Allergic March in Children: The Significance of Precision Allergy Molecular Diagnosis (PAMD@) in Predicting Atopy Development and Planning Allergen-Specific Immunotherapy
Abstract
:1. Introduction
Species | Allergenic Molecule | Protein Family Name | Sensitization Rate in Specific Species (%) | Resistance to Heating and Chemical Denaturation | Allergic Symptoms 2 |
---|---|---|---|---|---|
Cow milk, Bos domesticus | Bos d 4 | α-lactalbumin | 51 | Moderate | Oral allergy syndrome (OAS), abdominal pain, bloating, nausea, diarrheaskin changes, atopic dermatitis, asthma, edema, allergic rhinitisallergic conjunctivitis, anaphylactic shock |
Bos d 5 | β-lactoglobulin | 61 | Low | ||
Bos d 6 | Serum albumin | 43 | Low | ||
Bos d 8 | Casein | 63 | High | ||
Eggs, Gallus domesticus | Gal d 1 | Ovomucoid | High | ||
Gal d 2 | Ovoalbumin | Low | |||
Gal d 3 | Ovotrasferrin | Low | |||
Gal d 4 | Lysozyme | Moderate | |||
Fish, e.g., Gadus callarias | Gad c 1 | Parvalbumin | 100 | High | |
Shellfish, e.g., Penaeus monodan | Pen m 1 | Tropomyosin | 62 | High | |
Nuts, e.g., Corylus avellana | Cor a 1 | Bet v 1-like | 90 | Low | |
Cor a 8 | 11S globulin | 36–83 | High | ||
Cor a 9 | nsLTP 1 | 5.8 | High | ||
Peanuts, Arachis hypogaea | Ara h 1 | Vicilin | 63–80 | High | |
Ara h 2 | 2S albumin | 90 | High | ||
Ara h 3 | Legumin | High | |||
Ara h 6 | 2S albumin | 76–96 | High | ||
Ara h 8 | Bet v 1-like | Low | |||
Ara h 9 | nsLTP 1 | High | |||
Soy, Glycine max | Gly m 4 | Bet v 1-like | 10.3 | Low | |
Gly m 5 | Vicilin | 33 | High | ||
Gly m 6 | Legumin | High | |||
Gly m 8 | 2S albumin | High | |||
Wheat, Triticum aestivum | Tri a 14 | nsLTP | High | ||
Tri a 19 | Omega-5-gliadin | 50–70 | High |
2. PAMD@ Assays
3. Allergy Prognosis Based on PAMD@
3.1. PAMD@, Allergy Symptoms, and Provocation Testing
3.2. Assessment of Molecular Spreading
4. PAMD@ and Allergen-Specific Immunotherapy
5. The Lower Limit of Normal sIgE Levels in PAMD@
6. PAMD@ Not for Everyone
7. Limitations of PAMD@
8. Costs of PAMD@ in Allergy Diagnosis
9. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boyce, J.; Assa’ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Plaut, M.; Cooper, S.F.; Fento, M.J.; Arshad, S.H.; et al. Guidelines for the diagnosis and manage-ment of food allergy in the United States: Report of the NIAID-sponsored expert panel. J. Allergy Clin. Immunol. 2010, 126, 1–58. [Google Scholar] [CrossRef] [PubMed]
- Anvari, S.; Miller, J.; Yeh, C.Y.; Davis, C.M. IgE-Mediated Food Allergy. Clin. Rev. Allergy Immunol. 2019, 57, 244–260. [Google Scholar] [CrossRef] [Green Version]
- Labrosse, R.; Graham, F.; Caubet, J.C. Non-IgE-Mediated Gastrointestinal Food Allergies in Children: An Update. Nutrients 2020, 14, 2086. [Google Scholar] [CrossRef] [PubMed]
- Paller, A.S.; Spergel, J.M.; Mina-Osorio, P.; Irvine, A.D. The atopic march and atopic multimorbidity: Many trajectories, many pathways. J. Allergy Clin. Immunol. 2019, 143, 46–55. [Google Scholar] [CrossRef]
