Optimizing Growth: The Case for Iodine
Abstract
:1. Introduction
2. Thyroid Function and Growth
2.1. Iodine as a Component of Thyroid Hormone
2.2. Thyroid Hormone and Growth
2.3. Mechanisms by which Suboptimal Iodine Intakes May Affect Growth
2.3.1. Iodine Deficiency and Hypothyroidism
2.3.2. Excessive Iodine Intakes
2.3.3. Hyperthyroidism, Thyrotoxicosis, and Graves’ Disease
3. Other Micronutrients for Consideration
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forhead, A.J.; Fowden, A.L. Thyroid Hormone Regulation of Metabolism. Physiol. Rev. 2014, 94, 355–382. [Google Scholar] [CrossRef]
- Vanderpas, J.-B.; Moreno-Reyes, R. Historical aspects of iodine deficiency control. Minerva Med. 2017, 108, 124–135. [Google Scholar] [CrossRef] [PubMed]
- De Onis, M.; Branca, F. Childhood stunting: A global perspective. Matern. Child Nutr. 2016, 12 (Suppl. S1), 12–26. [Google Scholar] [CrossRef] [PubMed]
- Delange, F. The disorders induced by iodine deficiency. Thyroid 1994, 4, 107–128. [Google Scholar] [CrossRef] [PubMed]
- Wojcicka, A.; Bassett, J.H.D.; Williams, G.R. Mechanisms of action of thyroid hormones in the skeleton. Biochim. Biophys. Acta Gen. Subj. 2013, 1830, 3979–3986. [Google Scholar] [CrossRef]
- World Health Organization; UNICEF; ICCIDD. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers, 3rd ed.; WHO: Geneva, Switzerland, 2007; Available online: https://apps.who.int/iris/handle/10665/43781 (accessed on 1 December 2022).
- Hetzel, B.S. Iodine deficiency disorders (IDD) and their eradication. Lancet 1983, 2, 1126–1129. [Google Scholar] [CrossRef] [PubMed]
- Eng, J. Sample size estimation: How many individuals should be studied? Radiology 2003, 227, 309–313. [Google Scholar] [CrossRef]
- Hammer, G.P.; du Prel, J.-B.; Blettner, M. Avoiding bias in observational studies: Part 8 in a series of articles on evaluation of scientific publications. Dtsch. Arztebl. Int. 2009, 106, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Feldt-Rasmussen, U.; Effraimidis, G.; Klose, M. The hypothalamus-pituitary-thyroid (HPT)-axis and its role in physiology and pathophysiology of other hypothalamus-pituitary functions. Mol. Cell. Endocrinol. 2021, 525, 111173. [Google Scholar] [CrossRef]
- Chung, H.R. Iodine and thyroid function. Ann. Pediatr. Endocrinol. Metab. 2014, 19, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-T.; Zhai, R.; Liu, H.-M.; Wang, M.; Pan, D.-M. Iodine concentration and content measured by dual-source computed tomography are correlated to thyroid hormone levels in euthyroid patients: A cross-sectional study in China. BMC Med. Imaging 2020, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Glinoer, D. The regulation of thyroid function during normal pregnancy: Importance of the iodine nutrition status. Best Pract. Res. Clin. Endocrinol. Metab. 2004, 18, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S. Iodine-deficiency disorders. Lancet 2008, 372, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Boelaert, K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 2015, 3, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B. Iodine deficiency in pregnancy and the effects of maternal iodine supplementation on the offspring: A review. Am. J. Clin. Nutr. 2009, 89, 668S–672S. [Google Scholar] [CrossRef]
- World Health Organisation, Food and Agriculture Organisation of the United Nations. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- European Food Safety Agency. Scientific Opinion on Dietary Reference Values for iodine. EFSA J. 2014, 12, 1–57. [Google Scholar] [CrossRef]
- European Food Safety Agency. Tolerable upper intake level on vitamins and minerals. Wei Sheng Yan Jiu J. Hyg. Res. 2004, 33, 771–773. [Google Scholar]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
- Haldimann, M.; Alt, A.; Blanc, A.; Blondeau, K. Iodine content of food groups. J. Food Compos. Anal. 2005, 18, 461–471. [Google Scholar] [CrossRef]
- Van Der Reijden, O.L.; Galetti, V.; Herter-Aeberli, I.; Zimmermann, M.B.; Zeder, C.; Krzystek, A.; Haldimann, M.; Barmaz, A.; Kreuzer, M.; Berard, J.; et al. Effects of feed iodine concentrations and milk processing on iodine concentrations of cows’ milk and dairy products, and potential impact on iodine intake in Swiss adults. Br. J. Nutr. 2019, 122, 172–185. [Google Scholar] [CrossRef]
- Flachowsky, G.; Franke, K.; Meyer, U.; Leiterer, M.; Schöne, F. Influencing factors on iodine content of cow milk. Eur. J. Nutr. 2014, 53, 351–365. [Google Scholar] [CrossRef]
- Iodine Global Network. Iodine Global Network Scorecard 2021. 2021. Available online: https://www.ign.org/cm_data/IGN_Global_Scorecard_2021_7_May_2021.pdf (accessed on 4 February 2023).
