The Toxicological Analysis and Toxicological Risk Assessment of Chosen Elemental Impurities (Ag, Au, Co, Cr, Cs, Li, Mo, Se, and Sr) in Green Tea (Camellia sinensis (L.)) Infusions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals
2.3. Instrumentation and Determination of Elements
2.4. The Procedure of the Study
2.4.1. The Green Tea Infusion Process Procedure
2.4.2. Toxicological Risk Assessment
2.5. Statistical Analysis
3. Results
3.1. The NEI and Traditional EI Profiles of All Investigated Green Tea Samples
3.2. The Toxicological Risk Assessment
4. Discussion
4.1. Silver
4.2. Gold
4.3. Cobalt
4.4. Chromium
4.5. Caesium
4.6. Lithium
4.7. Molybdenum
4.8. Strontium
4.9. Selenium
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EAN | European article number |
EGCG | (-)-epigallocatechin-3-gallate |
EI | Elemental impurity |
FAO | The Food and Agriculture Organization |
FDA | Food and Drug Administration |
ICH | The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use |
ICP-MS | Inductively coupled plasma mass spectrometry |
JECFA | Joint FAO Expert Committee on Food Additives |
NEI | New elemental impurity |
PTWI | Provisional tolerable weekly intake |
RSD | Relative standard deviation |
TRA | Toxicological risk assessment |
WHO | World Health Organization |
References
- McKay, D.L.; Blumberg, J.B. A Review of the Bioactivity and Potential Health Benefits of Peppermint Tea (Mentha piperita L.). Phytother. Res. 2006, 20, 619–633. [Google Scholar] [CrossRef] [PubMed]
- Prasanth, M.; Sivamaruthi, B.; Chaiyasut, C.; Tencomnao, T. A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019, 11, 474. [Google Scholar] [CrossRef] [Green Version]
- Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial Effects of Green Tea: A Literature Review. Chin. Med. 2010, 5, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, T.; Li, C.; Wang, S.; Song, X. Green Tea (Camellia sinensis): A Review of Its Phytochemistry, Pharmacology, and Toxicology. Molecules 2022, 27, 3909. [Google Scholar] [CrossRef] [PubMed]
- McKay, D.L.; Blumberg, J.B. The Role of Tea in Human Health: An Update. J. Am. Coll. Nutr. 2002, 21, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wierzejska, R. Tea and Health—A Review of the Current State of Knowledge. Przegl. Epidemiol. 2014, 68, 501–506, 595–599. [Google Scholar] [PubMed]
- Higdon, J.V.; Frei, B. Tea Catechins and Polyphenols: Health Effects, Metabolism, and Antioxidant Functions. Crit. Rev. Food Sci. Nutr. 2003, 43, 89–143. [Google Scholar] [CrossRef] [PubMed]
- Rietveld, A.; Wiseman, S. Antioxidant Effects of Tea: Evidence from Human Clinical Trials. J. Nutr. 2003, 133, 3285S–3292S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osada, K.; Takahashi, M.; Hoshina, S.; Nakamura, M.; Nakamura, S.; Sugano, M. Tea Catechins Inhibit Cholesterol Oxidation Accompanying Oxidation of Low Density Lipoprotein in Vitro. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 128, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Raederstorff, D.G.; Schlachter, M.F.; Elste, V.; Weber, P. Effect of EGCG on Lipid Absorption and Plasma Lipid Levels in Rats. J. Nutr. Biochem. 2003, 14, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Crespy, V.; Williamson, G. A Review of the Health Effects of Green Tea Catechins in In Vivo Animal Models. J. Nutr. 2004, 134, 3431S–3440S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, M.W.L.; Cho, C.H. Pharmacological Effects of Green Tea on the Gastrointestinal System. Eur. J. Pharmacol. 2004, 500, 177–185. [Google Scholar] [CrossRef]