- Torres, T.; Ferreira, E.O.; Gonçalo, M.; Mendes-Bastos, P.; Selores, M.; Filipe, P. Update on Atopic Dermatitis. Acta Med. Port. 2019, 2, 606–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiesa Fuxench, Z.C. Atopic Dermatitis: Disease Background and Risk Factors. Adv. Exp. Med. Biol. 2017, 1027, 11–19. [Google Scholar] [CrossRef]
- Weidinger, S.; Novak, N. Atopic dermatitis. Lancet 2016, 12, 1109–1122. [Google Scholar] [CrossRef]
- Abrams, E.M.; Sicherer, S.H. Cow’s milk allergy prevention. Ann. Allergy Asthma. Immunol. 2021, 127, 36–41. [Google Scholar] [CrossRef]
- Nowak-Wegrzyn, A.; Bloom, K.A.; Sicherer, S.H.; Shreffler, W.G.; Noone, S.; Wanich, N.; Sampson, H.A. Tolerance to extensively heated milk in children with cow’s milk allergy. J. Allergy Clin. Immunol. 2008, 122, 342–347.e2. [Google Scholar] [CrossRef]
- Schroeder, J.T.; Bieneman, A.P.; Chichester, K.L.; Keet, C.A.; Hamilton, R.G.; MacGlashan, D.W., Jr.; Wood, R.; Frischmeyer-Guerrerio, P.A. Spontaneous basophil responses in food-allergic children are transferable by plasma and are IgE-dependent. J. Allergy Clin. Immunol. 2013, 132, 1428–1431. [Google Scholar] [CrossRef] [Green Version]
- Tran, M.M.; Lefebvre, D.L.; Dharma, C.; Dai, D.; Lou, W.Y.W.; Subbarao, P.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; Sears, M.R. Canadian Healthy Infant Longitudinal Development Study investigators. Predicting the atopic march: Results from the Canadian Healthy Infant Longitudinal Development Study. J. Allergy Clin. Immunol. 2018, 141, 601–607.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollenberg, A.; Barbarot, S.; Bieber, T.; Christen-Zaech, S.; Deleuran, M.; Fink-Wagner, A.; Gieler, U.; Girolomoni, G.; Lau, S.; Muraro, A. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: Part I. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 657–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwarith, J.; Kahleova, H.; Crosby, L.; Brooks, A.; Brandon, L.; Levin, S.M.; Barnard, N.D. The role of nutrition in asthma prevention and treatment. Nutr. Rev. 2020, 1, 928–938. [Google Scholar] [CrossRef] [Green Version]
- De Martinis, M.; Sirufo, M.M.; Suppa, M.; Ginaldi, L. New Perspectives in Food Allergy. Int. J. Mol. Sci. 2020, 21, 1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Fu, J.; Zhou, Y. Research Progress in Atopic March. Front. Immunol. 2020, 27, 1907. [Google Scholar] [CrossRef] [PubMed]
- Heine, R.G. Food Allergy Prevention and Treatment by Targeted Nutrition. Ann. Nutr. Metab. 2018, 72, 33–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann-Sommergruber, K.; de las Vecillas, L.; Dramburg, S.; Hilger, C.; Matricardi, P.; Santos, A.F. Molecular Allergology User’s Guide 2.0; The European Academy of Allergy and Clinical Immunology (EAACI): ©John Wiley & Sons A/S. Published by John Wiley & Sons Ltd., 2022. Available online: https://eaaci-cdn-vod02-prod.azureedge.net/KnowledgeHub/education/books/MAUG_2.pdf (accessed on 12 November 2022).