- Mannar, V. Iodization Cost (via GiveWell.org). 2014. Available online: https://www.givewell.org/international/technical/programs/salt-iodization#footnote154_1aoy6n4 (accessed on 28 March 2021).
- Dold, S.; Zimmermann, M.B.; Jukic, T.; Kusic, Z.; Jia, Q.; Sang, Z.; Quirino, A.; San Luis, T.O.L.; Fingerhut, R.; Kupka, R.; et al. Universal salt iodization provides sufficient dietary iodine to achieve adequate iodine nutrition during the first 1000 days: A cross-sectional multicenter study. J. Nutr. 2018, 148, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Ipsa, E.; Cruzat, V.F.; Kagize, J.N.; Yovich, J.L.; Keane, K.N. Growth Hormone and Insulin-Like Growth Factor Action in Reproductive Tissues. Front. Endocrinol. 2019, 10, 777. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.R.V.; Figueiredo, J.R.; van den Hurk, R. Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis. Theriogenology 2009, 71, 1193–1208. [Google Scholar] [CrossRef]
- Hellström, A.; Ley, D.; Hansen-Pupp, I.; Hallberg, B.; Löfqvist, C.; van Marter, L.; an Weissenbruch, M.; Ramenghi, L.A.; Beardsall, K.; Dunger, D.; et al. Insulin-like growth factor 1 has multisystem effects on foetal and preterm infant development. Acta Paediatr. 2016, 105, 576–586. [Google Scholar] [CrossRef]
- Robson, H.; Siebler, T.; Shalet, S.M.; Williams, G.R. Interactions between, G.H.; IGF-I, glucocorticoids, and thyroid hormones during skeletal growth. Pediatr. Res. 2002, 52, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B. The role of iodine in human growth and development. Semin. Cell Dev. Biol. 2011, 22, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Cabello, G.; Wrutniak, C. Thyroid hormone and growth: Relationships with growth hormone effects and regulation. Reprod. Nutr. Dev. 1989, 29, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Laron, Z. Interactions between the thyroid hormones and the hormones of the growth hormone axis. Pediatr. Endocrinol. Rev. 2003, 1 (Suppl. S2), 244–249, discussion 250. [Google Scholar]
- Sellitti, D.F.; Suzuki, K. Intrinsic regulation of thyroid function by thyroglobulin. Thyroid 2014, 24, 625–638. [Google Scholar] [CrossRef]
- Sato, T.; Suzuki, Y.; Taketani, T.; Ishiguro, K.; Masuyama, T. Enhanced Peripheral Conversion of Thyroxine to Triiodothyronine During hGH Therapy in GH Deficient Children. J. Clin. Endocrinol. Metab. 1977, 45, 324–329. [Google Scholar] [CrossRef]
- Murray, P.G.; Clayton, P.E. Endocrine control of growth. Am. J. Med. Genet. C Semin. Med. Genet. 2013, 163C, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y.; Mohan, S. Role and Mechanisms of Actions of Thyroid Hormone on the Skeletal Development. Bone Res. 2013, 1, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Bassett, J.H.D.; Williams, G.R. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance. Endocr. Rev. 2016, 37, 135–187. [Google Scholar] [CrossRef] [PubMed]
- Yen, P.M. Physiological and Molecular Basis of Thyroid Hormone Action. Physiol. Rev. 2001, 81, 1097–1142. [Google Scholar] [CrossRef]
- Williams, G.R. Thyroid hormone actions in cartilage and bone. Eur. Thyroid J. 2013, 2, 3–13. [Google Scholar] [CrossRef]
- Williams, A.J.; Robson, H.; Kester, M.H.A.; van Leeuwen, J.P.T.M.; Shalet, S.M.; Visser, T.J.; Williams, G.R. Iodothyronine deiodinase enzyme activities in bone. Bone 2008, 43, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Hanley, P.; Lord, K.; Bauer, A.J. Thyroid Disorders in Children and Adolescents: A Review. JAMA Pediatr. 2016, 170, 1008–1019. [Google Scholar] [CrossRef]
