Nitrosative and Oxidative Stress, Reduced Antioxidant Capacity, and Fiber Type Switch in Iron-Deficient COPD Patients: Analysis of Muscle and Systemic Compartments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exclusion Criteria
2.3. Clinical Assessment
2.4. Blood Samples
2.5. Muscle Biopsies
2.6. Biological Analyses
2.7. Muscle Redox Markers
2.8. Muscle Phenotype and Damage
2.9. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Study Patients
3.2. Pro-Oxidant Markers in Vastus Lateralis and Blood of COPD Patients
3.3. Antioxidants Markers in Vastus Lateralis and Blood of COPD Patients
3.4. Muscle Structural Features of the Study Patients
4. Discussion
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Machado, A.; Marques, A.; Burtin, C. Extra-pulmonary manifestations of COPD and the role of pulmonary rehabilitation: A symptom-centered approach. Expert Rev. Respir. Med. 2020, 15, 131–142. [Google Scholar] [CrossRef]
- Kaluźniak-Szymanowska, A.; Krzymińska-Siemaszko, R.; Deskur-śmielecka, E.; Lewandowicz, M.; Kaczmarek, B.; Wieczorowska-Tobis, K. Malnutrition, Sarcopenia, and Malnutrition-Sarcopenia Syndrome in Older Adults with COPD. Nutrients 2021, 14, 44. [Google Scholar] [CrossRef] [PubMed]
- Jaitovich, A.; Barreiro, E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease what we know and can do for our patients. Am. J. Respir. Crit. Care Med. 2018, 198, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Winter, W.E.; Bazydlo, L.A.L.; Harris, N.S. The molecular biology of human iron metabolism. Lab. Med. 2014, 45, 92–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164. [Google Scholar]
- Paul, B.T.; Manz, D.H.; Torti, F.M.; Torti, S.V. Mitochondria and Iron: Current Questions. Expert Rev. Hematol. 2017, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Lukaszyk, E.; Lukaszyk, M.; Koc-Zorawska, E.; Bodzenta-Lukaszyk, A.; Malyszko, J. GDF-15, iron, and inflammation in early chronic kidney disease among elderly patients. Int. Urol. Nephrol. 2016, 48, 839–844. [Google Scholar] [CrossRef] [Green Version]
- González-D’Gregorio, J.; Miñana, G.; Núñez, J.; Núñez, E.; Ruiz, V.; García-Blas, S.; Bonanad, C.; Mollar, A.; Valero, E.; Amiguet, M.; et al. Iron deficiency and long-term mortality in elderly patients with acute coronary syndrome. Biomark. Med. 2018, 12, 987–999. [Google Scholar] [CrossRef]
- Chopra, V.K.; Anker, S.D. Anaemia, iron deficiency and heart failure in 2020: Facts and numbers. ESC Heart Fail. 2020, 7, 2007–2011. [Google Scholar] [CrossRef]
- Cloonan, S.M.; Mumby, S.; Adcock, I.M.; Choi, A.M.K.; Chung, K.F.; Quinlan, G.J. The iron-y of iron overload and iron deficiency in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2017, 196, 1103–1112. [Google Scholar] [CrossRef] [Green Version]
- Silverberg, D.S.; Mor, R.; Weu, M.T.; Schwartz, D.; Schwartz, I.F.; Chernin, G. Anemia and iron deficiency in COPD patients: Prevalence and the effects of correction of the anemia with erythropoiesis stimulating agents and intravenous iron. BMC Pulm. Med. 2014, 14, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathi, V.; Ish, P.; Singh, G.; Tiwari, M.; Goel, N.; Gaur, S.N. Iron deficiency in non-anemic chronic obstructive pulmonary disease in a predominantly male population: An ignored entity. Monaldi Arch. Chest Dis./Arch. Monaldi Mal. Torace 2020, 90, 38–42. [Google Scholar] [CrossRef]
