Serum Appetite-Regulating Hormone Levels in Cystic Fibrosis Patients: Influence of the Disease Severity and the Type of Bacterial Infection—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Issues
2.2. Study Design and Participants
2.3. Spirometry
2.4. Sputum Collection
2.5. Blood Sampling
2.6. Blood Counts and Serum Analysis
2.7. Appetite-Regulating Hormones Determination
2.8. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schluchter, M.D.; Konstan, M.W.; Drumm, M.L.; Yankaskas, J.R.; Knowles, M.R. Classifying Severity of Cystic Fibrosis Lung Disease Using Longitudinal Pulmonary Function Data. Am. J. Respir. Crit. Care Med. 2006, 174, 780–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczesniak, R.; Heltshe, S.L.; Stanojevic, S.; Mayer-Hamblett, N. Use of FEV1 in Cystic Fibrosis Epidemiologic Studies and Clinical Trials: A Statistical Perspective for the Clinical Researcher. J. Cyst. Fibros. 2017, 16, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Galiniak, S.; Mołoń, M.; Rachel, M. Links between Disease Severity, Bacterial Infections and Oxidative Stress in Cystic Fibrosis. Antioxidants 2022, 11, 887. [Google Scholar] [CrossRef] [PubMed]
- Kerem, E.; Viviani, L.; Zolin, A.; MacNeill, S.; Hatziagorou, E.; Ellemunter, H.; Drevinek, P.; Gulmans, V.; Krivec, U.; Olesen, H. Factors Associated with FEV1 Decline in Cystic Fibrosis: Analysis of the ECFS Patient Registry. Eur. Respir. J. 2014, 43, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Taylor-Robinson, D.; Whitehead, M.; Diderichsen, F.; Olesen, H.V.; Pressler, T.; Smyth, R.L.; Diggle, P. Understanding the Natural Progression in %FEV1 Decline in Patients with Cystic Fibrosis: A Longitudinal Study. Thorax 2012, 67, 860–866. [Google Scholar] [CrossRef] [Green Version]
- Earnest, A.; Salimi, F.; Wainwright, C.E.; Bell, S.C.; Ruseckaite, R.; Ranger, T.; Kotsimbos, T.; Ahern, S. Lung Function over the Life Course of Paediatric and Adult Patients with Cystic Fibrosis from a Large Multi-Centre Registry. Sci. Rep. 2020, 10, 17421. [Google Scholar] [CrossRef]
- Coutinho, H.D.M.; Falcão-Silva, V.S.; Gonçalves, G.F. Pulmonary Bacterial Pathogens in Cystic Fibrosis Patients and Antibiotic Therapy: A Tool for the Health Workers. Int. Arch. Med. 2008, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Chiappini, E.; Taccetti, G.; de Martino, M. Bacterial Lung Infections in Cystic Fibrosis Patients: An Update. Pediatr. Infect. Dis. J. 2014, 33, 653–654. [Google Scholar] [CrossRef]
- Patient Registry|Cystic Fibrosis Foundation. Available online: https://www.cff.org/medical-professionals/patient-registry (accessed on 19 September 2022).
- Bhagirath, A.Y.; Li, Y.; Somayajula, D.; Dadashi, M.; Badr, S.; Duan, K. Cystic Fibrosis Lung Environment and Pseudomonas aeruginosa Infection. BMC Pulm. Med. 2016, 16, 174. [Google Scholar] [CrossRef] [Green Version]
- John, A.; Goździk-Spychalska, J.; Durda-Masny, M.; Czaiński, W.; Pawłowska, N.; Wlizło, J.; Batura-Gabryel, H.; Szwed, A. Pseudomonas aeruginosa, the Type of Mutation, Lung Function, and Nutritional Status in Adults with Cystic Fibrosis. Nutrition 2021, 89, 111221. [Google Scholar] [CrossRef]
- Durda-Masny, M.; Goździk-Spychalska, J.; John, A.; Czaiński, W.; Stróżewska, W.; Pawłowska, N.; Wlizło, J.; Batura-Gabryel, H.; Szwed, A. The Determinants of Survival among Adults with Cystic Fibrosis—A Cohort Study. J. Physiol. Anthropol. 2021, 40, 19. [Google Scholar] [CrossRef] [PubMed]