- Pearce, E.N. Iodine deficiency in children. Endocr. Dev. 2014, 26, 130–138. [Google Scholar] [CrossRef]
- Hay, I.; Hynes, K.L.; Burgess, J.R. Mild-to-Moderate Gestational Iodine Deficiency Processing Disorder. Nutrients 2019, 11, 1974. [Google Scholar] [CrossRef]
- Hynes, K.L.; Seal, J.A.; Otahal, P.; Oddy, W.H.; Burgess, J.R. Women Remain at Risk of Iodine Deficiency during Pregnancy: The Importance of Iodine Supplementation before Conception and Throughout Gestation. Nutrients 2019, 11, 172. [Google Scholar] [CrossRef]
- Abel, M.H.; Korevaar, T.I.M.; Erlund, I.; Villanger, G.D.; Caspersen, I.H.; Arohonka, P.; Alexander, J.; Meltzer, H.M.; Brantsæter, A.L. Iodine Intake is Associated with Thyroid Function in Mild to Moderately Iodine Deficient Pregnant Women. Thyroid 2018, 28, 1359–1371. [Google Scholar] [CrossRef]
- Abel, M.H.; Caspersen, I.H.; Sengpiel, V.; Jacobsson, B.; Meltzer, H.M.; Magnus, P.; Alexander, J.; Brantsæter, A.L. Insufficient maternal iodine intake is associated with subfecundity, reduced foetal growth, and adverse pregnancy outcomes in the Norwegian Mother, Father and Child Cohort Study. BMC Med. 2020, 18, 211. [Google Scholar] [CrossRef] [PubMed]
- Small, M.D.; Bezman, A.; Longarini, A.E.; Fennell, A.; Zamcheck, N. Absorption of Potassium Iodide from Gastro-Intestinal Tract. Proc. Soc. Exp. Biol. Med. 1961, 106, 450–452. [Google Scholar] [CrossRef]
- Nussey, S.; Whitehead, S. Chapter 3—The Thyroid Gland. In Endocrinology: An Integrated Approach; BIOS Scientific Publishers: Oxford, UK, 2001; Available online: https://www.ncbi.nlm.nih.gov/books/NBK28/ (accessed on 4 February 2023).
- Andersson, M.; Hunziker, S.; Fingerhut, R.; Zimmermann, M.B.; Herter-Aeberli, I. Effectiveness of increased salt iodine concentration on iodine status: Trend analysis of cross-sectional national studies in Switzerland. Eur. J. Nutr. 2020, 59, 581–593. [Google Scholar] [CrossRef]
- Krassas, G.E.; Poppe, K.; Glinoer, D. Thyroid Function and Human Reproductive Health. Endocr. Rev. 2010, 31, 702–755. [Google Scholar] [CrossRef]
- Mills, J.L.; Buck Louis, G.M.; Kannan, K.; Weck, J.; Wan, Y.; Maisog, J.; Giannakou, A.; Wu, Q.; Sundaram, R. Delayed conception in women with low-urinary iodine concentrations: A population-based prospective cohort study. Hum. Reprod. 2018, 33, 426–433. [Google Scholar] [CrossRef]
- Glinoer, D. The regulation of thyroid function in pregnancy: Pathways of endocrine adaptation from physiology to pathology. Endocr. Rev. 1997, 18, 404–433. [Google Scholar] [CrossRef]
- Moleti, M.; Trimarchi, F.; Vermiglio, F. Thyroid Physiology in Pregnancy. Endocr. Pract. 2014, 20, 589–596. [Google Scholar] [CrossRef]
- Davison, J.M.; Dunlop, W. Renal hemodynamics and tubular function normal human pregnancy. Kidney Int. 1980, 18, 152–161. [Google Scholar] [CrossRef]
- Yarrington, C.; Pearce, E.N. Iodine and pregnancy. J. Thyroid Res. 2011, 2011, 934104. [Google Scholar] [CrossRef]
- Richard, K.; Li, H.; Landers, K.; Patel, J.; Mortimer, R. Placental Transport of Thyroid Hormone and Iodide. In Recent Advances in Research on the Human Placenta; Zheng, J., Ed.; Intech: Rijeka, Croatia, 2012. [Google Scholar]
- Burns, R.; O’Herlihy, C.; Smyth, P.P.A. The placenta as a compensatory iodine storage organ. Thyroid 2011, 21, 541–546. [Google Scholar] [CrossRef]