- Caimmi, D.; Manca, E.; Carboni, E.; Demoly, P. How molecular allergology can shape the management of allergic airways diseases. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Lis, K.; Bartuzi, Z. Multi-parameter tests for molecular diagnosis of allergies-current possibilities. Alerg. Astma Immunol. 2020, 25, 122–140. [Google Scholar]
- Rubio, A.; Vivinus-Nébot, M.; Bourrier, T.; Saggio, B.; Albertini, M.; Bernard, A. Benefit of the basophil activation test in deciding when to reintroduce cow’s milk in allergic children. Allergy 2011, 66, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Kilic, M.; Çilkol, L.; Taşkın, E. Evaluation of some predictive parameters for baked-milk tolerance in children with cow’s milk allergy. Allergol. Immunopathol. 2021, 1, 53–59. [Google Scholar] [CrossRef]
- Ayats-Vidal, R.; Valdesoiro-Navarrete, L.; García-González, M.; Asensio-De la Cruz, O.; Larramona-Carrera, H.; Bosque-García, M. Predictors of a positive oral food challenge to cow’s milk in children sensitized to cow’s milk. Allergol. Immunopathol. 2020, 48, 568–575. [Google Scholar] [CrossRef]
- Santos, A.F.; Brough, H.A. Making the Most of In Vitro Tests to Diagnose Food Allergy. J. Allergy Clin. Immunol. Pract. 2017, 5, 237–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ando, H.; Movérare, R.; Kondo, Y.; Tsuge, I.; Tanaka, A.; Borres, M.P.; Urisu, A. Utility of ovomucoid-specific IgE concentrations in predicting symptomatic egg allergy. J. Allergy Clin. Immunol. 2008, 122, 583–588. [Google Scholar] [CrossRef]
- Dang, T.D.; Peters, R.L.; Koplin, J.J.; Dharmage, S.C.; Gurrin, L.C.; Ponsonby, A.L.; Martino, D.J.; Neeland, M.; Tang, M.L.K.; Allen, K.J. HealthNuts study. Egg allergen specific IgE diversity predicts resolution of egg allergy in the population cohort. HealthNuts Allergy 2019, 74, 318–326. [Google Scholar] [CrossRef]
- Tariq, S.M.; Matthews, S.M.; Hakim, E.A.; Arshad, S.H. Egg allergy in infancy predicts respiratory allergic disease by 4 years of age. Pediatr. Allergy Immunol. 2000, 11, 162–167. [Google Scholar] [CrossRef]
- Sicherer, S.H.; Wood, R.A.; Perry, T.T.; Jones, S.M.; Leung, D.Y.M.; Henning, A.K.; Dawson, P.; Burks, A.W.; Lindblad, R.; Sampson, H.A. Clinical factors associated with peanut allergy in a high-risk infant cohort. Allergy 2019, 74, 2199–2211. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, C.; Berthold, M.; Mascialino, B.; Orme, M.E.; Sjölander, S.; Hamilton, R.G. Accuracy of component-resolved diagnostics in peanut allergy: Systematic literature review and meta-analysis. Pediatr. Allergy Immunol. 2020, 31, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Matricardi, P.M.; Dramburg, S.; Potapova, E.; Skevaki, C.; Renz, H. Molecular diagnosis for allergen immunotherapy. J. Allergy Clin. Immunol. 2019, 143, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Posa, D.; Perna, S.; Resch, Y.; Lupinek, C.; Panetta, V.; Hofmaier, S.; Rohrbach, A.; Hatzler, L.; Grabenhenrich, L.; Tsilochristou, O. Evolution and predictive value of IgE responses toward a comprehensive panel of house dust mite allergens during the first 2 decades of life. J. Allergy Clin. Immunol. 2017, 139, 541–549.