- Zaveri, N.T. Green Tea and Its Polyphenolic Catechins: Medicinal Uses in Cancer and Noncancer Applications. Life Sci. 2006, 78, 2073–2080. [Google Scholar] [CrossRef]
- De Amorim, L.M.N.; Vaz, S.R.; Cesário, G.; Coelho, A.S.G.; Botelho, P.B. Effect of Green Tea Extract on Bone Mass and Body Composition in Individuals with Diabetes. J. Funct. Foods 2018, 40, 589–594. [Google Scholar] [CrossRef]
- Babu, P.V.A.; Sabitha, K.E.; Shyamaladevi, C.S. Therapeutic Effect of Green Tea Extract on Oxidative Stress in Aorta and Heart of Streptozotocin Diabetic Rats. Chem. Biol. Interact. 2006, 162, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Unno, K.; Takabayashi, F.; Yoshida, H.; Choba, D.; Fukutomi, R.; Kikunaga, N.; Kishido, T.; Oku, N.; Hoshino, M. Daily Consumption of Green Tea Catechin Delays Memory Regression in Aged Mice. Biogerontology 2007, 8, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Tsuneki, H.; Ishizuka, M.; Terasawa, M.; Wu, J.-B.; Sasaoka, T.; Kimura, I. Effect of Green Tea on Blood Glucose Levels and Serum Proteomic Patterns in Diabetic (Db/Db) Mice and on Glucose Metabolism in Healthy Humans. BMC Pharm. 2004, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Maiga, A.; Diallo, D.; Bye, R.; Paulsen, B.S. Determination of Some Toxic and Essential Metal Ions in Medicinal and Edible Plants from Mali. J. Agric. Food Chem. 2005, 53, 2316–2321. [Google Scholar] [CrossRef] [PubMed]
- Madejón, P.; Domínguez, M.T.; Madejón, E.; Cabrera, F.; Marañón, T.; Murillo, J.M. Soil-Plant Relationships and Contamination by Trace Elements: A Review of Twenty Years of Experimentation and Monitoring after the Aznalcóllar (SW Spain) Mine Accident. Sci. Total Environ. 2018, 625, 50–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarma, H.; Deka, S.; Deka, H.; Saikia, R.R. Accumulation of Heavy Metals in Selected Medicinal Plants. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2012; Volume 214, pp. 63–86. ISBN 978-1-4614-0667-9. [Google Scholar]
- Ray, P.C.; Yu, H.; Fu, P.P. Toxicity and Environmental Risks of Nanomaterials: Challenges and Future Needs. J. Environ. Sci. Health Part C 2009, 27, 1–35. [Google Scholar] [CrossRef] [Green Version]
- James, W.D.; Elston, D.M.; Treat, J.; Rosenbach, M.A.; Neuhaus, I.; Andrews, G.C. Andrews’ Diseases of the Skin: Clinical Dermatology, 13th ed.; Elsevier: Edinburgh, Scotland, 2020; ISBN 978-0-323-55188-5. [Google Scholar]
- Hadrup, N.; Sharma, A.K.; Loeschner, K. Toxicity of Silver Ions, Metallic Silver, and Silver Nanoparticle Materials after in Vivo Dermal and Mucosal Surface Exposure: A Review. Regul. Toxicol. Pharmacol. 2018, 98, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Lansdown, A.B.G. GOLD: Human Exposure and Update on Toxic Risks. Crit. Rev. Toxicol. 2018, 48, 596–614. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Cobalt; Public Health Service, U.S. Department of Health and Human Services: Atlanta, GA, USA, 2004. [Google Scholar]