- Farebrother, J.; Naude, C.E.; Nicol, L.; Sang, Z.; Yang, Z.; Jooste, P.L.; Andersson, M.; Zimmermann, M.B. Effects of iodised salt and iodine supplements on prenatal and postnatal growth: A systematic review. Ann. Nutr. Metab. 2017, 9, 1092. [Google Scholar] [CrossRef]
- Pretell, E.A.; Torres, T.; Zenteno, V.; Cornejo, M. Prophylaxis of endemic goiter with iodized oil in rural Peru. Adv. Exp. Med. Biol. 1972, 30, 246–265. [Google Scholar] [PubMed]
- Chaouki, M.L.; Benmiloud, M. Prevention of iodine deficiency disorders by oral administration of lipiodol during pregnancy. Eur. J. Endocrinol. 1994, 130, 547–551. [Google Scholar] [CrossRef]
- Rydbeck, F.; Rahman, A.; Grandér, M.; Ekström, E.-C.; Vahter, M.; Kippler, M. Maternal Urinary Iodine Concentration up to 1.0 mg/L Is Positively Associated with Birth Weight, Length, and Head Circumference of Male Offspring. J. Nutr. 2014, 144, 1438–1444. [Google Scholar] [CrossRef]
- Alvarez-Pedrerol, M.; Guxens, M.; Mendez, M.; Canet, Y.; Martorell, R.; Espada, M.; Plana, E.; Rebagliato, M.; Sunyer, J. Iodine levels and thyroid hormones in healthy pregnant women and birth weight of their offspring. Eur. J. Endocrinol. 2009, 160, 423–429. [Google Scholar] [CrossRef]
- Farebrother, J.; Dalrymple, K.V.; White, S.L.; Gill, C.; Brockbank, A.; Lazarus, J.H.; Godfrey, K.M.; Poston, L.; Flynn, A. Iodine status of pregnant women with obesity from inner city populations in the United Kingdom. Eur. J. Clin. Nutr. 2021, 75, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Snart, C.J.P.C.; Threapleton, D.E.; Keeble, C.; Taylor, E.; Waiblinger, D.; Reid, S.; Alwan, N.A.; Mason, D.; Azad, R.; Cade, J.E.; et al. Maternal iodine status, intrauterine growth, birth outcomes and congenital anomalies in a UK birth cohort. BMC Med. 2020, 18, 132. [Google Scholar] [CrossRef] [PubMed]
- Snart, C.J.P.; Keeble, C.; Taylor, E.; Cade, J.E.; Stewart, P.M.; Zimmermann, M.; Reid, S.; Threapleton, D.E.; Poston, L.; Myers, J.E.; et al. Maternal Iodine Status and Associations with Birth Outcomes in Three Major Cities in the United Kingdom. Nutrients 2019, 11, 441. [Google Scholar] [CrossRef]
- Torlinska, B.; Bath, S.C.; Janjua, A.; Boelaert, K.; Chan, S.-Y. Iodine Status during Pregnancy in a Region of Mild-to-Moderate Iodine Deficiency is not Associated with Adverse Obstetric Outcomes; Results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Nutrients 2018, 10, 291. [Google Scholar] [CrossRef] [PubMed]
- Pharoah, P.O.; Connolly, K.J. Effects of maternal iodine supplementation during pregnancy. Arch. Dis. Child. 1991, 66, 145–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segni, M. Disorders of the Thyroid Gland in Infancy. In Disorders of the Thyroid Gland in Infancy, Childhood and Adolescence; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Hofland, J., Dungan, K., Hofland, J., et al., Eds.; Endotext: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Delange, F. Screening for congenital hypothyroidism used as an indicator of the degree of iodine deficiency and of its control. Thyroid 1998, 8, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B. Iodine deficiency. Endocr. Rev. 2009, 30, 376–408. [Google Scholar] [CrossRef]
- Bouhouch, R.; Bouhouch, S.; Cherkaoui, M.; Aboussad, A.; Stinca, S.; Haldimann, M.; Andersson, M.; Zimmermann, M.B. Direct iodine supplementation of infants versus supplementation of their breastfeeding mothers: A double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014, 2, 197–209. [Google Scholar] [CrossRef]