- Martín-Ontiyuelo, C.; Rodó-Pin, A.; Echeverría-Esnal, D.; Admetlló, M.; Duran-Jordà, X.; Alvarado, M.; Gea, J.; Barreiro, E.; Rodríguez-Chiaradía, D.A. Intravenous Iron Replacement Improves Exercise Tolerance in COPD: A Single-Blind Randomized Trial. Arch. Bronconeumol. 2021, 58, 689–698. [Google Scholar] [CrossRef]
- Pérez-Peiró, M.; Martín-Ontiyuelo, C.; Rodó-Pi, A.; Piccari, L.; Admetlló, M.; Durán, X.; Rodríguez-Chiaradía, D.A.; Barreiro, E. Iron Replacement and Redox Balance in Non-Anemic and Mildly Anemic Iron Deficiency COPD Patients: Insights from a Clinical Trial. Biomedicines 2021, 9, 1191. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Peiró, M.; Alvarado, M.; Martín-Ontiyuelo, C.; Duran, X.; Rodríguez-Chiaradía, D.A.; Barreiro, E. Iron Depletion in Systemic and Muscle Compartments Defines a Specific Phenotype of Severe COPD in Female and Male Patients: Implications in Exercise Tolerance. Nutrients 2022, 14, 3929. [Google Scholar] [CrossRef] [PubMed]
- Barberan-Garcia, A.; Rodríguez, D.A.; Blanco, I.; Gea, J.; Torralba, Y.; Arbillaga-Etxarri, A.; Barberà, J.A.; Vilarõ, J.; Roca, J.; Orozco-Levi, M. Non-anaemic iron deficiency impairs response to pulmonary rehabilitation in COPD. Respirology 2015, 20, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Nickol, A.H.; Frise, M.C.; Cheng, H.Y.; McGahey, A.; McFadyen, B.M.; Harris-Wright, T.; Bart, N.K.; Curtis, M.K.; Khandwala, S.; O’Neill, D.P.; et al. A cross-sectional study of the prevalence and associations of iron deficiency in a cohort of patients with chronic obstructive pulmonary disease. BMJ Open 2015, 5, e007911. [Google Scholar] [CrossRef] [Green Version]
- Barreiro, E.; Gea, J. Molecular and biological pathways of skeletal muscle dysfunction in chronic obstructive pulmonary disease. Chron. Respir. Dis. 2016, 13, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Barreiro, E.; Gea, J.; Corominas, J.M.; Hussain, S.N.A. Nitric oxide synthases and protein oxidation in the quadriceps femoris of patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2003, 29, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Barreiro, E.; Peinado, V.I.; Galdiz, J.B.; Ferrer, E.; Marin-Corral, J.; Sánchez, F.; Gea, J.; Barberà, J.A. Cigarette smoke-induced oxidative stress: A role in chronic obstructive pulmonary disease skeletal muscle dysfunction. Am. J. Respir. Crit. Care Med. 2010, 182, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Puig-Vilanova, E.; Rodriguez, D.A.; Lloreta, J.; Ausin, P.; Pascual-Guardia, S.; Broquetas, J.; Roca, J.; Gea, J.; Barreiro, E. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Free. Radic. Biol. Med. 2015, 79, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Marin-Corral, J.; Fontes, C.C.; Pascual-Guardia, S.; Sanchez, F.; Olivan, M.; Argilés, J.M.; Busquets, S.; López-Soriano, F.J.; Barreiro, E. Redox balance and carbonylated proteins in limb and heart muscles of cachectic rats. Antioxid. Redox Signal. 2010, 12, 365–380. [Google Scholar] [CrossRef] [PubMed]
- Fermoselle, C.; Rabinovich, R.; Ausín, P.; Puig-Vilanova, E.; Coronell, C.; Sanchez, F.; Roca, J.; Gea, J.; Barreiro, E. Does oxidative stress modulate limb muscle atrophy in severe COPD patients? Eur. Respir. J. 2012, 40, 851–862. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Wang, A.; Cheng, J.; Chen, L.; Pan, Y.; Li, H.; Zhang, Q.; Zhang, J.; Chu, W.; Zhang, J. Effects of Starvation on Antioxidant-Related Signaling Molecules, Oxidative Stress, and Autophagy in Juvenile Chinese Perch Skeletal Muscle. Mar. Biotechnol. 2020, 22, 81–93. [Google Scholar] [CrossRef]
