.int/publications/i/item/9241594012 (accessed on 15 January 2023).
- Zhao, X.; Lin, W.; Cen, S.; Zhu, H.; Duan, M.; Li, W.; Zhu, S. The online-to-offline (O2O) food delivery industry and its recent development in China. Eur. J. Clin. Nutr. 2021, 75, 232–237. [Google Scholar] [CrossRef]
- Dwyer, J.T.; Wiemer, K.L.; Dary, O.; Keen, C.L.; King, J.C.; Miller, K.B.; Philbert, M.A.; Tarasuk, V.; Taylor, C.L.; Gaine, P.C.; et al. Fortification and health: Challenges and opportunities. Adv. Nutr. 2015, 6, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Hou, M.; Qing, P.; Min, S. Multiple indicators of household dietary diversity in rural China: Effects of income and dietary knowledge. Nutrition 2021, 91–92, 111406. [Google Scholar] [CrossRef]
- Cui, B.; Wang, L.D.; Wang, F.R.; Peng, J.; Ma, J.Y.; Chen, X.; Xu, M.Y.; Ke, J.; Tian, Y. Correlation between dietary information sources and knowledge of adequate diets in Eastern China. Front. Public Health 2022, 10, 955766. [Google Scholar] [CrossRef]
1991 (n = 11,011) | 1993 (n = 10,420) | 1997 (n = 10,414) | 2000 (n = 10,191) | 2004 (n = 10,819) | 2006 (n = 10,399) | 2009 (n = 10,668) | 2011 (n = 14,143) | 2015 (n = 17,092) | 2018 (n = 14,547) | |
---|---|---|---|---|---|---|---|---|---|---|
Age (years) | ||||||||||
5–17 | 2706 (24.6) | 2563 (24.6) | 2353 (22.6) | 1846 (18.1) | 1552 (14.4) | 1255 (12.1) | 1135 (10.6) | 1555 (11.0) | 2038 (11.9) | 1629 (11.2) |
18–44 | 5267 (47.8) | 4787 (45.9) | 4497 (43.2) | 4149 (40.7) | 4023 (37.2) | 3783 (36.4) | 3645 (34.2) | 4471 (31.6) | 5056 (29.6) | 3464 (23.8) |
45–59 | 1810 (16.4) | 1800 (17.3) | 2148 (20.6) | 2615 (25.7) | 3175 (29.3) | 3099 (29.8) | 3334 (31.3) | 4497 (31.8) | 5071 (29.7) | 4344 (29.9) |
≥60 | 1228 (11.2) | 1270 (12.2) | 1416 (13.6) | 1581 (15.5) | 2069 (19.1) | 2262 (21.8) | 2554 (23.9) | 3620 (25.6) | 4927 (28.8) | 5110 (35.1) |
Sex | ||||||||||
Men | 5336 (48.5) | 5098 (48.9) | 5186 (49.8) | 5161 (50.6) | 5240 (48.4) | 5033 (48.4) | 5216 (48.9) | 6718 (47.5) | 8137 (47.6) | 6878 (47.3) |
Women | 5675 (51.5) | 5322 (51.1) | 5228 (50.2) | 5030 (49.4) | 5579 (51.6) | 5366 (51.6) | 5452 (51.1) | 7425 (52.5) | 8955 (52.4) | 7669 (52.7) |
Education | ||||||||||
Low | 6470 (58.8) | 5798 (55.6) | 5752 (55.2) | 4943 (48.5) | 4750 (43.9) | 4532 (43.6) | 4482 (42.0) | 5191 (36.7) | 6050 (35.4) | 4895 (33.7) |