- Nazeri, P.; Tahmasebinejad, Z.; Hedayati, M.; Mirmiran, P.; Azizi, F. Is breast milk iodine concentration an influential factor in growth- and obesity-related hormones and infants’ growth parameters? Matern. Child Nutr. 2021, 17, e13078. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhu, L.; Li, X.; Zheng, H.; Wang, Z.; Hao, Z.; Liu, Y. Maternal iodine status during lactation and infant weight and length in Henan Province, China. BMC Pregnancy Childbirth 2017, 17, 383. [Google Scholar] [CrossRef]
- Fisher, J.; Wang, J.; George, N.; Gearhart, J.; McLanahan, E. Dietary Iodine Sufficiency and Moderate Insufficiency in the Lactating Mother and Nursing Infant: A Computational Perspective. PLoS ONE 2016, 11, e0155169. [Google Scholar] [CrossRef]
- Wiley, A.S.; Joshi, S.M.; Lubree, H.G.; Bhat, D.S.; Memane, N.S.; Raut, D.A.; Yajnik, C.S. IGF-I and IGFBP-3 concentrations at 2 years: Associations with anthropometry and milk consumption in an Indian cohort. Eur. J. Clin. Nutr. 2018, 72, 564–571. [Google Scholar] [CrossRef]
- Lean, M.I.F.A.; Lean, M.E.J.; Yajnik, C.S.; Bhat, D.S.; Joshi, S.M.; Raut, D.A.; Lubree, H.G.; Combet, E. Iodine status during pregnancy in India and related neonatal and infant outcomes. Public Health Nutr. 2014, 17, 1353–1362. [Google Scholar] [CrossRef]
- Wan Nazaimoon, W.M.; Osman, A.; Wu, L.L.; Khalid, B.A. Effects of iodine deficiency on insulin-like growth factor-I, insulin-like growth factor-binding protein-3 levels and height attainment in malnourished children. Clin. Endocrinol. 1996, 45, 79–83. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Jooste, P.L.; Mabapa, N.S.; Mbhenyane, X.; Schoeman, S.; Biebinger, R.; Chaouki, N.; Bozo, M.; Grimci, L.; Bridson, J. Treatment of iodine deficiency in school-age children increases insulin-like growth factor (IGF)-I and IGF binding protein-3 concentrations and improves somatic growth. J. Clin. Endocrinol. Metab. 2007, 92, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Alikaşifoğlu, A.; Ozön, A.; Yordam, N. Serum insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 levels in severe iodine deficiency. Turk. J. Pediatr. 2002, 44, 215–218. [Google Scholar]
- Zimmermann, M.B.; Wegmueller, R.; Zeder, C.; Chaouki, N.; Biebinger, R.; Hurrell, R.F.; Windhab, E. Triple fortification of salt with microcapsules of iodine, iron, and vitamin, A. Am. J. Clin. Nutr. 2004, 80, 1283–1290. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Jooste, P.L.; Mabapa, N.S.; Schoeman, S.; Biebinger, R.; Mushaphi, L.F.; Mbhenyane, X. Vitamin A supplementation in iodine-deficient African children decreases thyrotropin stimulation of the thyroid and reduces the goiter rate. Am. J. Clin. Nutr. 2007, 86, 1040–1044. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Connolly, K.; Bozo, M.; Bridson, J.; Rohner, F.; Grimci, L. Iodine supplementation improves cognition in iodine-deficient schoolchildren in Albania: A randomized, controlled, double-blind study. Am. J. Clin. Nutr. 2006, 83, 108–114. [Google Scholar] [CrossRef]
- Bürgi, H. Iodine excess. Best Pract. Res. Clin. Endocrinol. Metab. 2010, 24, 107–115. [Google Scholar] [CrossRef]
- Wolff, J.; Chaikoff, I.L. Plasma inorganic iodide as a homeostatic regulator of thyroid function. J. Biol. Chem. 1948, 174, 555–564. [Google Scholar] [CrossRef]