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westman, M.; Lupinek, C.; Bousquet, J.; Andersson, N.; Pahr, S.; Baar, A.; Bergström, A.; Holmström, M.; Stjärne, P.; Lødrup Carlsen, K.C. Mechanisms for the Development of Allergies Consortium. Early childhood IgE reactivity to pathogenesis-related class 10 proteins predicts allergic rhinitis in adolescence. J. Allergy Clin. Immunol. 2015, 135, 1199–1206.e11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matricardi, P.M.; Kleine-Tebbe, J.; Hoffmann, H.J.; Valenta, R.; Hilger, C.; Hofmaier, S.; Aalberse, R.C.; Agache, I.; Asero, R.; Ballmer-Weber, B. EAACI Molecular Allergology User’s Guide. Pediatr. Allergy Immunol. 2016, 27, 1–250. [Google Scholar]
- Röschmann, K.I.; van Kuijen, A.M.; Luiten, S.; Jonker, M.J.; Breit, T.M.; Fokkens, W.J.; Petersen, A.; van Drunen, C.M. Purified Timothy grass pollen major allergen Phl p 1 may contribute to the modulation of allergic responses through a pleiotropic induction of cytokines and chemokines from airway epithelial cells. Clin. Exp. Immunol. 2012, 167, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Roberts, G.; Pfaar, O.; Akdis, C.A.; Ansotegui, I.J.; Durham, S.R.; Gerth van Wijk, R.; Halken, S.; Larenas-Linnemann, D.; Pawankar, R.; Pitsios, C. EAACI Guidelines on Allergen Immunotherapy: Allergic rhinoconjunctivitis. Allergy 2018, 73, 765–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frick, M.; Fischer, J.; Helbling, A.; Ruëff, F.; Wieczorek, D.; Ollert, M.; Pfützner, W.; Müller, S.; Huss-Marp, J.; Dorn, B. Predominant Api m 10 sensitization as risk factor for treatment failure in honey bee venom immunotherapy. J. Allergy Clin. Immunol. 2016, 138, 1663–1671.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larenas-Linnemann, D.; Cox, L.S. Immunotherapy and Allergy Diagnostics Committee of the American Academy of Allergy, Asthma and Immunology. European allergen extract units and potency: Review of available information. Ann. Allergy Asthma Immunol. 2008, 100, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-W.; Zieglmayer, P.; Zieglmayer, R.; Lemell, R.; Horak, F.; Panaitescu Bunu, C.; Valenta, R.; Vrtala, S. Selection of house dust mite–allergic patients by molecular diagnosis may enhance success of specific immunotherapy. J. Allergy Clin. Immunol. 2019, 143, 1248–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casset, A.; Mari, A.; Purohit, A.; Resch, Y.; Weghofer, M.; Ferrara, R.; Thomas, W.R.; Alessandri, C.; Chen, K.W.; de Blay, F. Varying allergen composition and content affects the in vivo allergenic activity of commercial Dermatophagoides pteronyssinus extracts. Int. Arch. Allergy Immunol. 2012, 159, 253–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, R.E.; Chapman, M.D.; Slater, J.E. The Allergen: Sources, Extracts, and Molecules for Diagnosis of Allergic Disease. J. Allergy Clin. Immunol. Pract. 2020, 8, 2506–2514. [Google Scholar] [CrossRef] [PubMed]
- Platts-Mills, T.A.; Heymann, P.W.; Commins, S.P.; Woodfolk, J.A. The discovery of IgE 50 years later. Ann. Allergy Asthma Immunol. 2016, 116, 179–182. [Google Scholar] [CrossRef] [Green Version]
