High Levels of Glycated Hemoglobin (HbA1c) Are Associated with Physical Inactivity, and Part of This Association Is Mediated by Being Overweight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sampling
2.2. Data Collection
2.3. Outcome Variable: Glycated Hemoglobin (HbA1c)
2.4. Explanatory Variable: Physical Inactivity in Leisure Time
2.5. Mediating Variable: Overweight
2.6. Adjustment of Variables
2.7. Ethical Considerations
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romero-Blanco, C.; Rodríguez-Almagro, J.; Onieva-Zafra, M.D.; Parra-Fernández, M.L.; Prado-Laguna, M.D.C.; Hernández-Martínez, A. Physical activity and sedentary lifestyle in university students: Changes during confinement due to the Covid-19 pandemic. Int. J. Environ. Res. Public Health 2020, 17, 6567. [Google Scholar] [CrossRef]
- Browne, R.A.; Macêdo, G.A.; Cabral, L.L.; Oliveira, G.T.; Vivas, A.; Fontes, E.B.; Elsangedy, H.M.; Costa, E.C. Initial impact of the COVID-19 pandemic on physical activity and sedentary behavior in hypertensive older adults: An accelerometer-based analysis. Exp. Gerontol. 2020, 142, 111121. [Google Scholar] [CrossRef]
- Castañeda-Babarro, A.; Arbillaga-Etxarri, A.; Gutiérrez-Santamaría, B.; Coca, A. Physical activity change during COVID-19 confinement. Int. J. Environ. Res. Public Health 2020, 17, 6878. [Google Scholar] [CrossRef]
- Meyer, J.; McDowell, C.; Lansing, J.; Brower, C.; Smith, L.; Tully, M.; Herring, M. Changes in physical activity and sedentary behavior in response to COVID-19 and their associations with mental health in 3052 US adults. Int. J. Environ. Res. Public Health 2020, 17, 6469. [Google Scholar] [CrossRef]
- Tison, G.H.; Avram, R.; Kuhar, P.; Abreau, S.; Marcus, G.M.; Pletcher, M.J.; Olgin, J.E. Worldwide effect of COVID-19 on physical activity: A descriptive study. Ann. Intern. Med. 2020, 173, 767–770. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attinà, A.; Cinelli, G.; Leggeri, C.; Caparello, G.; Barrea, L.; Scerbo, F. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. J. Transl. Med. 2020, 18, 229. [Google Scholar] [CrossRef]
- Verma, A.; Rajput, R.; Verma, S.; Balania, V.K.; Jangra, B. Impact of lockdown in COVID 19 on glycemic control in patients with type 1 Diabetes Mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1213–1216. [Google Scholar] [CrossRef]
- Lai, C.-C.; Shih, T.-P.; Ko, W.-C.; Tang, H.-J.; Hsueh, P.-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef]
- Chung, I.M.; Rajakumar, G.; Subramanian, U.; Venkidasamy, B.; Khanna, V.G.; Thiruvengadam, M. Insights on the current status and advancement of diabetes mellitus type 2 and to avert complications: An overview. Biotechnol. Appl. Biochem. 2020, 67, 920–928. [Google Scholar] [CrossRef]
- Atlas, D. International Diabetes Federation. IDF Diabetes Atlas, 8th ed.; International Diabetes Federation: Brussels, Belgium, 2017. [Google Scholar]
- Higgins, T. HbA1c—An analyte of increasing importance. Clin. Biochem. 2012, 45, 1038–1045. [Google Scholar] [CrossRef]
- Chen, S.-M.; Shen, F.-C.; Chen, J.-F.; Chang, W.-D.; Chang, N.-J. Effects of resistance exercise on glycated hemoglobin and functional performance in older patients with comorbid diabetes mellitus and knee osteoarthritis: A randomized trial. Int. J. Environ. Res. Public Health 2020, 17, 224. [Google Scholar] [CrossRef] [Green Version]
- Ofori, E.K.; Angmorterh, S.K. Relationship between physical activity, body mass index (BMI) and lipid profile of students in Ghana. Pan Afr. Med. J. 2019, 33, 30. [Google Scholar] [CrossRef]
- Dumortier, M.; Brandou, F.; Perez-Martin, A.; Fedou, C.; Mercier, J.; Brun, J. Low intensity endurance exercise targeted for lipid oxidation improves body composition and insulin sensitivity in patients with the metabolic syndrome. Diabetes Metab. 2003, 29, 509–518. [Google Scholar] [CrossRef]
- Jorge, M.L.M.P.; de Oliveira, V.N.; Resende, N.M.; Paraiso, L.F.; Calixto, A.; Diniz, A.L.D.; Resende, E.S.; Ropelle, E.R.; Carvalheira, J.B.; Espindola, F.S. The effects of aerobic, resistance, and combined exercise on metabolic control, inflammatory markers, adipocytokines, and muscle insulin signaling in patients with type 2 diabetes mellitus. Metabolism 2011, 60, 1244–1252. [Google Scholar] [CrossRef]
- BRASIL, Ministério da Saúde (BR). Informações de Saúde (TABNET), Demográficas e Socioeconômicas, População Residente, Censo 2010. Available online: http://www2.datasus.gov.br/DATASUS/index.php?area=0206&id=6942 (accessed on 31 March 2022).