- Franić, Z. Iodine prophylaxis and nuclear accidents. Arch. Ind. Hyg. Toxicol. 1999, 50, 223–233. [Google Scholar]
- Markou, K.; Georgopoulos, N.; Kyriazopoulou, V.; Vagenakis, A.G. Iodine-Induced hypothyroidism. Thyroid 2001, 11, 501–510. [Google Scholar] [CrossRef]
- Connelly, K.J.; Boston, B.A.; Pearce, E.N.; Sesser, D.; Snyder, D.; Braverman, L.E.; Pino, S.; LaFranchi, S.H. Congenital hypothyroidism caused by excess prenatal maternal iodine ingestion. J. Pediatr. 2012, 161, 760–762. [Google Scholar] [CrossRef]
- Serrano-Nascimento, C.; Morillo-Bernal, J.; Rosa-Ribeiro, R.; Nunes, M.T.; Santisteban, P. Impaired Gene Expression Due to Iodine Excess in the Development and Differentiation of Endoderm and Thyroid Is Associated with Epigenetic Changes. Thyroid 2020, 30, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Overcash, R.T.; Marc-Aurele, K.L.; Hull, A.D.; Ramos, G.A. Maternal Iodine Exposure: A Case of Fetal Goiter and Neonatal Hearing Loss. Pediatrics 2016, 137, e20153722. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.d.V.; Collett-Solberg, P.F. Perinatal goiter with increased iodine uptake and hypothyroidism due to excess maternal iodine ingestion. Horm. Res. 2009, 72, 344–347. [Google Scholar] [CrossRef]
- Nishiyama, S.; Mikeda, T.; Okada, T.; Nakamura, K.; Kotani, T.; Hishinuma, A. Transient hypothyroidism or persistent hyperthyrotropinemia in neonates born to mothers with excessive iodine intake. Thyroid 2004, 14, 1077–1083. [Google Scholar] [CrossRef]
- Hamby, T.; Kunnel, N.; Dallas, J.S.; Wilson, D.P. Maternal iodine excess: An uncommon cause of acquired neonatal hypothyroidism. J. Pediatr. Endocrinol. Metab. 2018, 31, 1061–1064. [Google Scholar] [CrossRef] [PubMed]
- Sang, Z.; Chen, W.; Shen, J.; Tan, L.; Zhao, N.; Liu, H.; Wen, S.; Wei, W.; Zhang, G.; Zhang, W. Long-Term Exposure to Excessive Iodine from Water Is Associated with Thyroid Dysfunction in Children. J. Nutr. 2013, 143, 2038–2043. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Aeberli, I.; Andersson, M.; Assey, V.; Yorg, J.A.J.J.; Jooste, P.; Jukić, T.; Kartono, D.; Kusić, Z.; Pretell, E.; et al. Thyroglobulin is a sensitive measure of both deficient and excess iodine intakes in children and indicates no adverse effects on thyroid function in the UIC range of 100-299 μg/L: A UNICEF/ICCIDD study group report. J. Clin. Endocrinol. Metab. 2013, 98, 1271–1280. [Google Scholar] [CrossRef] [PubMed]
- Farebrother, J.; Zimmermann, M.B.; Assey, V.; Castro, M.C.; Cherkaoui, M.; Fingerhut, R.; Jia, Q.; Jukic, T.; Makokha, A.; San Luis, T.O.; et al. Thyroglobulin Is Markedly Elevated in 6- to 24-Month-Old Infants at Both Low and High Iodine Intakes and Suggests a Narrow Optimal Iodine Intake Range. Thyroid 2019, 29, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Stinca, S.; Andersson, M.; Weibel, S.; Herter-Aeberli, I.; Fingerhut, R.; Gowachirapant, S.; Hess, S.Y.; Jaiswal, N.; Jukic, T.; Kusic, Z.; et al. Dried blood spot thyroglobulin as a biomarker of iodine status in pregnant women. J. Clin. Endocrinol. Metab. 2017, 102, 23–32. [Google Scholar] [CrossRef]
- Shi, X.; Han, C.; Li, C.; Mao, J.; Wang, W.; Xie, X.; Li, C.; Xu, B.; Meng, T.; Du, J.; et al. Optimal and Safe Upper Limits of Iodine Intake for Early Pregnancy in Iodine-Sufficient Regions: A Cross-Sectional Study of 7190 Pregnant Women in China. J. Clin. Endocrinol. Metab. 2015, 100, 1630–1638. [Google Scholar] [CrossRef]