- Galiniak, S.; Podgórski, R.; Rachel, M.; Mazur, A. Serum Leptin and Neuropeptide Y in Patients with Cystic Fibrosis—A Single Center Study. Front. Med. 2022, 9, 959584. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.I.; Tsang, D.; Koenig, S.; Wilson, D.; McCloskey, T.; Chandra, S. Plasma Ghrelin and Leptin in Adult Cystic Fibrosis Patients. J. Cyst. Fibros. 2008, 7, 398–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galiniak, S.; Podgórski, R.; Rachel, M.; Mazur, A. Serum Levels of Hormones Regulating Appetite in Patients with Cystic Fibrosis—A Single-Center, Cross-Sectional Study. Front. Endocrinol. 2022, 13, 992667. [Google Scholar] [CrossRef] [PubMed]
- Beck, B. Neuropeptide Y in Normal Eating and in Genetic and Dietary-Induced Obesity. Philos. Trans. R. Soc. B Lond. Biol. Sci. 2006, 361, 1159–1185. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Albrecht, E.; Schering, L.; Kuehn, C.; Yang, R.; Zhao, Z.; Maak, S. Agouti Signaling Protein and Its Receptors as Potential Molecular Markers for Intramuscular and Body Fat Deposition in Cattle. Front. Physiol. 2018, 9, 172. [Google Scholar] [CrossRef] [Green Version]
- Voisey, J.; van Daal, A. Agouti: From Mouse to Man, from Skin to Fat. Pigment Cell Res. 2002, 15, 10–18. [Google Scholar] [CrossRef]
- Vehapoğlu, A.; Türkmen, S.; Terzioğlu, Ş. Alpha-Melanocyte-Stimulating Hormone and Agouti-Related Protein: Do They Play a Role in Appetite Regulation in Childhood Obesity? J. Clin. Res. Pediatr. Endocrinol. 2016, 8, 40–47. [Google Scholar] [CrossRef]
- Podgórski, R.; Galiniak, S.; Mazur, A.; Domin, A. The Association of the Hypothalamic-Pituitary-Adrenal Axis with Appetite Regulation in Children with Fetal Alcohol Spectrum Disorders (FASDs). Nutrients 2023, 15, 1366. [Google Scholar] [CrossRef]
- Millington, G.W. The Role of Proopiomelanocortin (POMC) Neurones in Feeding Behaviour. Nutr. Metab. 2007, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Böhm, M.; Grässel, S. Role of Proopiomelanocortin-Derived Peptides and Their Receptors in the Osteoarticular System: From Basic to Translational Research. Endocr. Rev. 2012, 33, 623–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudek, M.; Ziarniak, K.; Sliwowska, J.H. Kisspeptin and Metabolism: The Brain and Beyond. Front. Endocrinol. 2018, 9, 145. [Google Scholar] [CrossRef]
- Cahill, F.; Ji, Y.; Wadden, D.; Amini, P.; Randell, E.; Vasdev, S.; Gulliver, W.; Sun, G. The Association of Serum Total Peptide YY (PYY) with Obesity and Body Fat Measures in the CODING Study. PLoS ONE 2014, 9, e95235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.W.R.; Brownlee, K.G.; Conway, S.P.; Denton, M.; Littlewood, J.M. Evaluation of a New Definition for Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis Patients. J. Cyst. Fibros. 2003, 2, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, M.P.; Patel, J.B. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: M07-A11, 11th ed.; Documents/Clinical and Laboratory Standards Institute; Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2018; ISBN 978-1-56238-836-2. [Google Scholar]
- Soltman, S.; Hicks, R.A.; Naz Khan, F.; Kelly, A. Body Composition in Individuals with Cystic Fibrosis. J. Clin. Transl. Endocrinol. 2021, 26, 100272. [Google Scholar] [CrossRef] [PubMed]
- Nagy, R.; Gede, N.; Ocskay, K.; Dobai, B.-M.; Abada, A.; Vereczkei, Z.; Pázmány, P.; Kató, D.; Hegyi, P.; Párniczky, A. Association of Body Mass Index With Clinical Outcomes in Patients With Cystic Fibrosis: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2022, 5, e220740. [Google Scholar] [CrossRef]