- Meireles, A.L.; Lourenção, L.G.; Menezes Júnior, L.A.A.d.; Coletro, H.N.; Justiniano, I.C.S.; Moura, S.S.d.; Diniz, A.P.; Sabião, T.d.S.; Rocha, A.M.S.; Batista, A.P.; et al. COVID-Inconfidentes-SARS-CoV-2 seroprevalence in twoBrazilian urban areas during the pandemic first wave: Studyprotocol and initial results. SciELO, 2021; preprint. [Google Scholar] [CrossRef]
- Golbert, A.; Vasques, A.C.J.; Faria, A.; Lottenberg, A.M.P.; Joaquim, A.G.; Vianna, A.G.D. Diretrizes da Sociedade Brasileira de Diabetes 2019–2020; Clannad: São Paulo, Brazil, 2019; pp. 1–491. [Google Scholar]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Leon, A.S.; Jacobs, D.R., Jr.; Montoye, H.J.; Sallis, J.F.; Paffenbarger, R.S., Jr. Compendium of physical activities: Classification of energy costs of human physical activities. Med. Sci. Sport. Exerc. 1993, 25, 71–80. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O Brien, W.L.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.O. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sport. Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [Green Version]
- Farinatti, P.d.T.V. Apresentação de uma versão em português do compêndio de atividades físicas: Uma contribuição aos pesquisadores e profissionais em fisiologia do exercício. Rev. Bras. Fisiol. Exerc. 2003, 2, 177–208. [Google Scholar]
- BRASIL. Guia de Atividade Física para População Brasileira. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/guia_atividade_fisica_populacao_brasileira.pdf (accessed on 31 March 2022).
- WHO. WHO Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Organización Panamericana de la Salud. XXXVI Reunión del Comitê Asesor de Investigaciones en Salud-Encuestra Multicêntrica-Salud Beinestar y Envejecimeiento (SABE) en América Latina e el Caribe; Organización Panamericana de la Salud: Washington, DC, USA, 2001. [Google Scholar]
- WHO. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation on Obesity, Geneva, 3–5 June 1997; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Shrier, I.; Platt, R.W. Reducing bias through directed acyclic graphs. BMC Med. Res. Methodol. 2008, 8, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortes, T.R.; Faerstein, E.; Struchiner, C.J. Use of causal diagrams in Epidemiology: Application to a situation with confounding. Cad. Saude Publica 2016, 32. [Google Scholar] [CrossRef]
- Breen, R.; Karlson, K.B.; Holm, A. Total, direct, and indirect effects in logit and probit models. Sociol. Methods Res. 2013, 42, 164–191. [Google Scholar] [CrossRef]
- Lesser, I.A.; Nienhuis, C.P. The impact of COVID-19 on physical activity behavior and well-being of Canadians. Int. J. Environ. Res. Public Health 2020, 17, 3899. [Google Scholar] [CrossRef]
- de Melo Souza, T.C.; Oliveira, L.A.; Daniel, M.M.; Ferreira, L.G.; Della Lucia, C.M.; Liboredo, J.C.; Anastácio, L.R. Lifestyle and eating habits before and during COVID-19 quarantine in Brazil. Public Health Nutr. 2021, 25, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Peçanha, T.; Goessler, K.F.; Roschel, H.; Gualano, B. Integrative Cardiovascular Physiology and Pathophysiology: Social isolation during the COVID-19 pandemic can increase physical inactivity and the global burden of cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H1441. [Google Scholar] [CrossRef] [PubMed]
- Sidor, A.; Rzymski, P. Dietary choices and habits during COVID-19 lockdown: Experience from Poland. Nutrients 2020, 12, 1657. [Google Scholar] [CrossRef]