- Cooper, D.S.; Biondi, B. Subclinical thyroid disease. Lancet 2012, 379, 1142–1154. [Google Scholar] [CrossRef] [PubMed]
- De Leo, S.; Lee, S.Y.; Braverman, L.E. Hyperthyroidism. Lancet 2016, 388, 906–918. [Google Scholar] [CrossRef]
- Brent, G.A. Graves’ Disease. N. Engl. J. Med. 2008, 358, 2594–2605. [Google Scholar] [CrossRef] [PubMed]
- Girgis, C.M.; Champion, B.L.; Wall, J.R. Current concepts in graves’ disease. Ther. Adv. Endocrinol. Metab. 2011, 2, 135–144. [Google Scholar] [CrossRef]
- Park, R.W.; Frasier, S.D. Hyperthyroidism Under 2 Years of Age: An Unusual Cause of Failure to Thrive. Am. J. Dis. Child. 1970, 120, 157–159. [Google Scholar] [CrossRef]
- Boiro, D.; Diédhiou, D.; Niang, B.; Sow, D.; Mbodj, M.; Sarr, A.; Ndongo, A.A.; Thiongane, A.; Guèye, M.; Thiam, L.; et al. Hyperthyroidism in children at the University Hospital in Dakar (Senegal). Pan. Afr. Med. J. 2017, 28, 10. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.T.; Sasso, E.B.; Barton, L.; Mestman, J.H. Graves’ hyperthyroidism in pregnancy: A clinical review. Clin. Diabetes Endocrinol. 2018, 4, 28. [Google Scholar] [CrossRef]
- Lee, S.Y.; Pearce, E.N. Assessment and treatment of thyroid disorders in pregnancy and the postpartum period. Nat. Rev. Endocrinol. 2022, 18, 158–171. [Google Scholar] [CrossRef]
- Samuels, S.L.; Namoc, S.M.; Bauer, A.J. Neonatal Thyrotoxicosis. Clin. Perinatol. 2018, 45, 31–40. [Google Scholar] [CrossRef]
- Mosekilde, L.; Eriksen, E.F.; Charles, P. Effects of thyroid hormones on bone and mineral metabolism. Endocrinol. Metab. Clin. N. Am. 1990, 19, 35–63. [Google Scholar] [CrossRef]
- Zimmermann, M.B. The influence of iron status on iodine utilization and thyroid function. Annu. Rev. Nutr. 2006, 26, 367–389. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Melo, M.; Carrilho, F. Selenium and Thyroid Disease: From Pathophysiology to Treatment. Int. J. Endocrinol. 2017, 2017, 1297658. [Google Scholar] [CrossRef] [PubMed]
- Severo, J.S.; Morais, J.B.S.; de Freitas, T.E.C.; Andrade, A.L.P.; Feitosa, M.M.; Fontenelle, L.C.; de Oliveira, A.R.S.; Cruz, K.J.C.; do Nascimento Marreiro, D. The Role of Zinc in Thyroid Hormones Metabolism. Int. Z. Vitam. Ernahr. J. Int. Vitaminol. Nutr. 2019, 89, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Wegmüller, R.; Zeder, C.; Chaouki, N.; Torresani, T. The Effects of Vitamin A Deficiency and Vitamin A Supplementation on Thyroid Function in Goitrous Children. J. Clin. Endocrinol. Metab. 2004, 89, 5441–5447. [Google Scholar] [CrossRef]
- Oba, K.; Kimura, S. Effects of vitamin A deficiency on thyroid function and serum thyroxine levels in the rat. J. Nutr. Sci. Vitaminol. 1980, 26, 327–334. [Google Scholar] [CrossRef]
- Ingenbleek, Y. Vitamin A-deficiency impairs the normal mannosylation, conformation and iodination of thyroglobulin: A new etiological approach to endemic goitre. Exp. Suppl. 1983, 44, 264–297. [Google Scholar] [CrossRef]
- Esposito, S.; Leonardi, A.; Lanciotti, L.; Cofini, M.; Muzi, G.; Penta, L. Vitamin D and growth hormone in children: A review of the current scientific knowledge. J. Transl. Med. 2019, 17, 87. [Google Scholar] [CrossRef]
- Kim, D. The role of vitamin D in thyroid diseases. Int. J. Mol. Sci. 2017, 18, 1949. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Andersson, M. Global perspectives in endocrinology: Coverage of iodized salt programs and iodine status in 2020. Eur. J. Endocrinol. 2021, 185, R13–R21. [Google Scholar] [CrossRef]