- Sheikh, S.; Zemel, B.S.; Stallings, V.A.; Rubenstein, R.C.; Kelly, A. Body Composition and Pulmonary Function in Cystic Fibrosis. Front. Pediatr. 2014, 2, 33. [Google Scholar] [CrossRef] [Green Version]
- Harindhanavudhi, T.; Wang, Q.; Dunitz, J.; Moran, A.; Moheet, A. Prevalence and Factors Associated with Overweight and Obesity in Adults with Cystic Fibrosis: A Single-Center Analysis. J. Cyst. Fibros. 2020, 19, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Monajemzadeh, M.; Mokhtari, S.; Motamed, F.; Shams, S.; Ashtiani, M.T.H.; Abbasi, A.; Sani, M.N.; Sadrian, E. Plasma Ghrelin Levels in Children with Cystic Fibrosis and Healthy Children. Arch. Med. Sci. 2013, 9, 93–97. [Google Scholar] [CrossRef]
- Nowak, J.K.; Szczepanik, M.; Trypuć, M.; Pogorzelski, A.; Bobkowski, W.; Grytczuk, M.; Minarowska, A.; Wójciak, R.; Walkowiak, J. Circulating Brain-Derived Neurotrophic Factor, Leptin, Neuropeptide Y, and Their Clinical Correlates in Cystic Fibrosis: A Cross-Sectional Study. Arch. Med. Sci. 2020, 16, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Galiniak, S.; Podgórski, R.; Rachel, M.; Mazur, A. Serum Kisspeptin and Proopiomelanocortin in Cystic Fibrosis: A Single Study. Sci. Rep. 2022, 12, 17669. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Liu, H.; Zheng, P.; He, J. Lack of association between leptin concentrations and cystic fibrosis: A meta-analysis and regression. Front. Endocrinol. 2023, 14, 1126129. [Google Scholar] [CrossRef] [PubMed]
- Blackman, S.M.; Tangpricha, V. Endocrine Disorders in Cystic Fibrosis. Pediatr. Clin. N. Am. 2016, 63, 699–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rachel, M.; Topolewicz, S.; Śliwczyński, A.; Galiniak, S. Managing Cystic Fibrosis in Polish Healthcare. Int. J. Environ. Res. Public Health 2020, 17, 7630. [Google Scholar] [CrossRef]
- Ahmed, M.; Ong, K.; Thomson, A.; Dunger, D. Reduced Gains in Fat and Fat-Free Mass, and Elevated Leptin Levels in Children and Adolescents with Cystic Fibrosis. Acta Paediatr. 2004, 93, 1185–1191. [Google Scholar] [CrossRef]
- Liang, R.; Zhang, W.; Song, Y.-M. Levels of Leptin and IL-6 in Lungs and Blood Are Associated with the Severity of Chronic Obstructive Pulmonary Disease in Patients and Rat Models. Mol. Med. Rep. 2013, 7, 1470–1476. [Google Scholar] [CrossRef] [Green Version]
- Mitri, C.; Xu, Z.; Bardin, P.; Corvol, H.; Touqui, L.; Tabary, O. Novel Anti-Inflammatory Approaches for Cystic Fibrosis Lung Disease: Identification of Molecular Targets and Design of Innovative Therapies. Front. Pharmacol. 2020, 11, 794854. [Google Scholar] [CrossRef]
- Finck, B.N.; Johnson, R.W. Tumor Necrosis Factor (TNF)-Alpha Induces Leptin Production through the P55 TNF Receptor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R537–R543. [Google Scholar] [CrossRef]
- Malhotra, S.; Hayes, D.; Wozniak, D.J. Cystic Fibrosis and Pseudomonas aeruginosa: The Host-Microbe Interface. Clin. Microbiol. Rev. 2019, 32, e00138-18. [Google Scholar] [CrossRef]