- O’Leary, M.F.N.; Hood, D.A. Denervation-induced oxidative stress and autophagy signaling in muscle. Autophagy 2009, 5, 230–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, A.; Shabani, M.; Alizadeh, S.; Meshkani, R. Interplay between oxidative stress and autophagy function and its role in inflammatory cytokine expression induced by palmitate in skeletal muscle cells. Cytokine 2020, 125, 154835. [Google Scholar] [CrossRef] [PubMed]
- Galaris, D.; Barbouti, A.; Pantopoulos, K. Iron homeostasis and oxidative stress: An intimate relationship. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 118535. [Google Scholar] [CrossRef]
- Yoo, J.H.; Maeng, H.Y.; Sun, Y.K.; Kim, Y.A.; Park, D.W.; Tae, S.P.; Seung, T.L.; Choi, J.R. Oxidative status in iron-deficiency anemia. J. Clin. Lab. Anal. 2009, 23, 319–323. [Google Scholar] [CrossRef]
- Zhang, H.; Jamieson, K.L.; Grenier, J.; Nikhanj, A.; Tang, Z.; Wang, F.; Wang, S.; Seidman, J.G.; Seidman, C.E.; Thompson, R.; et al. Myocardial Iron Deficiency and Mitochondrial Dysfunction in Advanced Heart Failure in Humans. J. Am. Heart Assoc. 2022, 11, e022853. [Google Scholar] [CrossRef]
- Choi, J.; Pai, S.; Kim, S.; Ito, M.; Park, C.; Cha, Y. Iron deficiency anemia increases nitric oxide production in healthy adolescents. Ann. Hematol. 2002, 81, 1–6. [Google Scholar] [CrossRef]
- Inserte, J.; Barrabés, J.A.; Aluja, D.; Otaegui, I.; Bañeras, J.; Castellote, L.; Sánchez, A.; Rodríguez-Palomares, J.F.; Pineda, V.; Miró-Casas, E.; et al. Implications of Iron Deficiency in STEMI Patients and in a Murine Model of Myocardial Infarction. JACC Basic Transl. Sci. 2021, 6, 567–580. [Google Scholar] [CrossRef]
- Sharif Usman, S.; Dahiru, M.; Abdullahi, B.; Abdullahi, S.B.; Maigari, U.M.; Ibrahim Uba, A. Status of malondialdehyde, catalase and superoxide dismutase levels/activities in schoolchildren with iron deficiency and iron-deficiency anemia of Kashere and its environs in Gombe State, Nigeria. Heliyon 2019, 5, e02214. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, P. GOLD COPD report: 2023 update. Lancet Respir. Med. 2023, 11, 18. [Google Scholar] [CrossRef]
- Venkatesan, P. GOLD report: 2022 update. Lancet Respir. Med. 2022, 10, e20. [Google Scholar] [CrossRef]
- Anker, S.D.; Comin Colet, J.; Filippatos, G.; Willenheimer, R.; Dickstein, K.; Drexler, H.; Lüscher, T.F.; Bart, B.; Banasiak, W.; Niegowska, J.; et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 2009, 361, 2436–2448. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, B.; Dunn, L. The Declaration of Helsinki on Medical Research involving Human Subjects: A Review of Seventh Revision. J. Nepal. Health Res. Counc. 2020, 17, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Roca, J.; Vargas, C.; Cano, I.; Selivanov, V.; Barreiro, E.; Maier, D.; Falciani, F.; Wagner, P.; Cascante, M.; Garcia-Aymerich, J.; et al. Chronic Obstructive Pulmonary Disease heterogeneity: Challenges for health risk assessment, stratification and management. J. Transl. Med. 2014, 12, S3. [Google Scholar] [CrossRef] [PubMed]