- Hynes, K.L.; Otahal, P.; Hay, I.; Burgess, J.R. Mild iodine deficiency during pregnancy is associated with reduced educational outcomes in the offspring: 9-year follow-up of the gestational iodine cohort. J. Clin. Endocrinol. Metab. 2013, 98, 1954–1962. [Google Scholar] [CrossRef]
- Hynes, K.L.; Otahal, P.; Burgess, J.R.; Oddy, W.H.; Hay, I. Reduced Educational Outcomes Persist into Adolescence Following Mild Iodine Deficiency in Utero, Despite Adequacy in Childhood: 15-Year Follow-Up of the Gestational Iodine Cohort Investigating Auditory Processing Speed and Working Memory. Nutrients 2017, 9, 1354. [Google Scholar] [CrossRef] [PubMed]
- Bath, S.C. Iodine supplementation in pregnancy in mildly deficient regions. Lancet Diabetes Endocrinol. 2017, 5, 840–841. [Google Scholar] [CrossRef]
- Farebrother, J.; Zimmermann, M.B.; Andersson, M. Excess iodine intake: Sources, assessment, and effects on thyroid function. Ann. N. Y. Acad. Sci. 2019, 1446, 44–65. [Google Scholar] [CrossRef] [PubMed]
Life Stage Group | Health Consequences of Iodine Deficiency | |
---|---|---|
Fetus | Failed pregnancy Stillbirth Congenital anomalies Perinatal mortality | Goiter Hypothyroidism Increased susceptibility to nuclear radiation |
Neonate | Endemic congenital hypothyroidism Infant mortality | |
Child, Adolescent | Impaired mental function Delayed physical development Iodine-induced hyperthyroidism | |
Adult | Impaired mental function Iodine-induced hyperthyroidism | |
Neonate | Failed pregnancy Stillbirth Congenital anomalies Perinatal mortality |
European Union Scientific Committee on Foods (2014, 2006) | US Institute of Medicine (2001) | World Health Organization (2004) | ||||
---|---|---|---|---|---|---|
AI | TUL | AI | TUL | RI | TUL | |
µg/Day | µg/Day | µg/Day | ||||
Periconception | 150 | 500 | 150 c | 1100 | 150 (adolescents and adults >13 y) | 30 a (adolescents and adults >13 y) |
Pregnant women | 200 | 600 | 220 | 1100 | 250 | 40 a |
Lactating women | 200 | 600 | 290 | 1100 | 250 | 40 a |
Infants and young children | ||||||
Individual level iodine intake recommendations | ||||||
0–6 mo 1 | ND | ND | 110 | ND | 15 a | 150 a |
7–12 mo 1 | 70 | ND | 130 | ND | 15 a | 140 a |
1–3 y 1 | 90 | 200 | 65 b/90 c | 200 | 6 a (2–5 y) | 50 a |
Population iodine intake recommendation | ||||||
0–59 months 1 | 90 | 180 | ||||
Older children and adolescents | ||||||
4–6 y | 90 | 250 | 90 c (4–8 y) | 300 (4–8 y) | 6 a (2–5 y) | 50 a |
7–10 y | 90 | 300 | 120 c (9–13 y) | 600 (9–13 y) | 4 a (6–12 y) | 50 a (7–12 y) |
11–14 y | 120 | 450 | ||||
15–17 y | 130 | 500 | 150 c (14–18 y) | 900 (14–18 y) | 150 (adolescents and adults >13 y) | 30 a (adolescents and adults >13 y) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigutto-Farebrother, J. Optimizing Growth: The Case for Iodine. Nutrients 2023, 15, 814. https://doi.org/10.3390/nu15040814
Rigutto-Farebrother J. Optimizing Growth: The Case for Iodine. Nutrients. 2023; 15(4):814. https://doi.org/10.3390/nu15040814
Chicago/Turabian StyleRigutto-Farebrother, Jessica. 2023. "Optimizing Growth: The Case for Iodine" Nutrients 15, no. 4: 814. https://doi.org/10.3390/nu15040814
APA StyleRigutto-Farebrother, J. (2023). Optimizing Growth: The Case for Iodine. Nutrients, 15(4), 814. https://doi.org/10.3390/nu15040814