- Stelzer, I.; Zelzer, S.; Raggam, R.B.; Prüller, F.; Truschnig-Wilders, M.; Meinitzer, A.; Schnedl, W.J.; Horejsi, R.; Möller, R.; Weghuber, D.; et al. Link between Leptin and Interleukin-6 Levels in the Initial Phase of Obesity Related Inflammation. Transl. Res. 2012, 159, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Pîrsean, C.; Neguț, C.; Staden, R.-I.S.; Dinu-Pirvu, C.E.; Armean, P.; Udeanu, D.I. The Salivary Levels of Leptin and Interleukin-6 as Potential Inflammatory Markers in Children Obesity. PLoS ONE 2019, 14, e0210288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, C.Z.; Wang, B.W.; Shyu, K.G. Molecular regulation of the expression of leptin by hypoxia in human coronary artery smooth muscle cells. J. Biomed. Sci. 2015, 22, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosfeld, A.; Zilberfarb, V.; Turban, S.; André, J.; Guerre-Millo, M.; Issad, T. Hypoxia increases leptin expression in human PAZ6 adipose cells. Diabetologia 2002, 45, 527–530. [Google Scholar] [CrossRef] [Green Version]
- Urquhart, D.S.; Montgomery, H.; Jaffé, A. Assessment of hypoxia in children with cystic fibrosis. Arch. Dis. Child. 2005, 90, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Polito, R.; Nigro, E.; Elce, A.; Monaco, M.L.; Iacotucci, P.; Carnovale, V.; Comegna, M.; Gelzo, M.; Zarrilli, F.; Corso, G.; et al. Adiponectin Expression Is Modulated by Long-Term Physical Activity in Adult Patients Affected by Cystic Fibrosis. Mediat. Inflamm. 2019, 2019, 2153934. [Google Scholar] [CrossRef] [Green Version]
- Bouloumie, A.; Marumo, T.; Lafontan, M.; Busse, R. Leptin Induces Oxidative Stress in Human Endothelial Cells. FASEB J. 1999, 13, 1231–1238. [Google Scholar] [CrossRef]
- Schroyen, B.; Guimarães, E.L.; Dollé, L.; Coulon, S.; Empsen, C.; Nyssen, M.; Geerts, A.; Colle, I.; Geerts, A.; van Grunsven, L.A. Leptin-Mediated Reactive Oxygen Species Production Does Not Significantly Affect Primary Mouse Hepatocyte Functions in Vitro. Eur. J. Gastroenterol. Hepatol. 2012, 24, 1370–1380. [Google Scholar] [CrossRef]
- Berger, S.; Polotsky, V.Y. Leptin and Leptin Resistance in the Pathogenesis of Obstructive Sleep Apnea: A Possible Link to Oxidative Stress and Cardiovascular Complications. Oxid. Med. Cell. Longev. 2018, 2018, 5137947. [Google Scholar] [CrossRef]
- Moliteo, E.; Sciacca, M.; Palmeri, A.; Papale, M.; Manti, S.; Parisi, G.F.; Leonardi, S. Cystic Fibrosis and Oxidative Stress: The Role of CFTR. Molecules 2022, 27, 5324. [Google Scholar] [CrossRef]
- Wang, B.; Wood, I.S.; Trayhurn, P. Hypoxia Induces Leptin Gene Expression and Secretion in Human Preadipocytes: Differential Effects of Hypoxia on Adipokine Expression by Preadipocytes. J. Endocrinol. 2008, 198, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, R.I.; Chandra, S.; Koenig, S.; Tsang, D.; Wilson, D.; McCloskey, T. Ghrelin Receptor Expression in Lymphocytes Isolated from Adult Cystic Fibrosis Patients. Respiration 2010, 79, 141–146. [Google Scholar] [CrossRef] [PubMed]
CF | Healthy Controls | p | ||
---|---|---|---|---|
Sex (F/M) | 17/21 | 10/6 | ||
Age (years) | mean ± SD | 19.6 ± 7.9 | 19.3 ± 7.3 | 0.855 |
range | 10–39 | 10–38 | ||
BMI (kg/m2), patients > 20 years | mean ± SD | 21.1 ± 2.9 | 23.2 ± 2.4 | 0.068 |
range | 17.2–25.9 | 18.7–25.6 | ||
BMI (Z-score), patients < 20 years | mean ± SD | −0.8 ± 1.1 | 0.2 ± 0.5 | 0.433 |
range | −2.1–1.1 | −0.2–1 | ||
Genotype | ||||
Homozygous ΔF508, n (%) | 30 (78.9) | – | – | |
Heterozygous ΔF508, n (%) | 8 (21.1) | – | – | |
Clinical laboratory markers | ||||
WBC (103/µL) | mean ± SD | 10 ± 3.6 | 7.5 ± 2.3 | 0.022 |
range | 5.1–19.3 | 4.3–10.5 | ||
NEU (%) | mean ± SD | 61 ± 15.3 | 59.1 ± 6.1 | 0.605 |
range | 25.1–82.3 | 50.6–68.6 | ||
Pulmonary function | ||||