Medium | 4332 (39.3) | 4412 (42.4) | 4442 (42.7) | 4930 (48.4) | 5604 (51.8) | 5264 (50.6) | 5601 (52.5) | 7635 (54.0) | 9241 (54.1) | 7992 (54.9) |
High | 209 (1.9) | 210 (2.0) | 220 (2.1) | 318 (3.1) | 465 (4.3) | 603 (5.8) | 585 (5.5) | 1317 (9.3) | 1801 (10.5) | 1660 (11.4) |
Income (1000 yuan/per capita) 1 | ||||||||||
Low | 11,011 (100.0) | 10,409 (99.9) | 10,274 (98.7) | 9798 (96.1) | 9552 (88.3) | 8710 (83.8) | 7172 (67.2) | 6764 (47.8) | 6238 (36.5) | 4125 (28.4) |
Medium | 0 (0.0) | 11 (0.1) | 125 (1.2) | 315 (3.1) | 1014 (9.4) | 1309 (12.6) | 2450 (23.0) | 4144 (29.3) | 4404 (25.8) | 3209 (22.1) |
High | 0 (0.0) | 0 (0.0) | 15 (0.1) | 78 (0.8) | 253 (2.3) | 380 (3.7) | 1046 (9.8) | 3235 (22.9) | 6450 (37.7) | 7213 (49.5) |
Urban/rural | ||||||||||
Urban | 7466 (67.8) | 7323 (70.3) | 7485 (71.9) | 7377 (72.4) | 7495 (69.3) | 7211 (69.3) | 7397 (69.3) | 8230 (58.2) | 10,334 (60.5) | 9080 (62.4) |
Rural | 3545 (32.2) | 3097 (29.7) | 2929 (28.1) | 2814 (27.6) | 3324 (30.7) | 3188 (30.7) | 3271 (30.7) | 5913 (41.8) | 6758 (39.5) | 5467 (37.6) |
1991 (n = 11,011) | 1993 (n = 10,420) | 1997 (n = 10,414) | 2000 (n = 10,191) | 2004 (n = 10,819) | 2006 (n = 10,399) | 2009 (n = 10,668) | 2011 (n = 14,143) | 2015 (n = 17,092) | 2018 (14,030) | ADJUSTED Model 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | <EAR% | n | <EAR% | n | <EAR% | n | <EAR% | n | <EAR% | n | <EAR% | n | <EAR% | n | <EAR% | n | <EAR% | n | <EAR% | p-Value for Trend 2 | |
Total | 11,011 | 15.3 | 10,420 | 17.74 | 10,414 | 16.67 | 10,191 | 23.35 | 10,819 | 28.11 | 10,399 | 29.66 | 10,668 | 29.31 | 14,143 | 31.76 | 17,092 | 27.99 | 14,547 | 28.9 | 0.001 |
Women | 5675 | 13 | 5322 | 15.01 | 5228 | 15.23 | 5030 | 22.09 | 5579 | 27.21 | 5366 | 28.66 | 5452 | 28.93 | 7425 | 32.36 | 8955 | 27.52 | 7669 | 28.4 | 0.001 |
Age | |||||||||||||||||||||
5–17 | 1338 | 17.79 | 1232 | 19.4 | 1115 | 22.6 | 840 | 31.55 | 734 | 35.97 | 578 | 39.1 | 502 | 42.83 | 759 | 35.7 | 958 | 31.42 | 754 | 31.83 | 0.001 |
18–44 | 2781 | 9.78 | 2493 | 12.64 | 2283 | 10.73 | 2017 | 17.7 | 2095 | 22.96 | 1991 | 25.57 | 1886 | 25.08 | 2411 | 30.61 | 2765 | 24.23 | 1916 | 28.03 | 0.005 |
45–59 | 919 | 12.4 | 930 | 11.72 | 1087 | 12.7 | 1328 | 18.9 | 1663 | 25.26 | 1604 | 24.5 | 1717 | 26.44 | 2356 | 29.24 | 2643 | 26.86 | 2294 | 26.2 | 0.359 |
≥60 | 637 | 17.9 | 667 | 20.39 | 743 | 21.67 | 845 | 28.17 | 1087 | 32.47 | 1193 | 34.37 | 1347 | 32.29 | 1899 | 37.12 | 2589 | 30.24 | 2705 | 29.57 | 0.001 |