- United States Environmental Protection Agency (US EPA). Cobalt Compounds: Technology Transfer Network Air Toxics Web Site: Hazard Summary; United States Environmental Protection Agency: Washington, DC, USA, 2000. [Google Scholar]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt Toxicity in Humans—A Review of the Potential Sources and Systemic Health Effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, J.D.; Beyersmann, D. Cobalt and Cobalt Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; ISBN 978-3-527-30673-2. [Google Scholar]
- Agency for Toxic Substances and Disease Registry (ATSDR). Chromium (Cr) Toxicity: What Are the Physiologic Effects of Chromium Exposure? Case Studies in Environmental Medicine (CSEM); Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, Georgia, USA, 2008. [Google Scholar]
- Hartwig, A.; Arand, M.; Epe, B.; Guth, S.; Jahnke, G.; Lampen, A.; Martus, H.-J.; Monien, B.; Rietjens, I.M.C.M.; Schmitz-Spanke, S.; et al. Mode of Action-Based Risk Assessment of Genotoxic Carcinogens. Arch. Toxicol. 2020, 94, 1787–1877. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Morisada, S.; Kawakita, H.; Ohto, K.; Inoue, K.; Song, X.; Zhang, G. Selective Cesium Adsorptive Removal on Using Crosslinked Tea Leaves. Processes 2019, 7, 412. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, N. Hazama Cesium Treatment Depresses Glycolysis Pathway in HeLa Cell. Cell Physiol. Biochem. 2021, 55, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, E.M.; Aubry, J.-M. Lithium: Updated Human Knowledge Using an Evidence-Based Approach: Part II: Clinical Pharmacology and Therapeutic Monitoring. CNS Drugs 2009, 23, 331–349. [Google Scholar] [CrossRef] [PubMed]
- McKnight, R.F.; Adida, M.; Budge, K.; Stockton, S.; Goodwin, G.M.; Geddes, J.R. Lithium Toxicity Profile: A Systematic Review and Meta-Analysis. Lancet 2012, 379, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Hadrup, N.; Sørli, J.B.; Sharma, A.K. Pulmonary Toxicity, Genotoxicity, and Carcinogenicity Evaluation of Molybdenum, Lithium, and Tungsten: A Review. Toxicology 2022, 467, 153098. [Google Scholar] [CrossRef]
- Jarrell, W.M.; Page, A.L.; Elseewi, A.A. Molybdenum in the Environment. In Residue Reviews; Gunther, F.A., Gunther, J.D., Eds.; Springer: New York, NY, USA, 1980; pp. 1–43. ISBN 978-1-4612-6098-1. [Google Scholar]
- Albuquerque, R.G.; Hirotsu, C.; Tufik, S.; Andersen, M.L. Why Should We Care About Selenium in Obstructive Sleep Apnea? J. Clin. Sleep Med. 2017, 13, 931–932. [Google Scholar] [CrossRef] [Green Version]
- Emsley, J. Nature’s Building Blocks: An A-Z Guide to the Elements; New edition, Completely Revised and Updated; Oxford University Press: Oxford, UK; New York, NY, USA, 2011; p. 507. ISBN 978-0-19-960563-7. [Google Scholar]
- Price, C.T.; Langford, J.R.; Liporace, F.A. Essential Nutrients for Bone Health and a Review of Their Availability in the Average North American Diet. Open Orthop. J. 2012, 6, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Pors Nielsen, S. The Biological Role of Strontium. Bone 2004, 35, 583–588. [Google Scholar] [CrossRef]
- Gruzewska, K.; Michno, A.; Pawelczyk, T.; Bielarczyk, H. Essentiality and Toxicity of Vanadium Supplements in Health and Pathology. J. Physiol. Pharm. 2014, 65, 603–611. [Google Scholar]
- Leszek, M.; Maleszka, A. Evaluation of the exposure of a Polish consumer to tea-origin lead. Zarz. Finans. 2012, 3, 206–223. [Google Scholar]