- Roca, J.; Burgos, F.; Barberà, J.A.; Sunyer, J.; Rodriguez-Roisin, R.; Castellsagué, J.; Sanchis, J.; Antóo, J.M.; Casan, P.; Clausen, J.L. Prediction equations for plethysmographic lung volumes. Respir. Med. 1998, 92, 454–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roca, J.; Burgos, F.; Sunyer, J.; Saez, M.; Chinn, S.; Anto, J.; Rodriguez-Roisin, R.; Quanjer, P.; Nowak, D.; Burney, P. References values for forced spirometry. Group of the European Community Respiratory Health Survey. Eur. Respir. J. 1998, 11, 1354–1362. [Google Scholar] [CrossRef] [Green Version]
- Barreiro, E.; Salazar-Degracia, A.; Sancho-Muñoz, A.; Gea, J. Endoplasmic reticulum stress and unfolded protein response profile in quadriceps of sarcopenic patients with respiratory diseases. J. Cell Physiol. 2019, 234, 11315–11329. [Google Scholar] [CrossRef]
- Puig-Vilanova, E.; Martínez-Llorens, J.; Ausin, P.; Roca, J.; Gea, J.; Barreiro, E. Quadriceps muscle weakness and atrophy are associated with a differential epigenetic profile in advanced COPD. Clin. Sci. 2015, 128, 905–921. [Google Scholar] [CrossRef]
- Rodriguez, D.A.; Kalko, S.; Puig-Vilanova, E.; Perez-Olabarría, M.; Falciani, F.; Gea, J.; Cascante, M.; Barreiro, E.; Roca, J. Muscle and blood redox status after exercise training in severe COPD patients. Free Radic. Biol. Med. 2012, 52, 88–94. [Google Scholar] [CrossRef]
- Luna-Heredia, E.; Martín-Peña, G.; Ruiz-Galiana, J. Handgrip dynamometry in healthy adults. Clin. Nutr. 2005, 24, 250–258. [Google Scholar] [CrossRef]
- Bui, K.L.; Mathur, S.; Dechman, G.; Maltais, F.; Camp, P.; Saey, D. Fixed Handheld Dynamometry Provides Reliable and Valid Values for Quadriceps Isometric Strength in People With Chronic Obstructive Pulmonary Disease: A Multicenter Study. Phys. Ther. 2019, 99, 1255–1267. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.M.; Spruit, M.A.; Hopkinson, N.S.; Natanek, S.A.; Man, W.D.C.; Jackson, A.; Gosker, H.R.; Schols, A.M.W.J.; Moxham, J.; Polkey, M.I.; et al. The prevalence of quadriceps weakness in COPD and the relationship with disease severity. Eur. Respir. J. 2010, 36, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateu-Jiménez, M.; Sánchez-Font, A.; Rodríguez-Fuster, A.; Aguiló, R.; Pijuan, L.; Fermoselle, C.; Gea, J.; Curull, V.; Barreiro, E. Redox imbalance in lung cancer of patients with underlying chronic respiratory conditions. Mol. Med. 2016, 22, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Thiele, R.H.; Osuru, H.P.; Paila, U.; Ikeda, K.; Zuo, Z. Impact of inflammation on brain subcellular energetics in anesthetized rats. BMC Neurosci. 2019, 20, 34. [Google Scholar] [CrossRef] [Green Version]
- González-Ruiz, R.; Peregrino-Uriarte, A.B.; Valenzuela-Soto, E.M.; Cinco-Moroyoqui, F.J.; Martínez-Téllez, M.A.; Yepiz-Plascencia, G. Mitochondrial manganese superoxide dismutase knock-down increases oxidative stress and caspase-3 activity in the white shrimp Litopenaeus vannamei exposed to high temperature, hypoxia, and reoxygenation. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2021, 252, 110826. [Google Scholar] [CrossRef]
- Barreiro, E.; Fermoselle, C.; Mateu-Jimenez, M.; Sanchez-Font, A.; Pijuan, L.; Gea, J.; Curull, V. Oxidative stress and inflammation in the normal airways and blood of patients with lung cancer and COPD. Free Radic. Biol. Med. 2013, 65, 859–871. [Google Scholar] [CrossRef]
- Qin, L.; Guitart, M.; Admetlló, M.; Esteban-Cucó, S.; Maiques, J.M.; Xia, Y.; Zha, J.; Carbullanca, S.; Duran, X.; Wang, X.; et al. Do Redox Balance and Inflammatory Events Take Place in Mild Bronchiectasis? A Hint to Clinical Implications. J. Clin. Med. 2021, 10, 4534. [Google Scholar] [CrossRef]