- Johansson, S.G. The History of IgE: From discovery to 2010. Curr. Allergy Asthma Rep. 2011, 11, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Roberts, G.; Ollert, M.; Aalberse, R.; Austin, M.; Custovic, A.; DunnGalvin, A.; Eigenmann, P.A.; Fassio, F.; Grattan, C.; Hellings, P. A new framework for the interpretation of IgE sensitization tests. Allergy 2016, 71, 1540–1551. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, S.F.; Lilja, G.; Järnbert-Pettersson, H.; Alm, J. Relevance of low specific IgE levels to egg, milk and peanut in infancy. Clin. Exp. Allergy 2019, 49, 308–316. [Google Scholar] [CrossRef]
- Knyziak-Mędrzycka, I.; Szychta, M.; Majsiak, E.; Fal, A.M.; Doniec, Z.; Cukrowska, B. The Precision Allergy Molecular Diagnosis (PAMD@) in Monitoring the Atopic March in a Child with a Primary Food Allergy: Case Report. J. Asthma Allergy 2022, 7, 1263–1267. [Google Scholar] [CrossRef]
- Balsells-Vives, S.; San Bartolomé, C.; Casas-Saucedo, R.; Ruano-Zaragoza, M.; Rius, J.; Torradeflot, M.; Bartra, J.; Munoz-Cano, R.; Pascal, M. Low Levels Matter: Clinical Relevance of Low Pru p 3 sIgE in Patients With Peach Allergy. Front. Allergy 2022, 5, 868267. [Google Scholar] [CrossRef]
- Halken, S.; Larenas-Linnemann, D.; Roberts, G.; Calderón, M.A.; Angier, E.; Pfaar, O.; Ryan, D.; Agache, I.; Ansotegui, I.J.; Arasi, S. EAACI guidelines on allergen immunotherapy: Prevention of allergy. Pediatr. Allergy Immunol. 2017, 28, 728–745. [Google Scholar] [CrossRef] [PubMed]
- Majsiak, E.; Choina, M.; Miśkiewicz, K.; Doniec, Z.; Kurzawa, R. Oleosins: A Short Allergy Review. Adv. Exp. Med. Biol. 2021, 1324, 51–55. [Google Scholar] [CrossRef]
- Grzywnowicz, M.; Majsiak, E.; Gaweł, J.; Miśkiewicz, K.; Doniec, Z.; Kurzawa, R. Inhibition of Cross-Reactive Carbohydrate Determinants in Allergy Diagnostics. Adv. Exp. Med. Biol. 2018, 1116, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Geisslitz, S.; Weegels, P.; Shewry, P.; Zevallos, V.; Masci, S.; Sorrells, M.; Gregorini, A.; Colomba, M.; Jonkers, D.; Huang, X.; et al. Wheat amylase/trypsin inhibitors (ATIs): Occurrence, function and health aspects. Eur. J. Nutr. 2022, 61, 2873–2880. [Google Scholar] [CrossRef] [PubMed]
- Dubiela, P.; Humeniuk, P.; Bublin, M.; Metz-Favre, C.; Viel, S.; Bienvenu, F.; Hafner, C.; Pauli, G.; Hoffmann-Sommergruber, K. Two patients with allergy to celery—Possible role of carbohydrate determinants and difference between seeds and tuber allergenicity. World Allergy Organ. J. 2022, 7, 100708. [Google Scholar] [CrossRef] [PubMed]
- Peveri, S.; Pattini, S.; Costantino, M.T.; Incorvaia, C.; Montagni, M.; Roncallo, C.; Villalta, D.; Savi, E. Molecular diagnostics improves diagnosis and treatment of respiratory allergy and food allergy with economic optimization and cost saving. Allergol. Et Immunopathol. 2019, 47, 64–72. [Google Scholar] [CrossRef]
- Flores Kim, J.; McCleary, N.; Nwaru, B.I.; Stoddart, A.; Sheikh, A. Diagnostic accuracy, risk assessment, and cost-effectiveness of component-resolved diagnostics for food allergy: A systematic review. Allergy 2018, 73, 1609–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleine-Tebbe, J.; Matricardi, P.M.; Hamilton, R.G. Allergy Work-Up Including Component-Resolved Diagnosis: How to Make Allergen-Specific Immunotherapy More Specific. Immunol. Allergy Clin. N. Am. 2016, 36, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Zuberbier, T.; Lötvall, J.; Simoens, S.; Subramanian, S.V.; Church, M.K. Economic burden of inadequate management of allergic diseases in the European Union: A GA LEN review. Allergy 2014, 69, 1275–1279. [Google Scholar] [CrossRef] [PubMed]