- Cabrera, C.; Artacho, R.; Giménez, R. Beneficial Effects of Green Tea—A Review. J. Am. Coll. Nutr. 2006, 25, 79–99. [Google Scholar] [CrossRef]
- Milan, J.; Frydrych, A.; Noga, M.; Kondratowicz-Pietruszka, E.; Krośniak, M.; Jurowski, K. The Control of Novel and Traditional Elemental Impurities: Ag, Au, Co, Cs, Li, Mo, Se, Sr, and V in Mint Tea Infusions (Peppermint, Mentha piperita L.) Available in Poland: A Health Risk Assessment. Int. J. Environ. Res. Public Health 2022, 19, 16564. [Google Scholar] [CrossRef]
- Khokhar, S.; Magnusdottir, S.G.M. Total Phenol, Catechin, and Caffeine Contents of Teas Commonly Consumed in the United Kingdom. J. Agric. Food Chem. 2002, 50, 565–570. [Google Scholar] [CrossRef]
- Kaegi, E. Unconventional Therapies for Cancer: 2. Green Tea. The Task Force on Alternative Therapies of the Canadian Breast Cancer Research Initiative. Can. Med. Assoc. J. 1998, 158, 1033–1035. [Google Scholar]
- Hakim, I.A.; Harris, R.B.; Brown, S.; Chow, H.-H.S.; Wiseman, S.; Agarwal, S.; Talbot, W. Effect of Increased Tea Consumption on Oxidative DNA Damage among Smokers: A Randomized Controlled Study. J. Nutr. 2003, 133, 3303S–3309S. [Google Scholar] [CrossRef] [Green Version]
- Imai, K.; Suga, K.; Nakachi, K. Cancer-Preventive Effects of Drinking Green Tea among a Japanese Population. Prev. Med. 1997, 26, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Jehan, S.; Muhammad, S.; Ali, W.; Hussain, M.L. Potential Risks Assessment of Heavy Metal(Loid)s Contaminated Vegetables in Pakistan: A Review. Geocarto Int. 2022, 37, 7287–7302. [Google Scholar] [CrossRef]
- EFSA Scientific Committee. Guidance on Selected Default Values to Be Used by the EFSA Scientific Committee, Scientific Panels and Units in the Absence of Actual Measured Data. EFSA J. 2012, 10, 2579. [Google Scholar] [CrossRef]
- Matsuura, H.; Hokura, A.; Haraguchi, H. Multielement Determination and Speciation of Major-to-Ultratrace Elements in Green Tea Leaves by ICP-AES and ICP-MS. Analytical Chemistry for Environmental and Human Health. Bunseki Kagaku 2000, 49, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Karak, T.; Bhagat, R.M. Trace Elements in Tea Leaves, Made Tea and Tea Infusion: A Review. Food Res. Int. 2010, 43, 2234–2252. [Google Scholar] [CrossRef]
- Szymczycha-Madeja, A.; Welna, M.; Pohl, P. Determination of Essential and Non-Essential Elements in Green and Black Teas by FAAS and ICP OES Simplified—Multivariate Classification of Different Tea Products. Microchem. J. 2015, 121, 122–129. [Google Scholar] [CrossRef]
- Brzezicha-Cirocka, J.; Grembecka, M.; Szefer, P. Monitoring of Essential and Heavy Metals in Green Tea from Different Geographical Origins. Environ. Monit. Assess. 2016, 188, 183. [Google Scholar] [CrossRef] [Green Version]
- Heshmati, A.; Mehri, F.; Karami-Momtaz, J.; Mousavi Khaneghah, A. The Concentration and Health Risk of Potentially Toxic Elements in Black and Green Tea—Both Bagged and Loose-Leaf. Qual. Assur. Saf. Crop. Foods 2020, 12, 140–150. [Google Scholar] [CrossRef]
- Deka, H.; Barman, T.; Sarmah, P.P.; Devi, A.; Tamuly, P.; Karak, T. Impact of Processing Method on Selected Trace Elements Content of Green Tea: Does CTC Green Tea Infusion Possess Risk towards Human Health? Food Chem. X 2021, 12, 100173. [Google Scholar] [CrossRef] [PubMed]