- Sancho-Muñoz, A.; Guitart, M.; Rodríguez, D.A.; Gea, J.; Martínez-Llorens, J.; Barreiro, E. Deficient muscle regeneration potential in sarcopenic COPD patients: Role of satellite cells. J. Cell Physiol. 2021, 236, 3083–3098. [Google Scholar] [CrossRef]
- Pérez-Peiró, M.; Duran, X.; Yélamos, J.; Barreiro, E. Attenuation of Muscle Damage, Structural Abnormalities, and Physical Activity in Respiratory and Limb Muscles following Treatment with Rucaparib in Lung Cancer Cachexia Mice. Cancers 2022, 14, 2894. [Google Scholar] [CrossRef]
- Barreiro, E.; Ferrer, D.; Sanchez, F.; Minguella, J.; Marin-Corral, J.; Martinez-Llorens, J.; Lloreta, J.; Gea, J. Inflammatory cells and apoptosis in respiratory and limb muscles of patients with COPD. J. Appl. Physiol. 2011, 111, 808–817. [Google Scholar] [CrossRef] [Green Version]
- Salazar-Degracia, A.; Blanco, D.; Vilà-Ubach, M.; Biurrun, G.; Solórzano, C.O.; Montuenga, L.M.; Barreiro, E. Phenotypic and metabolic features of mouse diaphragm and gastrocnemius muscles in chronic lung carcinogenesis: Influence of underlying emphysema. J. Transl. Med. 2016, 14, 244. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, R.; Hussain, A.; Ahsan, H. Peroxynitrite: Cellular pathology and implications in autoimmunity. J. Immunoass. Immunochem. 2019, 40, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Bartesaghi, S.; Radi, R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018, 14, 618–625. [Google Scholar] [CrossRef]
- Ferrer-Sueta, G.; Campolo, N.; Trujillo, M.; Bartesaghi, S.; Carballal, S.; Romero, N.; Alvarez, B.; Radi, R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem. Rev. 2018, 118, 1338–1408. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moreno, C. Review: Methods Used to Evaluate the Free Radical Scavenging Activity in Foods and Biological Systems. Food Sci. Technol. Int. 2016, 8, 121–137. [Google Scholar] [CrossRef]
- Shimauti, E.L.T.; Silva, D.G.H.; de Almeida, E.A.; Zamaro, P.J.A.; Belini Junior, E.; Bonini-Domingos, C.R. Serum melatonin level and oxidative stress in sickle cell anemia. Blood Cells Mol. Dis. 2010, 45, 297–301. [Google Scholar] [CrossRef]
- Belini, E.; Da Silva, D.G.H.; De Souza Torres, L.; De Almeida, E.A.; Cancado, R.D.; Chiattone, C.; Bonini-Domingos, C.R. Oxidative stress and antioxidant capacity in sickle cell anaemia patients receiving different treatments and medications for different periods of time. Ann. Hematol. 2012, 91, 479–489. [Google Scholar] [CrossRef]
- Lu, J.Q.; Monaco, C.M.F.; Hawke, T.J.; Yan, C.; Tarnopolsky, M.A. Increased intra-mitochondrial lipofuscin aggregates with spherical dense body formation in mitochondrial myopathy. J. Neurol. Sci. 2020, 413, 116816. [Google Scholar] [CrossRef]
- Double, K.L.; Dedov, V.N.; Fedorow, H.; Kettle, E.; Halliday, G.M.; Garner, B.; Brunk, U.T. The comparative biology of neuromelanin and lipofuscin in the human brain. Cell Mol. Life Sci. 2008, 65, 1669–1682. [Google Scholar] [CrossRef] [PubMed]
- Sohal, R.S.; Brunk, U.T. Lipofuscin as an indicator of oxidative stress and aging. Adv. Exp. Med. Biol. 1989, 266, 17–29. [Google Scholar] [CrossRef]
- Allaire, J.; Maltais, F.; Leblanc, P.; Simard, P.M.; Whittom, F.; Doyon, J.F.; Simard, C.; Jobin, J. Lipofuscin accumulation in the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Muscle Nerve 2002, 25, 383–389. [Google Scholar] [CrossRef]