- León-Latre, M.; Moreno-Franco, B.; Andrés-Esteban, E.M.; Ledesma, M.; Laclaustra, M.; Alcalde, V.; Peñalvo, J.L.; Ordovás, J.M.; Casasnovas, J.A. Sedentary lifestyle and its relation to cardiovascular risk factors, insulin resistance and inflammatory profile. Rev. Española Cardiol. 2014, 67, 449–455. [Google Scholar] [CrossRef]
- de Lima, J.G.R.; Abud, G.F.; de Freitas, E.C.; Júnior, C.R.B. Effects of the COVID-19 pandemic on the global health of women aged 50 to 70 years. Exp. Gerontol. 2021, 150, 111349. [Google Scholar] [CrossRef]
- Ghosal, S.; Sinha, B.; Majumder, M.; Misra, A. Estimation of effects of nationwide lockdown for containing coronavirus infection on worsening of glycosylated haemoglobin and increase in diabetes-related complications: A simulation model using multivariate regression analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 319–323. [Google Scholar] [CrossRef]
- Colberg, S.R. Exercise and Diabetes: A Clinician’s Guide to Prescribing Physical Activity; American Diabetes Association: Arlington County, VA, USA, 2013. [Google Scholar]
- King, K.M.; Jaggers, J.R.; Della, L.J.; McKay, T.; Watson, S.; Kozerski, A.E.; Hartson, K.R.; Wintergerst, K.A. Association between physical activity and sport participation on hemoglobin A1c among children and adolescents with type 1 diabetes. Int. J. Environ. Res. Public Health 2021, 18, 7490. [Google Scholar] [CrossRef] [PubMed]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical activity/exercise and diabetes: A position statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabbour, G.; Hermassi, S.; Bragazzi, N. Impact of the COVID-19 Pandemic on the Physical Activity Profile and Glycemic Control Among Qatari Adults With Type 1 Diabetes: Effect of Vaccination Status. Front. Public Health 2022, 10, 914117. [Google Scholar] [CrossRef]
- Ho, S.S.; Dhaliwal, S.S.; Hills, A.; Pal, S. Acute exercise improves postprandial cardiovascular risk factors in overweight and obese individuals. Atherosclerosis 2011, 214, 178–184. [Google Scholar] [CrossRef]
- Aune, D.; Norat, T.; Leitzmann, M.; Tonstad, S.; Vatten, L.J. Physical activity and the risk of type 2 diabetes: A systematic review and dose–response meta-analysis. Eur. J. Epidemiol. 2015, 30, 529–542. [Google Scholar] [CrossRef]
- Martinez-Ferran, M.; de la Guía-Galipienso, F.; Sanchis-Gomar, F.; Pareja-Galeano, H. Metabolic impacts of confinement during the COVID-19 pandemic due to modified diet and physical activity habits. Nutrients 2020, 12, 1549. [Google Scholar] [CrossRef]
- Munekawa, C.; Hosomi, Y.; Hashimoto, Y.; Okamura, T.; Takahashi, F.; Kawano, R.; Nakajima, H.; Osaka, T.; Okada, H.; Majima, S. Effect of coronavirus disease 2019 pandemic on the lifestyle and glycemic control in patients with type 2 diabetes: A cross-section and retrospective cohort study. Endocr. J. 2021, 68, 201–210. [Google Scholar] [CrossRef]
- Silveira, M.S.; Pavin, E.J.; Cardoso, E.B.; Fanti, P.; Abdoli, S. Emotional burden and care of adults with type 1 diabetes during the COVID-19 pandemic in Brazilian regions. J. Diabetes Its Complicat. 2021, 35, 108053. [Google Scholar] [CrossRef]
- Pearl, J. Causality: Models, Reasoning and Inference, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
Hemoglobin Glycated (CI 95%) | ||||
---|---|---|---|---|