- Na Nagara, V.; Sarkar, D.; Luo, Q.; Biswas, J.K.; Datta, R. Health Risk Assessment of Exposure to Trace Elements from Drinking Black and Green Tea Marketed in Three Countries. Biol. Trace Elem. Res. 2022, 200, 2970–2982. [Google Scholar] [CrossRef]
- Drake, P.; Hazelwood, K. Exposure-Related Health Effects of Silver and Silver Compounds: A Review. Ann. Occup. Hyg. 2005, 49, 575–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Committee for Human Medicinal Products. ICH Guideline Q3D (R1) on Elemental Impurities; European Medicines Agency: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Boisselier, E.; Astruc, D. Gold Nanoparticles in Nanomedicine: Preparations, Imaging, Diagnostics, Therapies and Toxicity. Chem. Soc. Rev. 2009, 38, 1759. [Google Scholar] [CrossRef]
- Hadrup, N.; Sharma, A.K.; Poulsen, M.; Nielsen, E. Toxicological Risk Assessment of Elemental Gold Following Oral Exposure to Sheets and Nanoparticles—A Review. Regul. Toxicol. Pharmacol. 2015, 72, 216–221. [Google Scholar] [CrossRef]
- Scarselli, A.; Di Marzio, D.; Iavicoli, S. Assessment of Exposure to Cobalt and Its Compounds in Italian Industrial Settings: Occupational Exposure to Cobalt. Med. Lav. 2020, 111, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Melnikov, P.; Zanoni, L.Z. Clinical Effects of Cesium Intake. Biol. Trace Elem Res. 2010, 135, 1–9. [Google Scholar] [CrossRef]
- Brewer, A.K. The High PH Therapy for Cancer Tests on Mice and Humans. Pharmacol. Biochem. Behav. 1984, 21, 1–5. [Google Scholar] [CrossRef]
- Leggett, R.W.; Williams, L.R.; Melo, D.R.; Lipsztein, J.L. A Physiologically Based Biokinetic Model for Cesium in the Human Body. Sci. Total Environ. 2003, 317, 235–255. [Google Scholar] [CrossRef]
- Vyskočil, A.; Viau, C. Assessment of Molybdenum Toxicity in Humans. J. Appl. Toxicol. 1999, 19, 185–192. [Google Scholar] [CrossRef]
- Hadrup, N.; Ravn-Haren, G. Acute Human Toxicity and Mortality after Selenium Ingestion: A Review. J. Trace Elem. Med. Biol. 2020, 58, 126435. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.; Haris, P.I.; Brima, E.I. Estimated Dietary Intake of Essential Elements from Four Selected Staple Foods in Najran City, Saudi Arabia. BMC Chem. 2019, 13, 73. [Google Scholar] [CrossRef] [PubMed]
Code of Sample | Form of Tea | The Amount of Raw Material Intended for a Single Brewing Process, g | Time of the Brewing Process (Brew Time), Minutes | Country of Origin | EAN |
---|---|---|---|---|---|
GT1 | Tea bag | 1.5 | 1–3 | Sri Lanka | 5901086000333 |
GT2 | Tea bag | 1.5 | 3 | China | 5900175401532 |
GT3 | Leaf tea | 2.0 | 2–3 | China | 5900738004101 |
GT4 | Leaf tea | 2.0 | 3 | Sri Lanka | 5901483051129 |
GT5 | Leaf tea | 4–5 | 3 | China | 5907732943986 |
GT6 | Leaf tea | 3.0 | 4 | China | 5900956700410 |
GT7 | Tea bag | 1.5 | 1–3 | China | 5906881826072 |
GT8 | Tea bag | 2 | 2–3 | Sri Lanka | 4796004230449 |
GT9 | Tea bag | 2 | 3–4 | China | 5900956006782 |
GT10 | Tea bag | 1.5 | 1–3 | Sri Lanka | 4791038950158 |
GT11 | Leaf tea | 2.0 | 3–5 | Sri Lanka | 5900396000736 |
GT12 | Tea bag | 1.75 | 2–3 | China | 20321154 |
Parameter | Value(s) |
---|---|
Instrument | Elan DRC-e Perkin Elmer (US) |
Calibration | External * |
RF power | 1150 |