- Gosker, H.R.; Zeegers, M.P.; Wouters, E.F.M.; Schols, A.M.W.J. Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: A systematic review and meta-analysis. Thorax 2007, 62, 944–949. [Google Scholar] [CrossRef] [Green Version]
- Gosker, H.R.; Marïelle Engelen, P.K.J.; Van Mameren, H.; Van Dijk, P.J.; Van Der Vusse, G.J.; Wouters, E.F.M.; Annemie Schols, M.W.J. Muscle fiber type IIX atrophy is involved in the loss of fat-free mass in chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2002, 76, 113–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrikrishna, D.; Patel, M.; Tanner, R.J.; Seymour, J.M.; Connolly, B.A.; Puthucheary, Z.A.; Walsh, S.L.F.; Bloch, S.A.; Sidhu, P.S.; Hart, N.; et al. Quadriceps wasting and physical inactivity in patients with COPD. Eur. Respir. J. 2012, 40, 1115–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serres, I.; Gautier, V.; Varray, A.; Préfaut, C. Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients. Chest 1998, 113, 900–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plotkin, D.L.; Roberts, M.D.; Haun, C.T.; Schoenfeld, B.J. Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives. Sports 2021, 9, 127. [Google Scholar] [CrossRef]
- Thompson, L. V Skeletal Muscle Adaptations with Age, Inactivity, and Therapeutic Exercise. J. Orthop. Sports Phys. Ther. 2002, 32, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Gea, J.; Sancho-Muñoz, A.; Chalela, R. Nutritional status and muscle dysfunction in chronic respiratory diseases: Stable phase versus acute exacerbations. J. Thorac. Dis. 2018, 10, S1332. [Google Scholar] [CrossRef] [PubMed]
- Ohira, Y.; Gill, S.L. Effects of Dietary Iron Deficiency on Muscle Fiber Characteristics and Whole-Body Distribution of Hemoglobin in Mice. J. Nutr. 1983, 113, 1811–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
COPD Patients | |||
---|---|---|---|
Non-Iron Deficiency | Iron Deficiency | p-Value | |
N = 20 | N = 20 | ||
Anthropometry | |||
Age (years) | 67.3 ± 8.0 | 65.9 ± 8.1 | 0.602 |
Males/Females | 12/8 | 12/8 | 1.000 |
Body weight (Kg) | 59.72 ± 11.33 | 63.97 ± 13.07 | 0.280 |
BMI (Kg/m2) | 22.73 ± 3.64 | 24.08 ± 4.28 | 0.301 |
FFMI (Kg/m2) | 15.65 ± 2.30 | 14.72 ± 2.15 | 0.202 |
Smoking history | |||
Smoking status (active/ex-smoker) | 9/11 | 12/8 | 0.515 |
Packs-year | 53.2 ± 33.4 | 44.9 ± 24.1 | 0.406 |
Lung Function | |||
FEV1 (L) | 1.20 ± 0.37 | 1.23 ± 0.41 | 0.759 |
FEV1 (% predicted) | 47.26 ± 13.50 | 43.42 ± 11.13 | 0.345 |
FVC (L) | 2.82 ± 0.50 | 2.76 ± 0.76 | 0.753 |
FVC (% predicted) | 85.05 ± 14.52 | 76.74 ± 12.24 | 0.064 |
FEV1/FVC | 45.19 ± 11.73 | 46.62 ± 11.44 | 0.706 |
GOLD classification | |||
1, (%) | 0 | 0 | 0.224 |
2, (%) | 45 | 25 | |
3, (%) | 45 | 60 | |
4, (%) | 10 | 15 | |
A, (%) | 55 | 45 | 0.699 |
B, (%) | 35 | 45 | |
C, (%) | 5 | 5 | |
D, (%) | 5 | 5 | |
Iron status | |||
Hemoglobin (g/dL) | 15.23 ± 1.46 | 14.99 ± 1.64 | 0.641 |
Hematocrit (%) | 45.40 ± 4.81 | 44.97 ± 4.45 | 0.778 |
MCV (fL) | 93.84 ± 3.56 | 91.61 ± 6.84 | 0.214 |
MCH (pg) | 31.52 ± 1.39 | 30.53 ± 2.78 | 0.176 |
MCHC (g/dL) | 33.59 ± 1.26 | 33.31 ± 1.01 | 0.447 |
Ferritin (ng/mL) | 212.16 ± 60.77 | 68.52 ± 32.62 | 0.000 |
Transferrin saturation (%) | 31.45 ± 8.36 | 24.78 ± 7.02 | 0.016 |
Transferrin (g/dL) | 237.26 ± 31.65 | 259.11 ± 28.71 | 0.032 |