Education | |||||||||||||||||||||
Low | 3640 | 12.55 | 3297 | 14.92 | 3254 | 15.55 | 2846 | 22.91 | 2865 | 28.24 | 2715 | 30.09 | 2673 | 29.7 | 3151 | 34.72 | 3593 | 29.45 | 2959 | 30.92 | 0.086 |
Medium | 1973 | 13.68 | 1965 | 15.22 | 1908 | 14.73 | 2085 | 21.06 | 2540 | 26.22 | 2412 | 27.94 | ,2537 | 28.54 | 3667 | 30.87 | 4496 | 27.22 | 3892 | 27.08 | 0.005 |
High | 62 | 17.74 | 60 | 13.33 | 66 | 13.64 | 99 | 20.2 | 174 | 24.71 | 239 | 19.67 | 242 | 24.38 | 607 | 29.16 | 866 | 21.02 | 818 | 25.55 | 0.001 |
Income (1000 yuan/per capita) 3 | |||||||||||||||||||||
Low | 5675 | 13 | 5318 | 15.01 | 5158 | 15.32 | 4835 | 22.21 | 4929 | 27.92 | 4524 | 29.66 | 3714 | 30.86 | 3661 | 36.85 | 3351 | 32.14 | 2214 | 32.66 | 0.001 |
Medium | 0 | 0 | 4 | 25 | 65 | 9.23 | 160 | 16.88 | 521 | 21.31 | 655 | 25.04 | 1219 | 25.18 | 2119 | 28.98 | 2287 | 28.03 | 1674 | 30.47 | 0.001 |
High | 0 | 0 | 0 | 0 | 5 | 0 | 35 | 28.57 | 129 | 24.03 | 187 | 17.11 | 519 | 23.89 | 1645 | 26.75 | 3317 | 22.49 | 3781 | 24.99 | 0.001 |
Urban/rural | |||||||||||||||||||||
Urban | 1821 | 14.61 | 1591 | 16.47 | 1513 | 15.27 | 1422 | 22.36 | 1754 | 27.42 | 1666 | 29.05 | 1686 | 30.31 | 3122 | 29.98 | 3562 | 24.82 | 2918 | 25.77 | 0.001 |
Rural | 3854 | 12.25 | 3731 | 14.39 | 3715 | 15.21 | 3608 | 21.98 | 3825 | 27.11 | 3700 | 28.49 | 3766 | 28.31 | 4303 | 34.09 | 5393 | 29.3 | 4751 | 30.01 | 0.001 |
Men | 5336 | 17.75 | 5098 | 20.58 | 5186 | 18.13 | 5161 | 24.59 | 5240 | 29.06 | 5033 | 30.72 | 5216 | 29.72 | 6718 | 31.1 | 8137 | 28.51 | 6878 | 29.46 | 0.001 |
Age | |||||||||||||||||||||
5–17 | 1368 | 23.9 | 1331 | 24.42 | 1238 | 27.38 | 1006 | 34.1 | 818 | 38.51 | 677 | 42.54 | 633 | 39.34 | 796 | 37.56 | 1080 | 34.17 | 875 | 33.94 | 0.062 |
18–44 | 2486 | 13.52 | 2294 | 17.18 | 2214 | 11.74 | 2132 | 18.11 | 1928 | 24.38 | 1792 | 24.83 | 1759 | 23.93 | 2060 | 24.27 | 2291 | 22.61 | 1548 | 24.61 | 0.001 |
45–59 | 891 | 16.72 | 870 | 19.08 | 1061 | 14.7 | 1287 | 21.37 | 1512 | 26.79 | 1495 | 26.02 | 1617 | 27.4 | 2141 | 29.94 | 2428 | 25.95 | 2050 | 27.85 | 0.001 |
≥60 | 591 | 22.84 | 603 | 27.2 | 673 | 27.49 | 736 | 36.01 | 982 | 33.91 | 1069 | 39.66 | 1207 | 36.21 | 1721 | 37.71 | 2338 | 34.35 | 2405 | 32.31 | 0.001 |
Education | |||||||||||||||||||||
Low | 2830 | 19.29 | 2501 | 21.35 | 2498 | 19.5 | 2097 | 28.47 | 1885 | 30.66 | 1817 | 36.21 | 1809 | 33.33 | 2040 | 36.81 | 2457 | 32.72 | 1936 | 32.85 | 0.001 |