- Kulthanan, K.; Chusakul, S.; Recto, M.T.; Gabriel, M.T.; Aw, D.C.W.; Prepageran, N.; Wong, A.; Leong, J.L.; Foong, H.; Quang, V.T.; et al. Economic Burden of the Inadequate Management of Allergic Rhinitis and Urticaria in Asian Countries Based on the GA²LEN Model. Allergy Asthma Immunol. Res. 2018, 10, 370–378. [Google Scholar] [CrossRef]
- Huang, H.-J.; Campana, R.; Akinfenwa, O.; Curin, M.; Sarzsinszky, E.; Karsonova, A.; Riabova, K.; Karaulov, A.; Niespodziana, K.; Elisyutina, O.; et al. Microarray-Based Allergy Diagnosis: Quo Vadis? Front. Immunol. 2021, 11, 594978. [Google Scholar] [CrossRef] [PubMed]
- Majsiak, E.; Choina, M.; Golicki, D.; Gray, A.M.; Cukrowska, B. The impact of symptoms on quality of life before and after diagnosis of coeliac disease: The results from a Polish population survey and comparison with the results from the United Kingdom. BMC Gastroenterol. 2021, 21, 99. [Google Scholar] [CrossRef]
- Majsiak, E.; Choina, M.; Gray, A.M.; Wysokiński, M.; Cukrowska, B. Clinical Manifestation and Diagnostic Process of Celiac Disease in Poland-Comparison of Pediatric and Adult Patients in Retrospective Study. Nutrients 2022, 14, 491. [Google Scholar] [CrossRef]
Test | Manufacturer | The Technic of Determination | Type of Designation | Type of Test | Number of Molecules Possible to be Determined 3 | Lower Limit of Detection |
---|---|---|---|---|---|---|
ImmunoCap® | Thermo Fisher Scientific Inc., Waltham, MA, USA | Fluorescence enzyme immunoassay | Quantitative | Singleplex | 100 | 0.1 kU/L |
Polycheck® | Biocheck GmbH, Münster, | Solid-phase immunoassays | Quantitative | Multiparametric | 34 | 0.15 kU/L |
Euroline® | Euroimmun AG, Lübeck, Germany | Solid-phase immunoassays | Semiquantitative | Multiparametric | 35 | 0.35 kU/L |
ImmunoCap® ISAC | Thermo Fisher Scientific Inc., Waltham, MA, USA | Solid-phase immunoassay | Semiquantitative | Multiplex | 112 | 0.35 ISU-E 1 |
ALEX®2 | MacroArray Diagnostics, Vienna, Austria | Solid-phase immunoassay | Quantitative | Multiplex | 178 2 | 0.1 kU/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knyziak-Mędrzycka, I.; Majsiak, E.; Cukrowska, B. Allergic March in Children: The Significance of Precision Allergy Molecular Diagnosis (PAMD@) in Predicting Atopy Development and Planning Allergen-Specific Immunotherapy. Nutrients 2023, 15, 978. https://doi.org/10.3390/nu15040978
Knyziak-Mędrzycka I, Majsiak E, Cukrowska B. Allergic March in Children: The Significance of Precision Allergy Molecular Diagnosis (PAMD@) in Predicting Atopy Development and Planning Allergen-Specific Immunotherapy. Nutrients. 2023; 15(4):978. https://doi.org/10.3390/nu15040978
Chicago/Turabian StyleKnyziak-Mędrzycka, Izabela, Emilia Majsiak, and Bożena Cukrowska. 2023. "Allergic March in Children: The Significance of Precision Allergy Molecular Diagnosis (PAMD@) in Predicting Atopy Development and Planning Allergen-Specific Immunotherapy" Nutrients 15, no. 4: 978. https://doi.org/10.3390/nu15040978
APA StyleKnyziak-Mędrzycka, I., Majsiak, E., & Cukrowska, B. (2023). Allergic March in Children: The Significance of Precision Allergy Molecular Diagnosis (PAMD@) in Predicting Atopy Development and Planning Allergen-Specific Immunotherapy. Nutrients, 15(4), 978. https://doi.org/10.3390/nu15040978