Variables | Total % | Normal (≤6.4%) | High HbA1c (≥6.5%) | p-Value |
Sex | ||||
Female | 52.4 (45.2–59.4) | 90.0 (86.6–92.6) | 10.0 (7.4–13.3) | |
Male | 47.6 (40.5–54.8) | 95.9 (92.5–97.8) | 4.1 (2.2–7.5) | 0.01 |
Age Group | ||||
18–34 years | 35.1 (30.8–39.7) | 99.0 (96.7–99.7) | 1.0 (0.29–3.0) | |
35–59 years | 45.8 (41.2–50.5) | 92.2 (89.3–94.3) | 7.8 (5.6–10.7) | <0.001 |
≥60 years | 19.1 (15.7–23.0) | 77.8 (67.8–85.3) | 22.2 (14.8–32.3) | |
Marital Status | ||||
Married | 52.9 (46.8–58.9) | 91.2 (88.0–94.7) | 8.0 (5.3–12.0) | 0.35 |
Not married | 47.1 (41.1–53.2) | 94.0 (90.7–96.2) | 6.0 (3.8–9.2) | |
Race/ethnicity | ||||
White | 26.0 (21.2–31.6) | 95.8 (93.3–97.4) | 4.2 (2.5–6.6) | |
Brown | 48.1 (41.7–54.5) | 94.5 (91.2–96.6) | 5.5 (3.4–8.8) | <0.001 |
Black | 20.2 (15.6–25.7) | 85.8 (77.9–91.3) | 14.1 (8.7–22.1) | |
Others | 5.7 (4.1–7.8) | 90.2 (80.1–95.2) | 9.8 (4.8–19.0) | |
Family income | ||||
≤2 MW | 41.2 (35.6–47.1) | 92.3 (88.1–95.2) | 7.7 (4.9–10.2) | |
>2 a ≤ 4 MW | 31.4 (26.3–36.9) | 93.6 (89.7–96.1) | 6.4 (3.9–10.2) | 0.81 |
>4 MW | 27.4 (22.3–33.1) | 93.2 (88.1–96.8) | 6.2 (3.1–11.7) | |
Education | ||||
>9 years | 69.1 (64.3–73.6) | 96.0 (94.2–97.2) | 4.0 (2.7–5.8) | <0.001 |
≤9 years | 30.9 (26.4–35.7) | 86.2 (79.1–90.7) | 13.8 (9.3–20.1) | |
Overweight | ||||
No | 43.5 (37.0–50.2) | 96.8 (95.1–97.9) | 3.2 (2.1–4.9) | 0.004 |
Yes | 56.5 (49.8–63.0) | 91.6 (87.0–94.6) | 8.4 (5.3–13.0) | |
Referred Morbidity | ||||
Absence of morbidity | 44.5 (37.6–51.6) | 99.4 (98.3–99.8) | 0.6 (0.9–2.13) | <0.001 |
Presence of morbidity | 55.5 (48.3–62.4) | 87.3 (83.4–90.3) | 12.7 (9.6–16.5) |
HbA1c (≥6.5%) | ||||
---|---|---|---|---|
Univariate OR (IC 95%) | p | Multivariate* OR (IC 95%) | p | |
Physically active | 1.00 | 1.00 | ||
Physically inactive | 3.36 (1.86–6.08) | <0.001 | 2.62 (1.31–5.24) | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Moura, S.S.; de Menezes-Júnior, L.A.A.; Rocha, A.M.S.; Batista, A.P.; de Menezes, M.C.; Carraro, J.C.C.; Machado-Coelho, G.L.L.; Meireles, A.L. High Levels of Glycated Hemoglobin (HbA1c) Are Associated with Physical Inactivity, and Part of This Association Is Mediated by Being Overweight. Nutrients 2023, 15, 1191. https://doi.org/10.3390/nu15051191
de Moura SS, de Menezes-Júnior LAA, Rocha AMS, Batista AP, de Menezes MC, Carraro JCC, Machado-Coelho GLL, Meireles AL. High Levels of Glycated Hemoglobin (HbA1c) Are Associated with Physical Inactivity, and Part of This Association Is Mediated by Being Overweight. Nutrients. 2023; 15(5):1191. https://doi.org/10.3390/nu15051191
Chicago/Turabian Stylede Moura, Samara Silva, Luiz Antônio Alves de Menezes-Júnior, Ana Maria Sampaio Rocha, Aline Priscila Batista, Mariana Carvalho de Menezes, Júlia Cristina Cardoso Carraro, George Luiz Lins Machado-Coelho, and Adriana Lúcia Meireles. 2023. "High Levels of Glycated Hemoglobin (HbA1c) Are Associated with Physical Inactivity, and Part of This Association Is Mediated by Being Overweight" Nutrients 15, no. 5: 1191. https://doi.org/10.3390/nu15051191
APA Stylede Moura, S. S., de Menezes-Júnior, L. A. A., Rocha, A. M. S., Batista, A. P., de Menezes, M. C., Carraro, J. C. C., Machado-Coelho, G. L. L., & Meireles, A. L. (2023). High Levels of Glycated Hemoglobin (HbA1c) Are Associated with Physical Inactivity, and Part of This Association Is Mediated by Being Overweight. Nutrients, 15(5), 1191. https://doi.org/10.3390/nu15051191