Dwell time | 250 ms |
Sweeps/Readings | 4 |
Readings/Replicates | 2 |
Replicates | 3 |
Spray chamber | Cyclonic spray chamber |
Nebulizer | Meinhard nebulizer |
Cooling gas flow rate (L/min) | 17 |
Sampler cone | Ni |
Scanning mode | Peak-hopping |
Plasma gas flow rate | 15 L/min |
Carrier gas flow rate | 1.1 L/min |
Composition gas flow rate | 1.0 L/min |
Step | Description |
---|---|
1 | Analysis of raw results from the determination of investigated elemental impurities in green tea infusions (g/L of infusion) as NEI and traditional EI profiles of investigated samples (GT1-GT12) and descriptive statistics (minimum, maximum, average); |
2 | Estimation of weekly intake (g/L infusion/week) based on weekly tea consumption (approximately 21–70 cups of green tea infusions per week based on the review of the literature [46,47,48,49]); |
3 | Depending on weekly tea consumption per person compared to PTWI, weekly intake was evaluated according to body weight (µg/L of infusion/week/bw), using the equation: EWIBW = EWI/BW, where EWI is the estimated weekly intake (µg/L of infusion/week), and BW is the average body weight (approximately 70 kg bw) (kg). |
Statistical Parameter | Elemental Impurity | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ag | Au | Co | Cr | Cs | Li | Mo | Se | Sr | |
Minimum, μg/L | 0.364 | 0.0105 | 0.580 | 7.121 | 0.399 | 0.205 | 0.0113 | 0.067 | 9.848 |
Maximum, μg/L | 15.748 | 0.0830 | 2.989 | 10.993 | 2.654 | 2.667 | 0.107 | 0.308 | 22.331 |
Mean, μg/L | 8.0560 | 0.0333 | 1.798 | 8.981 | 1.304 | 1.340 | 0.0486 | 0.170 | 17.763 |
RSD, % | 0.334 | 0.00031 | 0.0054 | 0.0199 | 0.0058 | 0.00983 | 0.00061 | 0.0021 | 0.0157 |
Sample | Estimation of Weekly Intake, µg/Week | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ag | Au | Co | Cr | Cs | Li | Mo | Se | Sr | |
GT1 | 0.219–0.729 | 0.044–0.145 | 1.229–4.097 | 5.302–17.673 | 0.586–1.954 | 1.196–3.986 | N/D | 0.041–0.135 | 12.502–41.673 |
GT2 | N/D | 0.016–0.053 | 1.794–5.979 | 5.658–18.860 | 1.189–3.963 | 1.050–3.501 | 0.011–0.036 | 0.057–0.189 | 11.966–39.888 |
GT3 | 9.49–31.496 | 0.008–0.027 | 1.523–5.078 | 4.822–16.073 | 0.240–0.799 | 1.600–5.335 | 0.016–0.052 | 0.155–0.518 | 10.631–35.436 |
GT4 | N/D | 0.013–0.042 | 1.504–5.014 | 6.596–21.988 | 1.114–3.713 | 0.524–1.745 | 0.034–0.113 | 0.139–0.464 | 10.742–35.808 |
GT5 | N/D | 0.050–0.167 | 0.348–1.160 | 5.147–17.157 | 0.396–1.321 | 0.136–0.455 | N/D | N/D | 5.909–19.697 |
GT6 | N/D | N/D | 1.388–4.626 | 4.273–14.242 | 1.210–4.034 | 0.724–2.413 | 0.015–0.051 | 0.080–0.266 | 7.060–23.532 |
GT7 | N/D | N/D | 0.918–3.058 | 5.363–17.878 | 0.737–2.458 | 1.506–5.020 | 0.052–0.174 | 0.098–0.328 | 13.399–44.662 |
GT8 | N/D | N/D | 0.553–1.844 | 6.221–20.736 | 0.528–1.760 | 0.123–0.410 | N/D | 0.100–0.335 | 9.826–32.755 |
GT9 | N/D | 0.006–0.021 | 1.152–3.841 | 4.595–15.316 | 0.455–1.518 | 0.703–2.343 | 0.035–0.116 | 0.073–0.244 | 11.454–38.180 |
GT10 | N/D | N/D | 0.587–1.955 | 5.534–18.446 | 0.793–2.643 | 0.130–0.433 | N/D | 0.103–0.343 | 10.293–34.309 |
GT11 | N/D | N/D | 0.925–3.084 | 6.497–21.657 | 1.593–5.309 | 1.310–4.367 | 0.007–0.023 | 0.185–0.617 | 11.369–37.895 |
GT12 | N/D | 0.003–0.012 | N/D | 4.658–15.527 | 0.553–1.845 | 0.647–2.158 | 0.064–0.214 | 0.093–0.310 | 12.744–42.479 |