Soluble transferrin receptor (mg/L) | 2.18 ± 0.49 | 2.99 ± 0.80 | 0.001 |
Serum iron (µg/dL) | 106.54 ± 26.84 | 91.44 ± 27.35 | 0.099 |
Hepcidin (ng/mL) | 411.30 ± 113.92 | 87.78 ± 68.25 | 0.000 |
COPD Patients | |||
---|---|---|---|
Non-Iron Deficiency | Iron Deficiency | p-Value | |
N = 20 | N = 20 | ||
Six-minute walk test | |||
Distance (m) | 481.67 ± 59.45 | 435.12 ± 57.82 | 0.025 |
Distance (% predicted) | 98.61 ± 17.21 | 84.47 ± 14.56 | 0.013 |
Upper limb muscle strength | |||
D-HGS (Kg) | 26.50 ± 6.98 | 27.78 ± 8.16 | 0.617 |
D-HGS (% predicted) | 89.91 ± 15.48 | 91.20 ± 19.02 | 0.887 |
ND-HGS (Kg) | 24.16 ± 7.36 | 24.56 ± 8.89 | 0.825 |
ND-HGS (% predicted) | 91.44 ± 22.32 | 87.68 ± 19.57 | 0.595 |
Lower limb muscle strength | |||
D-QMVC (Kg) | 22.12 ± 6.74 | 22.58 ± 4.35 | 0.831 |
D-QMVC (% predicted) | 62.23 ± 22.00 | 63.81 ± 11.46 | 0.784 |
ND-QMVC (Kg) | 21.44 ± 5.85 | 22.00 ± 4.86 | 0.825 |
ND-QMVC (% predicted) | 60.79 ± 22.07 | 62.03 ± 12.32 | 0.858 |
COPD Patients | |||
---|---|---|---|
Non-Iron Deficiency | Iron Deficiency | p-Value | |
N = 18 | N = 16 | ||
Muscle fiber type proportions | |||
Type I fibers (%) | 27.36 ± 7.70 | 20.04 ± 7.84 | 0.008 |
Type II fibers (%) | 66.52 ± 10.11 | 76.85 ± 8.97 | 0.003 |
Hybrid fibers (%) | 6.12 ± 7.01 | 3.11 ± 2.83 | 0.109 |
Cross-sectional fiber type areas | |||
Type I fibers (µm2) | 2661.72 ± 717.11 | 2837.05 ± 889.59 | 0.539 |
Type II fibers (µm2) | 1886.94 ± 645.03 | 1970.29 ± 781.53 | 0.744 |
Hybrid fibers (µm2) | 1973.64 ± 987.46 | 2179.66 ± 1161.20 | 0.639 |
Muscle structural abnormalities | N = 20 | N = 20 | |
Total abnormal fraction (%) | 1.38 ± 0.81 | 1.70 ± 0.76 | 0.215 |
Internal nuclei count (%) | 0.90 ± 0.42 | 1.12 ± 0.74 | 0.237 |
Inflammatory cells (%) | 0.08 ± 0.08 | 0.10 ± 0.08 | 0.538 |
Lipofuscin (%) | 0.01 ± 0.03 | 0.07 ± 0.10 | 0.014 |
Abnormal cells (%) | 0.11 ± 0.15 | 0.15 ± 0.16 | 0.321 |
Necrotic cells (%) | 0.30 ± 0.61 | 0.23 ± 0.40 | 0.698 |
Apoptotic nuclei (%) | 53.48 ± 7.70 | 57.43 ± 8.81 | 0.139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Peiró, M.; Alvarado Miranda, M.; Martín-Ontiyuelo, C.; Rodríguez-Chiaradía, D.A.; Barreiro, E. Nitrosative and Oxidative Stress, Reduced Antioxidant Capacity, and Fiber Type Switch in Iron-Deficient COPD Patients: Analysis of Muscle and Systemic Compartments. Nutrients 2023, 15, 1454. https://doi.org/10.3390/nu15061454
Pérez-Peiró M, Alvarado Miranda M, Martín-Ontiyuelo C, Rodríguez-Chiaradía DA, Barreiro E. Nitrosative and Oxidative Stress, Reduced Antioxidant Capacity, and Fiber Type Switch in Iron-Deficient COPD Patients: Analysis of Muscle and Systemic Compartments. Nutrients. 2023; 15(6):1454. https://doi.org/10.3390/nu15061454
Chicago/Turabian StylePérez-Peiró, Maria, Mariela Alvarado Miranda, Clara Martín-Ontiyuelo, Diego A. Rodríguez-Chiaradía, and Esther Barreiro. 2023. "Nitrosative and Oxidative Stress, Reduced Antioxidant Capacity, and Fiber Type Switch in Iron-Deficient COPD Patients: Analysis of Muscle and Systemic Compartments" Nutrients 15, no. 6: 1454. https://doi.org/10.3390/nu15061454
APA StylePérez-Peiró, M., Alvarado Miranda, M., Martín-Ontiyuelo, C., Rodríguez-Chiaradía, D. A., & Barreiro, E. (2023). Nitrosative and Oxidative Stress, Reduced Antioxidant Capacity, and Fiber Type Switch in Iron-Deficient COPD Patients: Analysis of Muscle and Systemic Compartments. Nutrients, 15(6), 1454. https://doi.org/10.3390/nu15061454