Medium | 2359 | 16.11 | 2447 | 19.98 | 2534 | 17.05 | 2845 | 22.04 | 3064 | 28.56 | 2852 | 28.16 | 3064 | 28.2 | 3968 | 29.13 | 4745 | 27.71 | 4100 | 28.83 | 0.001 |
High | 147 | 14.29 | 150 | 17.33 | 154 | 13.64 | 219 | 20.55 | 291 | 24.05 | 364 | 23.35 | 343 | 24.2 | 710 | 25.63 | 935 | 21.5 | 842 | 24.7 | 0.001 |
Income (1000 yuan/per capita) 3 | |||||||||||||||||||||
Low | 5336 | 17.75 | 5091 | 20.6 | 5116 | 18.26 | 4963 | 24.76 | 4623 | 30.18 | 4186 | 31.96 | 3458 | 32.01 | 3103 | 36 | 2887 | 35.19 | 1911 | 35.58 | 0.001 |
Medium | 0 | 0 | 7 | 0 | 60 | 10 | 155 | 20 | 493 | 21.3 | 654 | 27.83 | 1231 | 26.24 | 2025 | 26.52 | 2117 | 27.16 | 1535 | 30.36 | 0.001 |
High | 0 | 0 | 0 | 0 | 10 | 0 | 43 | 20.93 | 124 | 18.55 | 193 | 13.47 | 527 | 22.77 | 1590 | 27.36 | 3133 | 23.27 | 3432 | 25.64 | 0.001 |
Urban/rural | |||||||||||||||||||||
Urban | 1724 | 17.81 | 1506 | 20.72 | 1416 | 18.93 | 1392 | 23.71 | 1570 | 27.71 | 1522 | 31.54 | 1585 | 31.61 | 2791 | 29.85 | 3196 | 26.41 | 2549 | 27.62 | 0.001 |
Rural | 3612 | 17.72 | 3592 | 20.52 | 3770 | 17.82 | 3769 | 24.91 | 3670 | 29.65 | 3511 | 30.36 | 3631 | 28.89 | 3927 | 31.98 | 4941 | 29.87 | 4329 | 30.54 | 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Sun, J.; Wang, H.; Ouyang, Y.; Zhang, J.; Li, T.; Wei, Y.; Gong, W.; Zhou, X.; Zhang, B. Spatial Distribution and Temporal Trends of Dietary Niacin Intake in Chinese Residents ≥ 5 Years of Age between 1991 and 2018. Nutrients 2023, 15, 638. https://doi.org/10.3390/nu15030638
Li L, Sun J, Wang H, Ouyang Y, Zhang J, Li T, Wei Y, Gong W, Zhou X, Zhang B. Spatial Distribution and Temporal Trends of Dietary Niacin Intake in Chinese Residents ≥ 5 Years of Age between 1991 and 2018. Nutrients. 2023; 15(3):638. https://doi.org/10.3390/nu15030638
Chicago/Turabian StyleLi, Li, Jing Sun, Huijun Wang, Yifei Ouyang, Jiguo Zhang, Tiantong Li, Yanli Wei, Weiyi Gong, Xuefei Zhou, and Bing Zhang. 2023. "Spatial Distribution and Temporal Trends of Dietary Niacin Intake in Chinese Residents ≥ 5 Years of Age between 1991 and 2018" Nutrients 15, no. 3: 638. https://doi.org/10.3390/nu15030638
APA StyleLi, L., Sun, J., Wang, H., Ouyang, Y., Zhang, J., Li, T., Wei, Y., Gong, W., Zhou, X., & Zhang, B. (2023). Spatial Distribution and Temporal Trends of Dietary Niacin Intake in Chinese Residents ≥ 5 Years of Age between 1991 and 2018. Nutrients, 15(3), 638. https://doi.org/10.3390/nu15030638