FEV1 (% predicted) | mean ± SD | 86.4 ± 27 | 102.4 ± 8.2 | 0.006 |
range | 35–142 | 97–127 | ||
Severity of disease | ||||
Mild (FEV1 > 75%), n (%) | 23 (60.5) | – | – | |
Moderate (FEV1 > 45%, <75%), n (%) | 9 (23.7) | – | – | |
Severe (FEV1 < 45%), n (%) | 6 (15.8) | – | – | |
Bacterial infection | ||||
P. aeruginosa, n (%) | 9 (23.7) | – | – | |
S. aureus, n (%) | 11 (28.9) | – | – | |
Co–infected with P. aeruginosa and S. aureus, n (%) | 9 (23.7) | – | – | |
Uninfected, n (%) | 9 (23.7) | 16 (100) | – |
Mild CF 10 F/13 M | Moderate CF 4 F/5 M | Severe CF 3 F/3 M | p | |
---|---|---|---|---|
Ghrelin (pg/mL) | 687.6 ± 197.4 (345.5–1070.5) | 556 ± 274.3 (192.3–828) | 616.2 ± 165.5 (419.3–785.1) | 0.428 |
ASP (pg/mL) | 14 ± 2.1 (11.7–19.1) | 14.1 ± 2.2 (11.9–17.9) | 13.6 ± 2.9 (11.9–18.7) | 0.199 |
NPY (pg/mL) | 290.1 ± 58 (167.6–381.6) | 271.5 ± 53.7 (211.1–376.4) | 242.7 ± 37.3 (210.6–300.2) | 0.596 |
POMC (ng/mL) | 6.9 ± 4.8 (2–15.5) | 5.6 ± 3.1 (1.9–10.9) | 3.8 ± 2.4 (2.1–8) | 0.558 |
KISS (ng/mL) | 1.8 ± 0.4 (1.1–3) | 1.5 ± 0.5 (1–2.2) | 1.6 ± 0.5 (1–2.2) | 0.073 |
PYY (pg/mL) | 81.5 ± 17.5 (59.9–118.4) | 82.8 ± 22.8 (52.8–116.6) | 75.6 ± 23.9 (54.3–113.8) | 0.709 |
α-MSH (pg/mL) | 13.9 ± 2.1 (10.4–17.1) | 13.1 ± 1.8 (10.3–15.1) | 14.6 ± 2.4 (12.4–17.2) | 0.317 |
P. aeruginosa 5 F/4 M | S. aureus 4 F/7 M | Coinfected with P. aeruginosa and S. aures 4 F/5 M | Uninfected 4 F/5 M | p | |
---|---|---|---|---|---|
Ghrelin (pg/mL) | 605 ± 242.8 (192.3–828) | 634.3 ± 147.2 (435.1–1070.5) | 616.8 ± 240 (238.3–1013.8) | 829.7 ± 124.9 (682.3–1070.5) | 0.054 |
ASP (pg/mL) | 14.9 ± 2.6 (11.9–18.7) | 14.4 ± 2.1 (12–17.9) | 13.9 ± 2.61 (11.7–19.1) | 13.4 ± 1.6 (12–16.5) | 0.349 |
NPY (pg/mL) | 290.9 ± 63.4 (210.6–376.4) | 291.8 ± 44.4 (220.6–381.6) | 282 ± 60.7 (211.1–381.6) | 261.7 ± 61.2 (167.6–377.1) | 0.349 |
POMC (ng/mL) | 5 ± 3.2 (2.1–10.9) | 5 ± 3.9 (2–15.5) | 6.7 ± 4.9 (1.9–14.6) | 8 ± 5 (2–15.5) | 0.349 |
KISS (ng/mL) | 1.4 ± 0.3 (1–2.1) | 1.8 ± 0.4 (1.1–3) | 1.7 ± 0.6 (1.1–3) | 1.9 ± 0.4 (1.2–2.5) | 0.063 |
PYY (pg/mL) | 72.6 ± 20.5 (54.3–116.6) | 82.7 ± 16.6 (60.7–118.4) | 74.2 ± 16.7 (52.8–101.6) | 89.2 ± 21 (61.3–118.4) | 0.437 |
α-MSH (pg/mL) | 13 ± 2 (10.3–17.2) | 13.7 ± 1.8 (10.4–16.6) | 13.8 ± 2.5 (11–17.1) | 14.2 ± 2.3 (11.4–17.1) | 0.996 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galiniak, S.; Podgórski, R.; Rachel, M.; Mazur, A. Serum Appetite-Regulating Hormone Levels in Cystic Fibrosis Patients: Influence of the Disease Severity and the Type of Bacterial Infection—A Pilot Study. Nutrients 2023, 15, 1851. https://doi.org/10.3390/nu15081851
Galiniak S, Podgórski R, Rachel M, Mazur A. Serum Appetite-Regulating Hormone Levels in Cystic Fibrosis Patients: Influence of the Disease Severity and the Type of Bacterial Infection—A Pilot Study. Nutrients. 2023; 15(8):1851. https://doi.org/10.3390/nu15081851
Chicago/Turabian StyleGaliniak, Sabina, Rafał Podgórski, Marta Rachel, and Artur Mazur. 2023. "Serum Appetite-Regulating Hormone Levels in Cystic Fibrosis Patients: Influence of the Disease Severity and the Type of Bacterial Infection—A Pilot Study" Nutrients 15, no. 8: 1851. https://doi.org/10.3390/nu15081851
APA StyleGaliniak, S., Podgórski, R., Rachel, M., & Mazur, A. (2023). Serum Appetite-Regulating Hormone Levels in Cystic Fibrosis Patients: Influence of the Disease Severity and the Type of Bacterial Infection—A Pilot Study. Nutrients, 15(8), 1851. https://doi.org/10.3390/nu15081851