Sample | Estimation of Weekly Intake, µg/Week/bw | ||||||||
Ag | Au | Co | Cr | Cs | Li | Mo | Se | Sr | |
GT1 | 0.00312–0.01041 | 0.00062–0.00207 | 0.01756–0.05853 | 0.07574–0.25247 | 0.00837–0.02791 | 0.01708–0.05694 | N/D | 0.00058–0.00193 | 0.17860–0.59533 |
GT2 | N/D | 0.00023–0.00075 | 0.02563–0.08542 | 0.08083–0.26942 | 0.01698–0.05661 | 0.01500–0.05002 | 0.00016–0.00052 | 0.00081–0.00270 | 0.17095–0.56982 |
GT3 | 0.13498–0.44995 | 0.00012–0.00038 | 0.02176–0.07254 | 0.06888–0.22962 | 0.00342–0.01141 | 0.02286–0.07621 | 0.00022–0.00074 | 0.00222–0.00740 | 0.15187–0.50624 |
GT4 | N/D | N/D | 0.02149–0.07162 | 0.09423–0.31411 | 0.01591–0.05304 | 0.00748–0.02493 | 0.00048–0.00161 | 0.00199–0.00663 | 0.15346–0.51154 |
GT5 | N/D | N/D | 0.00497–0.01658 | 0.07353–0.24510 | 0.00566–0.01888 | 0.00195–0.00650 | N/D | N/D | 0.08442–0.28139 |
GT6 | N/D | N/D | 0.01983–0.06609 | 0.06104–0.20346 | 0.01729–0.05763 | 0.01034–0.03447 | 0.00022–0.00073 | 0.00114–0.00381 | 0.10085–0.33617 |
GT7 | N/D | N/D | 0.01311–0.04369 | 0.07662–0.25540 | 0.01053–0.03511 | 0.02151–0.07171 | 0.00075–0.00249 | 0.00141–0.00468 | 0.19141–0.63803 |
GT8 | N/D | N/D | 0.00790–0.02635 | 0.08887–0.29623 | 0.00754–0.02515 | 0.00176–0.00586 | N/D | 0.00143–0.00478 | 0.14038–0.46792 |
GT9 | N/D | 0.00009–0.00030 | 0.01646–0.05487 | 0.06564–0.21880 | 0.00650–0.02168 | 0.01004–0.03347 | 0.00050–0.00165 | 0.00105–0.00349 | 0.16363–0.54543 |
GT10 | N/D | N/D | 0.00838–0.02794 | 0.07906–0.26352 | 0.01133–0.03775 | 0.00186–0.00618 | N/D | 0.00147–0.00490 | 0.14704–0.49013 |
GT11 | N/D | N/D | 0.01467–0.04890 | 0.09282–0.30939 | 0.02275–0.07584 | 0.01872–0.06239 | 0.00010–0.00033 | 0.00264–0.00881 | 0.16241–0.54136 |
GT12 | N/D | 0.0005–0.00016 | 0.01322–0.04405 | 0.09282–0.30939 | 0.00791–0.02635 | 0.00925–0.03083 | 0.00092–0.00306 | 0.00881–0.00881 | 0.18205–0.60685 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frydrych, A.; Noga, M.; Milan, J.; Kondratowicz-Pietruszka, E.; Krośniak, M.; Jurowski, K. The Toxicological Analysis and Toxicological Risk Assessment of Chosen Elemental Impurities (Ag, Au, Co, Cr, Cs, Li, Mo, Se, and Sr) in Green Tea (Camellia sinensis (L.)) Infusions. Nutrients 2023, 15, 1460. https://doi.org/10.3390/nu15061460
Frydrych A, Noga M, Milan J, Kondratowicz-Pietruszka E, Krośniak M, Jurowski K. The Toxicological Analysis and Toxicological Risk Assessment of Chosen Elemental Impurities (Ag, Au, Co, Cr, Cs, Li, Mo, Se, and Sr) in Green Tea (Camellia sinensis (L.)) Infusions. Nutrients. 2023; 15(6):1460. https://doi.org/10.3390/nu15061460
Chicago/Turabian StyleFrydrych, Adrian, Maciej Noga, Justyna Milan, Elżbieta Kondratowicz-Pietruszka, Mirosław Krośniak, and Kamil Jurowski. 2023. "The Toxicological Analysis and Toxicological Risk Assessment of Chosen Elemental Impurities (Ag, Au, Co, Cr, Cs, Li, Mo, Se, and Sr) in Green Tea (Camellia sinensis (L.)) Infusions" Nutrients 15, no. 6: 1460. https://doi.org/10.3390/nu15061460
APA StyleFrydrych, A., Noga, M., Milan, J., Kondratowicz-Pietruszka, E., Krośniak, M., & Jurowski, K. (2023). The Toxicological Analysis and Toxicological Risk Assessment of Chosen Elemental Impurities (Ag, Au, Co, Cr, Cs, Li, Mo, Se, and Sr) in Green Tea (Camellia sinensis (L.)) Infusions. Nutrients, 15(6), 1460. https://doi.org/10.3390/nu15061460